1
|
Ho YS, Torres-Vergara P, Penny J. Regulation of the ATP-binding cassette transporters ABCB1, ABCG2 and ABCC5 by nuclear receptors in porcine blood-brain barrier endothelial cells. Br J Pharmacol 2023; 180:3092-3109. [PMID: 37476954 DOI: 10.1111/bph.16196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 05/26/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Blood-brain barrier (BBB) ABCB1, ABCG2 and ABCC5 transporters influence central therapeutic drug distribution. Transporter expression is regulated by the NR3C1, NR1I3 and NR1I2 nuclear receptors, but their precise roles in brain are poorly understood. We investigated the effects of selective ligand-based activation of NR3C1, NR1I3, NR1I2 and NR2B1 in porcine brain endothelial cells (PBECs). EXPERIMENTAL APPROACH Primary cultures of PBECs were exposed to NR3C1, NR1I3 and NR1I2 ligands and ABCB1, ABCG2 and ABCC5 transporter activities determined by measuring intracellular accumulation of fluorescent probes. Western blotting was used to determine the effects of receptor ligands on expression of ABCB1, ABCG2, ABCC5, NR1I2, NR1I3, NR3C1 and NR2B1. Fluorescent immunocytochemistry was employed to assess the effects of receptor ligands on the cellular localisation of NR1I2 and NR1I3. KEY RESULTS The NR1I2 agonist rifampicin significantly up-regulated ABCG2 activity, which is counteracted by co-treatment with NR1I2 antagonist l-sulforaphane. The NR1I3 agonist 6-(4-chlorophenyl)-imidazo[2,1-b]thiazole-5-carbaldehyde and inverse agonist meclizine significantly down-regulated ABCB1, ABCG2 and ABCC5 activity. NR3C1 agonist dexamethasone significantly increased ABCB1, ABCG2 and ABCC5 activity and ABCG2 and ABCC5 protein expression, which was counteracted by co-treatment with the NR3C1 antagonist mifepristone. This first study demonstrates that NR1I3 and NR3C1 regulate ABCC5 activity and protein expression in BBB endothelial cells. CONCLUSIONS AND IMPLICATIONS In PBECs, expression of key ATP-binding cassette (ABC) transporters and nuclear receptors is differentially regulated by NR1I3, NR1I2, NR3C1 and NR2B1. This will help to better understand the response of the BBB to physiological and pharmacological activation of nuclear receptors.
Collapse
Affiliation(s)
- Yu Siong Ho
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Pablo Torres-Vergara
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Kato R, Zeng W, Siramshetty VB, Williams J, Kabir M, Hagen N, Padilha EC, Wang AQ, Mathé EA, Xu X, Shah P. Development and validation of PAMPA-BBB QSAR model to predict brain penetration potential of novel drug candidates. Front Pharmacol 2023; 14:1291246. [PMID: 38108064 PMCID: PMC10722238 DOI: 10.3389/fphar.2023.1291246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Efficiently circumventing the blood-brain barrier (BBB) poses a major hurdle in the development of drugs that target the central nervous system. Although there are several methods to determine BBB permeability of small molecules, the Parallel Artificial Membrane Permeability Assay (PAMPA) is one of the most common assays in drug discovery due to its robust and high-throughput nature. Drug discovery is a long and costly venture, thus, any advances to streamline this process are beneficial. In this study, ∼2,000 compounds from over 60 NCATS projects were screened in the PAMPA-BBB assay to develop a quantitative structure-activity relationship model to predict BBB permeability of small molecules. After analyzing both state-of-the-art and latest machine learning methods, we found that random forest based on RDKit descriptors as additional features provided the best training balanced accuracy (0.70 ± 0.015) and a message-passing variant of graph convolutional neural network that uses RDKit descriptors provided the highest balanced accuracy (0.72) on a prospective validation set. Finally, we correlated in vitro PAMPA-BBB data with in vivo brain permeation data in rodents to observe a categorical correlation of 77%, suggesting that models developed using data from PAMPA-BBB can forecast in vivo brain permeability. Given that majority of prior research has relied on in vitro or in vivo data for assessing BBB permeability, our model, developed using the largest PAMPA-BBB dataset to date, offers an orthogonal means to estimate BBB permeability of small molecules. We deposited a subset of our data into PubChem bioassay database (AID: 1845228) and deployed the best performing model on the NCATS Open Data ADME portal (https://opendata.ncats.nih.gov/adme/). These initiatives were undertaken with the aim of providing valuable resources for the drug discovery community.
Collapse
Affiliation(s)
- Rintaro Kato
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD, United States
| | - Wenyu Zeng
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD, United States
| | - Vishal B. Siramshetty
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD, United States
| | - Jordan Williams
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD, United States
| | - Md Kabir
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD, United States
| | - Natalie Hagen
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD, United States
| | - Elias C. Padilha
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD, United States
| | - Amy Q. Wang
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD, United States
| | - Ewy A. Mathé
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD, United States
| | - Xin Xu
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD, United States
| | - Pranav Shah
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD, United States
| |
Collapse
|
3
|
Zhang W, Oh JH, Zhang W, Rathi S, Le J, Talele S, Sarkaria JN, Elmquist WF. How Much is Enough? Impact of Efflux Transporters on Drug delivery Leading to Efficacy in the Treatment of Brain Tumors. Pharm Res 2023; 40:2731-2746. [PMID: 37589827 PMCID: PMC10841221 DOI: 10.1007/s11095-023-03574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
The lack of effective chemotherapeutic agents for the treatment of brain tumors is a serious unmet medical need. This can be attributed, in part, to inadequate delivery through the blood-brain barrier (BBB) and the tumor-cell barrier, both of which have active efflux transporters that can restrict the transport of many potentially effective agents for both primary and metastatic brain tumors. This review briefly summarizes the components and function of the normal BBB with respect to drug penetration into the brain and the alterations in the BBB due to brain tumor that could influence drug delivery. Depending on what is rate-limiting a compound's distribution, the limited permeability across the BBB and the subsequent delivery into the tumor cell can be greatly influenced by efflux transporters and these are discussed in some detail. Given these complexities, it is necessary to quantify the extent of brain distribution of the active (unbound) drug to compare across compounds and to inform potential for use against brain tumors. In this regard, the metric, Kp,uu, a brain-to-plasma unbound partition coefficient, is examined and its current use is discussed. However, the extent of active drug delivery is not the only determinant of effective therapy. In addition to Kp,uu, drug potency is an important parameter that should be considered alongside drug delivery in drug discovery and development processes. In other words, to answer the question - How much is enough? - one must consider how much can be delivered with how much needs to be delivered.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Ju-Hee Oh
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Wenqiu Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Sneha Rathi
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Jiayan Le
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Surabhi Talele
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
4
|
The Interplay between Uremic Toxins and Albumin, Membrane Transporters and Drug Interaction. Toxins (Basel) 2022; 14:toxins14030177. [PMID: 35324674 PMCID: PMC8949274 DOI: 10.3390/toxins14030177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/10/2023] Open
Abstract
Uremic toxins are a heterogeneous group of molecules that accumulate in the body due to the progression of chronic kidney disease (CKD). These toxins are associated with kidney dysfunction and the development of comorbidities in patients with CKD, being only partially eliminated by dialysis therapies. Importantly, drugs used in clinical treatments may affect the levels of uremic toxins, their tissue disposition, and even their elimination through the interaction of both with proteins such as albumin and cell membrane transporters. In this context, protein-bound uremic toxins (PBUTs) are highlighted for their high affinity for albumin, the most abundant serum protein with multiple binding sites and an ability to interact with drugs. Membrane transporters mediate the cellular influx and efflux of various uremic toxins, which may also compete with drugs as substrates, and both may alter transporter activity or expression. Therefore, this review explores the interaction mechanisms between uremic toxins and albumin, as well as membrane transporters, considering their potential relationship with drugs used in clinical practice.
Collapse
|
5
|
Paris J, Angeli E, Bousquet G. The Pharmacology of Xenobiotics after Intracerebro Spinal Fluid Administration: Implications for the Treatment of Brain Tumors. Int J Mol Sci 2021; 22:1281. [PMID: 33525427 PMCID: PMC7865853 DOI: 10.3390/ijms22031281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 01/16/2023] Open
Abstract
The incidence of brain metastasis has been increasing for 10 years, with poor prognosis, unlike the improvement in survival for extracranial tumor localizations. Since recent advances in molecular biology and the development of specific molecular targets, knowledge of the brain distribution of drugs has become a pharmaceutical challenge. Most anticancer drugs fail to cross the blood-brain barrier. In order to get around this problem and penetrate the brain parenchyma, the use of intrathecal administration has been developed, but the mechanisms governing drug distribution from the cerebrospinal fluid to the brain parenchyma are poorly understood. Thus, in this review we discuss the pharmacokinetics of drugs after intrathecal administration, their penetration of the brain parenchyma and the different systems causing their efflux from the brain to the blood.
Collapse
Affiliation(s)
- Justine Paris
- Institut National de la Santé Et de la Recherche Médicale (INSERM), U942, 9 Rue de Chablis, 93000 Bobigny, France; (J.P.); (E.A.)
| | - Eurydice Angeli
- Institut National de la Santé Et de la Recherche Médicale (INSERM), U942, 9 Rue de Chablis, 93000 Bobigny, France; (J.P.); (E.A.)
- Assistance Publique Hôpitaux de Paris, Avicenne Hospital, Department of Medical Oncology, 93000 Bobigny, France
- Sorbonne Paris Nord University, 99 Avenue Jean Baptiste Clément, 93430 Villetaneuse, France
| | - Guilhem Bousquet
- Institut National de la Santé Et de la Recherche Médicale (INSERM), U942, 9 Rue de Chablis, 93000 Bobigny, France; (J.P.); (E.A.)
- Assistance Publique Hôpitaux de Paris, Avicenne Hospital, Department of Medical Oncology, 93000 Bobigny, France
- Sorbonne Paris Nord University, 99 Avenue Jean Baptiste Clément, 93430 Villetaneuse, France
| |
Collapse
|
6
|
The Interplay of ABC Transporters in Aβ Translocation and Cholesterol Metabolism: Implicating Their Roles in Alzheimer's Disease. Mol Neurobiol 2020; 58:1564-1582. [PMID: 33215389 DOI: 10.1007/s12035-020-02211-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
The occurrence of Alzheimer's disease (AD) worldwide has been progressively accelerating at an alarming rate, without any successful therapeutic strategy for the disease mitigation. The complexity of AD pathogenesis needs to be targeted with an alternative approach, as provided by the superfamily of ATP-binding cassette (ABC) transporters, which constitutes an extensive range of proteins, capable of transporting molecular entities across biological membranes. These protein moieties have been implicated in AD, based upon their potential in lipid transportation, resulting in maintenance of cholesterol homeostasis. These transporters have been reported to target the primary hallmark of AD pathogenesis, namely, beta-amyloid hypothesis, which is associated with accumulation of beta-amyloid (Aβ) plaques in AD patients. The ABC transporters have been observed to be localized to the capillary endothelial cells of the blood-brain barrier and neural parenchymal cells, where they exhibit different roles, consequently influencing the neuronal expression of Aβ peptides. The review highlights different families of ABC transporters, ABCB1 (P-glycoprotein), ABCA (ABCA1, ABCA2, and ABCA7), ABCG2 (BCRP; breast cancer resistance protein), ABCG1 and ABCG4, as well as ABCC1 (MRP; multidrug resistance protein) in the CNS, and their interplay in regulating cholesterol metabolism and Aβ peptide load in the brain, simultaneously exerting protective effects against neurotoxic substrates and xenobiotics. The authors aim to establish the significance of this alternative approach as a novel therapeutic target in AD, to provide the researchers an opportunity to evaluate the potential aspects of ABC transporters in AD treatment.
Collapse
|
7
|
Granitzer S, Ellinger I, Khan R, Gelles K, Widhalm R, Hengstschläger M, Zeisler H, Desoye G, Tupova L, Ceckova M, Salzer H, Gundacker C. In vitro function and in situ localization of Multidrug Resistance-associated Protein (MRP)1 (ABCC1) suggest a protective role against methyl mercury-induced oxidative stress in the human placenta. Arch Toxicol 2020; 94:3799-3817. [PMID: 32915249 PMCID: PMC7603445 DOI: 10.1007/s00204-020-02900-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
Methyl mercury (MeHg) is an organic highly toxic compound that is transported efficiently via the human placenta. Our previous data suggest that MeHg is taken up into placental cells by amino acid transporters while mercury export from placental cells mainly involves ATP binding cassette (ABC) transporters. We hypothesized that the ABC transporter multidrug resistance-associated protein (MRP)1 (ABCC1) plays an essential role in mercury export from the human placenta. Transwell transport studies with MRP1-overexpressing Madin-Darby Canine Kidney (MDCK)II cells confirmed the function of MRP1 in polarized mercury efflux. Consistent with this, siRNA-mediated MRP1 gene knockdown in the human placental cell line HTR-8/SVneo resulted in intracellular mercury accumulation, which was associated with reduced cell viability, accompanied by increased cytotoxicity, apoptosis, and oxidative stress as determined via the glutathione (GSH) status. In addition, the many sources claiming different localization of MRP1 in the placenta required a re-evaluation of its localization in placental tissue sections by immunofluorescence microscopy using an MRP1-specific antibody that was validated in-house. Taken together, our results show that (1) MRP1 preferentially mediates apical-to-basolateral mercury transport in epithelial cells, (2) MRP1 regulates the GSH status of placental cells, (3) MRP1 function has a decisive influence on the viability of placental cells exposed to low MeHg concentrations, and (4) the in situ localization of MRP1 corresponds to mercury transport from maternal circulation to the placenta and fetus. We conclude that MRP1 protects placental cells from MeHg-induced oxidative stress by exporting the toxic metal and by maintaining the placental cells' GSH status in equilibrium.
Collapse
Affiliation(s)
- Sebastian Granitzer
- Karl-Landsteiner Private University for Health Sciences, Krems, Austria
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Isabella Ellinger
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Rumsha Khan
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Katharina Gelles
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Raimund Widhalm
- Karl-Landsteiner Private University for Health Sciences, Krems, Austria
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | | | - Harald Zeisler
- Department of Obstetrics and Gynecology, Medical University Vienna, Vienna, Austria
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Lenka Tupova
- Department of Pharmacology and Toxicology, Charles University, Hradec Kralove, Czech Republic
| | - Martina Ceckova
- Department of Pharmacology and Toxicology, Charles University, Hradec Kralove, Czech Republic
| | - Hans Salzer
- Clinic for Pediatrics and Adolescent Medicine, University Hospital Tulln, Tulln, Austria
| | - Claudia Gundacker
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Effect of amyloid beta on ATP-binding cassette transporter expression and activity in porcine brain microvascular endothelial cells. Biochim Biophys Acta Gen Subj 2018; 1862:2314-2322. [PMID: 30048740 DOI: 10.1016/j.bbagen.2018.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND Deposition of amyloid-β peptide (Aβ(1-42)) within the brain is characteristic of Alzheimer's disease. Little is known of the effects of Aβ(1-42) on blood-brain barrier (BBB) ATP-binding Cassette (ABC) efflux transporters which influence BBB permeability. The effects of Aβ(1-42) on ABCB1, ABCC5 and ABCG2 activity and expression and pregnane X receptor (PXR) and constitutive androstane receptor (CAR) transcription factors expression were determined in primary porcine brain endothelial cells (PBECs). METHODS The effect of Aβ(1-42) on transporter activity was determined by measurement of intracellular accumulation of the fluorescent probes calcein (ABCB1), GS-MF (ABCC5) and Hoechst 33342 (ABCG2). Expression of transporters and transcription factors was assessed by Western blotting. RESULTS Treatment of PBECs with Aβ(1-42) significantly decreased activity of ABCB1 (Aβ(1-42) at 10 μg/ml, 25 μg/ml and 50 μg/ml), ABCC5 (Aβ(1-42) at 25 μg/ml and 50 μg/ml) and ABCG2 (Aβ(1-42) at 10 μg/ml, 25 μg/ml and 50 μg/ml). Aβ(1-42) also significantly decreased expression of ABCB1 (p < 0.05 at 25 μg/ml and 50 μg/ml), ABCG2 (p < 0.05 at 25 μg/ml and p ≤ 0.001 at 50 μg/ml), ABCC5 (p < 0.05 at 25 μg/ml and 50 μg/ml), PXR (p < 0.05 at 10 μg/ml, 25 μg/ml and 50 μg/ml Aβ(1-42)) and CAR (p < 0.05 at 25 μg/ml and 50 μg/ml Aβ(1-42)). CONCLUSION Aβ(1-42) inhibits multiple ABC transporters and PXR and CAR in PBECs. GENERAL SIGNIFICANCE Aβ(1-42) reduces ABC transporter activity and expression in BBB endothelial cells and has the potential to influence BBB permeability characteristics.
Collapse
|
9
|
Saidijam M, Karimi Dermani F, Sohrabi S, Patching SG. Efflux proteins at the blood-brain barrier: review and bioinformatics analysis. Xenobiotica 2017; 48:506-532. [PMID: 28481715 DOI: 10.1080/00498254.2017.1328148] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
1. Efflux proteins at the blood-brain barrier provide a mechanism for export of waste products of normal metabolism from the brain and help to maintain brain homeostasis. They also prevent entry into the brain of a wide range of potentially harmful compounds such as drugs and xenobiotics. 2. Conversely, efflux proteins also hinder delivery of therapeutic drugs to the brain and central nervous system used to treat brain tumours and neurological disorders. For bypassing efflux proteins, a comprehensive understanding of their structures, functions and molecular mechanisms is necessary, along with new strategies and technologies for delivery of drugs across the blood-brain barrier. 3. We review efflux proteins at the blood-brain barrier, classified as either ATP-binding cassette (ABC) transporters (P-gp, BCRP, MRPs) or solute carrier (SLC) transporters (OATP1A2, OATP1A4, OATP1C1, OATP2B1, OAT3, EAATs, PMAT/hENT4 and MATE1). 4. This includes information about substrate and inhibitor specificity, structural organisation and mechanism, membrane localisation, regulation of expression and activity, effects of diseases and conditions and the principal technique used for in vivo analysis of efflux protein activity: positron emission tomography (PET). 5. We also performed analyses of evolutionary relationships, membrane topologies and amino acid compositions of the proteins, and linked these to structure and function.
Collapse
Affiliation(s)
- Massoud Saidijam
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Fatemeh Karimi Dermani
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Sareh Sohrabi
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Simon G Patching
- b School of BioMedical Sciences and the Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds , UK
| |
Collapse
|
10
|
Cellular Models and In Vitro Assays for the Screening of modulators of P-gp, MRP1 and BCRP. Molecules 2017; 22:molecules22040600. [PMID: 28397762 PMCID: PMC6153761 DOI: 10.3390/molecules22040600] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/12/2022] Open
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are highly expressed in tumor cells, as well as in organs involved in absorption and secretion processes, mediating the ATP-dependent efflux of compounds, both endogenous substances and xenobiotics, including drugs. Their expression and activity levels are modulated by the presence of inhibitors, inducers and/or activators. In vitro, ex vivo and in vivo studies with both known and newly synthesized P-glycoprotein (P-gp) inducers and/or activators have shown the usefulness of these transport mechanisms in reducing the systemic exposure and specific tissue access of potentially harmful compounds. This article focuses on the main ABC transporters involved in multidrug resistance [P-gp, multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP)] expressed in tissues of toxicological relevance, such as the blood-brain barrier, cardiovascular system, liver, kidney and intestine. Moreover, it provides a review of the available cellular models, in vitro and ex vivo assays for the screening and selection of safe and specific inducers and activators of these membrane transporters. The available cellular models and in vitro assays have been proposed as high throughput and low-cost alternatives to excessive animal testing, allowing the evaluation of a large number of compounds.
Collapse
|
11
|
Alam C, Whyte-Allman SK, Omeragic A, Bendayan R. Role and modulation of drug transporters in HIV-1 therapy. Adv Drug Deliv Rev 2016; 103:121-143. [PMID: 27181050 DOI: 10.1016/j.addr.2016.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022]
Abstract
Current treatment of human immunodeficiency virus type-1 (HIV-1) infection involves a combination of antiretroviral drugs (ARVs) that target different stages of the HIV-1 life cycle. This strategy is commonly referred to as highly active antiretroviral therapy (HAART) or combined antiretroviral therapy (cART). Membrane-associated drug transporters expressed ubiquitously in mammalian systems play a crucial role in modulating ARV disposition during HIV-1 infection. Members of the ATP-binding cassette (ABC) and solute carrier (SLC) transporter superfamilies have been shown to interact with ARVs, including those that are used as part of first-line treatment regimens. As a result, the functional expression of drug transporters can influence the distribution of ARVs at specific sites of infection. In addition, pathological factors related to HIV-1 infection and/or ARV therapy itself can alter transporter expression and activity, thus further contributing to changes in ARV disposition and the effectiveness of HAART. This review summarizes current knowledge on the role of drug transporters in regulating ARV transport in the context of HIV-1 infection.
Collapse
Affiliation(s)
- Camille Alam
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada.
| |
Collapse
|
12
|
Abstract
INTRODUCTION The blood-brain barrier (BBB) possesses an outstanding ability to protect the brain against xenobiotics and potentially poisonous metabolites. Owing to this, ATP binding cassette (ABC) export proteins have garnered significant interest in the research community. These transport proteins are predominantly localized to the luminal membrane of brain microvessels, where they recognize a wide range of different substrates and transport them back into the blood circulation. AREAS COVERED This review summarizes recent findings on these transport proteins, including their expression in the endothelial cell membrane and their substrate recognition. Signaling cascades underlying the expression and function of these proteins will be discussed as well as their role in diseases such as Alzheimer's disease, epilepsy, amyotrophic lateral sclerosis and brain tumors. EXPERT OPINION ABC transporters represent an integral part of the human transportome and are of particular interest at the blood-brain barrier they as they significantly contribute to brain homeostasis. In addition, they appear to be involved in myriad CNS diseases. Therefore studying their mechanisms of action as well as their signaling cascades and responses to internal and external stimuli will help us understand the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Anne Mahringer
- a Institute of Pharmacy and Molecular Biotechnology , Ruprecht-Karls University , Heidelberg , Germany
| | - Gert Fricker
- a Institute of Pharmacy and Molecular Biotechnology , Ruprecht-Karls University , Heidelberg , Germany
| |
Collapse
|
13
|
Cheng CC, Yang YL, Liao KH, Lai TW. Adenosine receptor agonist NECA increases cerebral extravasation of fluorescein and low molecular weight dextran independent of blood-brain barrier modulation. Sci Rep 2016; 6:23882. [PMID: 27025761 PMCID: PMC4812297 DOI: 10.1038/srep23882] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 03/16/2016] [Indexed: 01/13/2023] Open
Abstract
Conventional methods for therapeutic blood-brain barrier (BBB) disruption facilitate drug delivery but are cumbersome to perform. A previous study demonstrated that adenosine receptor (AR) stimulation by 5′-N-ethylcarboxamide adenosine (NECA) increased the extravasation of intravascular tracers into the brain and proposed that AR agonism may be an effective method for therapeutic BBB disruption. We attempted to confirm the extravasation of tracers into the brain and also investigated tracer extravasation into peripheral organs and tracer retention in the blood. We found that NECA not only increased the extravasation of intravascular fluorescein and low molecular weight dextran into the brain of mice but also increased the concentrations of these tracers in the blood. In fact, the brain:blood ratio-normalized BBB permeability for either tracer is actually decreased by NECA administration. Elevated blood urea nitrogen levels in mice following NECA treatment suggested that renal function impairment was a probable cause of tracer retention. Therefore, NECA has almost no effect on the extravasation of intravascular Evans blue dye (EBD), an albumin-binding tracer with little renal clearance. Rather than inducing BBB disruption, our study demonstrated that NECA increased tracer extravasation into the brain by increasing the concentration gradient of the tracer across the BBB.
Collapse
Affiliation(s)
- Chih-Chung Cheng
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan
| | - Ya Lan Yang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan
| | - Kate Hsiurong Liao
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan
| | - Ted Weita Lai
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.,Translational Medicine Research Center, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|
14
|
Soares RV, Do TM, Mabondzo A, Pons G, Chhun S. Ontogeny of ABC and SLC transporters in the microvessels of developing rat brain. Fundam Clin Pharmacol 2016; 30:107-16. [PMID: 26662930 DOI: 10.1111/fcp.12175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/19/2015] [Accepted: 12/08/2015] [Indexed: 01/01/2023]
Abstract
The blood-brain barrier (BBB) is responsible for the control of solutes' concentration in the brain. Tight junctions and multiple ATP-binding cassette (ABC) and SoLute Carrier (SLC) efflux transporters protect brain cells from xenobiotics, therefore reducing brain exposure to intentionally administered drugs. In epilepsy, polymorphisms and overexpression of efflux transporters genes could be associated with pharmacoresistance. The ontogeny of these efflux transporters should also be addressed because their expression during development may be related to different brain exposure to antiepileptic drugs in the immature brain. We detected statistically significant higher expression of Abcb1b and Slc16a1 genes, and lower expression of Abcb1a and Abcg2 genes between the post-natal day 14 (P14) and the adult rat microvessels. P-gP efflux activity was also shown to be lower in P14 rats when compared with the adults. The P-gP proteins coded by rodent genes Abcb1a and Abcb1b are known to have different substrate affinities. The role of the Abcg2 gene is less clear in pharmacoresistance in epilepsy, nonetheless the coded protein Bcrp is frequently associated with drug resistance. Finally, we observed a higher expression of the Mct1 transporter gene in the P14 rat brain microvessels. Accordingly to our results, we suppose that age may be another factor influencing brain exposure to antiepileptics as a consequence of different expression patterns of efflux transporters between the adult and immature BBB.
Collapse
Affiliation(s)
- Ricardo V Soares
- Inserm U1129, Paris, France.,University Paris Descartes, Faculty of Medicine, Paris, France.,CEA, Direction des Sciences du Vivant, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France
| | - Tuan M Do
- CEA, Direction des Sciences du Vivant, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France
| | - Aloïse Mabondzo
- CEA, Direction des Sciences du Vivant, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France
| | - Gérard Pons
- Inserm U1129, Paris, France.,University Paris Descartes, Faculty of Medicine, Paris, France
| | - Stéphanie Chhun
- University Paris Descartes, Faculty of Medicine, Paris, France.,Inserm U1151, INEM, Paris, France.,APHP, Hôpital Universitaire Necker-Enfants Malades, Laboratoire d'immunologie biologique, Paris, France
| |
Collapse
|
15
|
Wong CT, Wais J, Crawford DA. Prenatal exposure to common environmental factors affects brain lipids and increases risk of developing autism spectrum disorders. Eur J Neurosci 2015. [DOI: 10.1111/ejn.13028] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Christine T. Wong
- School of Kinesiology and Health Science; York University; Toronto ON Canada M3J 1P3
- Neuroscience Graduate Diploma Program; York University; Toronto ON Canada M3J 1P3
| | - Joshua Wais
- School of Kinesiology and Health Science; York University; Toronto ON Canada M3J 1P3
| | - Dorota A. Crawford
- School of Kinesiology and Health Science; York University; Toronto ON Canada M3J 1P3
- Neuroscience Graduate Diploma Program; York University; Toronto ON Canada M3J 1P3
- Department of Biology; York University; Toronto ON Canada M3J 1P3
| |
Collapse
|
16
|
Edagwa BJ, Zhou T, McMillan JM, Liu XM, Gendelman HE. Development of HIV reservoir targeted long acting nanoformulated antiretroviral therapies. Curr Med Chem 2015; 21:4186-98. [PMID: 25174930 DOI: 10.2174/0929867321666140826114135] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/19/2014] [Accepted: 08/22/2014] [Indexed: 11/22/2022]
Abstract
Human immunodeficiency virus (HIV) infection commonly results in a myriad of comorbid conditions secondary to immune deficiency. Infection also affects broad organ system function. Although current antiretroviral therapy (ART) reduces disease morbidity and mortality through effective control of peripheral viral load, restricted infection in HIV reservoirs including gut, lymphoid and central nervous system tissues, is not eliminated. What underlies these events is, in part, poor ART penetrance into each organ across tissue barriers, viral mutation and the longevity of infected cells. We posit that one means to improve these disease outcomes is through nanotechnology. To this end, this review discusses a broad range of cutting-edge nanomedicines and nanomedicine platforms that are or can be used to improve ART delivery. Discussion points include how polymer-drug conjugates, dendrimers, micelles, liposomes, solid lipid nanoparticles and polymeric nanoparticles can be harnessed to best yield cell-based delivery systems. When completely developed, such nanomedicine platforms have the potential to clear reservoirs of viral infection.
Collapse
Affiliation(s)
| | | | | | | | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
17
|
Shin N, Oh JH, Lee YJ. Role of drug transporters: an overview based on knockout animal model studies. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2015. [DOI: 10.1007/s40005-015-0178-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Sanchez-Covarrubias L, Slosky LM, Thompson BJ, Davis TP, Ronaldson PT. Transporters at CNS barrier sites: obstacles or opportunities for drug delivery? Curr Pharm Des 2014; 20:1422-49. [PMID: 23789948 DOI: 10.2174/13816128113199990463] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/18/2013] [Indexed: 01/11/2023]
Abstract
The blood-brain barrier (BBB) and blood-cerebrospinal fluid (BCSF) barriers are critical determinants of CNS homeostasis. Additionally, the BBB and BCSF barriers are formidable obstacles to effective CNS drug delivery. These brain barrier sites express putative influx and efflux transporters that precisely control permeation of circulating solutes including drugs. The study of transporters has enabled a shift away from "brute force" approaches to delivering drugs by physically circumventing brain barriers towards chemical approaches that can target specific compounds of the BBB and/or BCSF barrier. However, our understanding of transporters at the BBB and BCSF barriers has primarily focused on understanding efflux transporters that efficiently prevent drugs from attaining therapeutic concentrations in the CNS. Recently, through the characterization of multiple endogenously expressed uptake transporters, this paradigm has shifted to the study of brain transporter targets that can facilitate drug delivery (i.e., influx transporters). Additionally, signaling pathways and trafficking mechanisms have been identified for several endogenous BBB/BCSF transporters, thereby offering even more opportunities to understand how transporters can be exploited for optimization of CNS drug delivery. This review presents an overview of the BBB and BCSF barrier as well as the many families of transporters functionally expressed at these barrier sites. Furthermore, we present an overview of various strategies that have been designed and utilized to deliver therapeutic agents to the brain with a particular emphasis on those approaches that directly target endogenous BBB/BCSF barrier transporters.
Collapse
Affiliation(s)
| | | | | | | | - Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050.
| |
Collapse
|
19
|
Helms HC, Hersom M, Kuhlmann LB, Badolo L, Nielsen CU, Brodin B. An electrically tight in vitro blood-brain barrier model displays net brain-to-blood efflux of substrates for the ABC transporters, P-gp, Bcrp and Mrp-1. AAPS JOURNAL 2014; 16:1046-55. [PMID: 24934296 DOI: 10.1208/s12248-014-9628-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 05/28/2014] [Indexed: 02/03/2023]
Abstract
Efflux transporters of the ATP-binding cassette superfamily including breast cancer resistance protein (Bcrp/Abcg2), P-glycoprotein (P-gp/Abcb1) and multidrug resistance-associated proteins (Mrp's/Abcc's) are expressed in the blood-brain barrier (BBB). The aim of this study was to investigate if a bovine endothelial/rat astrocyte in vitro BBB co-culture model displayed polarized transport of known efflux transporter substrates. The co-culture model displayed low mannitol permeabilities of 0.95 ± 0.1 · 10(-6) cm·s(-1) and high transendothelial electrical resistances of 1,177 ± 101 Ω·cm(2). Bidirectional transport studies with (3)H-digoxin, (3)H-estrone-3-sulphate and (3)H-etoposide revealed polarized transport favouring the brain-to-blood direction for all substrates. Steady state efflux ratios of 2.5 ± 0.2 for digoxin, 4.4 ± 0.5 for estrone-3-sulphate and 2.4 ± 0.1 for etoposide were observed. These were reduced to 1.1 ± 0.08, 1.4 ± 0.2 and 1.5 ± 0.1, by addition of verapamil (digoxin), Ko143 (estrone-3-sulphate) or zosuquidar + reversan (etoposide), respectively. Brain-to-blood permeability of all substrates was investigated in the presence of the efflux transporter inhibitors verapamil, Ko143, zosuquidar, reversan and MK 571 alone or in combinations. Digoxin was mainly transported via P-gp, estrone-3-sulphate via Bcrp and Mrp's and etoposide via P-gp and Mrp's. The expression of P-gp, Bcrp and Mrp-1 was confirmed using immunocytochemistry. The findings indicate that P-gp, Bcrp and at least one isoform of Mrp are functionally expressed in our bovine/rat co-culture model and that the model is suitable for investigations of small molecule transport.
Collapse
Affiliation(s)
- Hans Christian Helms
- Department of Pharmacy, The Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
20
|
Functional Expression of Drug Transporters in Glial Cells. PHARMACOLOGY OF THE BLOOD BRAIN BARRIER: TARGETING CNS DISORDERS 2014; 71:45-111. [DOI: 10.1016/bs.apha.2014.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Yi JH, Cho YJ, Kim WJ, Lee MG, Lee JH. Genetic Variations of ABCC2 Gene Associated with Adverse Drug Reactions to Valproic Acid in Korean Epileptic Patients. Genomics Inform 2013; 11:254-62. [PMID: 24465238 PMCID: PMC3897854 DOI: 10.5808/gi.2013.11.4.254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 12/15/2022] Open
Abstract
The multidrug resistance protein 2 (MRP2, ABCC2) gene may determine individual susceptibility to adverse drug reactions (ADRs) in the central nervous system (CNS) by limiting brain access of antiepileptic drugs, especially valproic acid (VPA). Our objective was to investigate the effect of ABCC2 polymorphisms on ADRs caused by VPA in Korean epileptic patients. We examined the association of ABCC2 single-nucleotide polymorphisms and haplotype frequencies with VPA related to adverse reactions. In addition, the association of the polymorphisms with the risk of VPA related to adverse reactions was estimated by logistic regression analysis. A total of 41 (24.4%) patients had shown VPA-related adverse reactions in CNS, and the most frequent symptom was tremor (78.0%). The patients with CNS ADRs were more likely to have the G allele (79.3% vs. 62.7%, p = 0.0057) and the GG genotype (61.0% vs. 39.7%, p = 0.019) at the g.-1774delG locus. The frequency of the haplotype containing g.-1774Gdel was significantly lower in the patients with CNS ADRs than without CNS ADRs (15.8% vs. 32.3%, p = 0.0039). Lastly, in the multivariate logistic regression analysis, the presence of the GG genotype at the g.-1774delG locus was identified as a stronger risk factor for VPA related to ADRs (odds ratio, 8.53; 95% confidence interval, 1.04 to 70.17). We demonstrated that ABCC2 polymorphisms may influence VPA-related ADRs. The results above suggest the possible usefulness of ABCC2 gene polymorphisms as a marker for predicting response to VPA-related ADRs.
Collapse
Affiliation(s)
- Ji Hyun Yi
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Yang-Je Cho
- Department of Neurology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Won-Joo Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Min Goo Lee
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Ji Hyun Lee
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
22
|
|
23
|
Mittapalli RK, Manda VK, Bohn KA, Adkins CE, Lockman PR. Quantitative fluorescence microscopy provides high resolution imaging of passive diffusion and P-gp mediated efflux at the in vivo blood-brain barrier. J Neurosci Methods 2013; 219:188-95. [PMID: 23916719 DOI: 10.1016/j.jneumeth.2013.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 04/01/2013] [Accepted: 07/04/2013] [Indexed: 01/16/2023]
Abstract
Quantitative fluorescent microscopy is an emerging technology that has provided significant insight into cellular dye accumulation, organelle function, and tissue physiology. However, historically dyes have only been used to qualitatively or semi-quantitatively (fold change) determine changes in blood-brain barrier (BBB) integrity. Herein, we present a novel method to calculate the blood to brain transfer rates of the dyes rhodamine 123 and Texas red across the in situ BBB. We observed that rhodamine 123 is subject to p-glycoprotein mediated efflux at the rat BBB and can be increased nearly 20-fold with p-glycoprotein inhibition. However, Texas Red appears to not be subject to MRP2 mediated efflux at the rat BBB, agreeing with literature reports suggesting MRP2 may lack functionality at the normal rat BBB. Lastly, we present data demonstrating that once dyes have crossed the BBB, diffusion of the dye molecule is not as instantaneous as has been previously suggested. We propose that future work can now be completed to (1) match BBB transfer coefficients to interstitial diffusion constants and (2) use dyes with specific affinities to cellular organelles or that have specific properties (e.g., subject to efflux transporters) to more fully understand BBB physiology.
Collapse
Affiliation(s)
- Rajendar K Mittapalli
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University HSC, Amarillo, TX 79106-1712, United States
| | | | | | | | | |
Collapse
|
24
|
Huang L, Perrault C, Coelho-Martins J, Hu C, Dulong C, Varna M, Liu J, Jin J, Soria C, Cazin L, Janin A, Li H, Varin R, Lu H. Induction of acquired drug resistance in endothelial cells and its involvement in anticancer therapy. J Hematol Oncol 2013; 6:49. [PMID: 23837843 PMCID: PMC3717049 DOI: 10.1186/1756-8722-6-49] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/31/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Multidrug resistance (MDR) is one of the major problems in the treatment of cancer. Overcoming it is therefore expected to improve clinical outcomes for cancer patients. MDR is usually characterized by overexpression of ABC (ATP-binding cassette) protein transporters such as P-gp, MRP1, and ABCG2. Though the importance of ABC transporters for cancer cells is recognized, few studies have looked at its implications for the endothelial cells that are essential to tumor angiogenesis. This study investigated the expression and functions of these ABC transporters in endothelial cells in vitro and their potential contribution to cancer growth in mice. METHODS Human micro vessel endothelial cells (HMEC-1) and human umbilical vein endothelial cells (HUVEC) were exposed to increasing doses of Doxorubicin (Dox) to induce ABC gene expression. Cell viability was then quantified by (3)H-thymidine and MTS assay. Flow cytometry, qPCR, and western blot were used to detect mRNA and the protein expression of P-gp, MRP1, and ABCG2. The intracellular accumulation of Rhodamine 123 (Rho) was used to evaluate drug efflux function and the inhibitors for P-gp, ABCG2, and MRP1 were used to verify their respective roles in vitro. In an attempt to evaluate drug resistance in endothelial cells in vivo, athymic mice were treated with Dox for 15 days before a MDA-MB-435 tumor graft to observe subsequent changes in the inhibition curves of tumor growth in response to Dox treatment. Furthermore, endothelial cells from multiple sites in these mice were also isolated to estimate their P-gp expression by flow cytometry. RESULTS Drug resistance in HMEC-1 and HUVEC was successfully induced by the addition of Dox to the culture media. Two stabilized subcell lines of HMEC1 (HMECd1 and HMECd2) showed 15- and 24-fold increases in resistance. Tests also showed that these induced endothelial cells were cross-resistant to the structurally unrelated drugs Daunorubicin, Vinblastine, and Etoposide. P-gp protein levels increased four and six fold in HMECd1 and HMECd2 as revealed by western blot. The qPCR demonstrated 3.4- and 7.2-fold increases in P-gp, and a slight increase in ABCG2, gene expression. The Rho accumulation within these cells was inversely correlated with the expression levels of P-gp. The inhibitors of P-gp, but not of ABCG2 or MRP1, were able to block the induced endothelial cell resistance to Dox. Furthermore, we also showed that injecting Dox into healthy mice induced an increase in P-gp expression in endothelial cells. Using these pretreated mice in a tumor growth experiment, we observed a dramatic diminution in the therapeutic efficiency of Dox treatment, suggesting implications for drug resistance in mice endothelial cells supporting tumor growth. CONCLUSIONS ABC transporter expression can be induced in endothelial cells in vitro. This study also indicates that P-gp plays an important role in the acquisition of resistance to Dox in endothelial cells and that this reduces the efficiency of chemotherapy.
Collapse
|
25
|
Lin F, Marchetti S, Pluim D, Iusuf D, Mazzanti R, Schellens JHM, Beijnen JH, van Tellingen O. Abcc4 together with abcb1 and abcg2 form a robust cooperative drug efflux system that restricts the brain entry of camptothecin analogues. Clin Cancer Res 2013; 19:2084-95. [PMID: 23461902 DOI: 10.1158/1078-0432.ccr-12-3105] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Multidrug resistance-associated protein 4 (ABCC4) shares many features with P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2), including broad substrate affinity and expression at the blood-brain barrier (BBB). However, the pharmacologic relevance of ABCC4 at the BBB is difficult to evaluate, as most drugs are also substrates of ABCB1 and/or ABCG2. EXPERIMENTAL DESIGN We have created a mouse strain in which all these alleles are inactivated to assess their impact on brain delivery of camptothecin analogues, an important class of antineoplastic agents and substrates of these transporters. Wild-type (WT), Abcg2(-/-), Abcb1a/b(-/-), Abcc4(-/-), Abcb1a/b;Abcg2(-/-), Abcg2;Abcc4(-/-), and Abcb1a/b;Abcg2;Abcc4(-/-) mice received i.v. topotecan, irinotecan, SN-38, or gimatecan alone or with concomitant oral elacridar. Drug levels were analyzed by high-performance liquid chromatography (HPLC). RESULTS We found that additional deficiency of Abcc4 in Abcb1a/b;Abcg2(-/-) mice significantly increased the brain concentration of all camptothecin analogues by 1.2-fold (gimatecan) to 5.8-fold (SN-38). The presence of Abcb1a/b or Abcc4 alone was sufficient to reduce the brain concentration of SN-38 to the level in WT mice. Strikingly, the brain distribution of gimatecan in brain of WT mice was more than 220- and 40-fold higher than that of SN-38 and topotecan, respectively. CONCLUSION Abcc4 limits the brain penetration of camptothecin analogues and teams up with Abcb1a/b and Abcg2 to form a robust cooperative drug efflux system. This concerted action limits the usefulness of selective ABC transport inhibitors to enhance drug entry for treatment of intracranial diseases. Our results also suggest that gimatecan might be a better candidate than irinotecan for clinical evaluation against intracranial tumors.
Collapse
Affiliation(s)
- Fan Lin
- Department of Clinical Chemistry/Preclinical Pharmacology, The Netherlands Cancer Institute/Slotervaart Hospital, EC Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ashraf T, Kis O, Banerjee N, Bendayan R. Drug Transporters At Brain Barriers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013. [DOI: 10.1007/978-1-4614-4711-5_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Daneman R. The blood-brain barrier in health and disease. Ann Neurol 2012; 72:648-72. [DOI: 10.1002/ana.23648] [Citation(s) in RCA: 482] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 12/12/2022]
|
28
|
Vlieghe P, Khrestchatisky M. Medicinal chemistry based approaches and nanotechnology-based systems to improve CNS drug targeting and delivery. Med Res Rev 2012; 33:457-516. [PMID: 22434495 DOI: 10.1002/med.21252] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The central nervous system (CNS) is protected by various barriers, which regulate nervous tissue homeostasis and control the selective and specific uptake, efflux, and metabolism of endogenous and exogenous molecules. Among these barriers is the blood-brain barrier (BBB), a physical and physiological barrier that filters very efficiently and selectively the entry of compounds from the blood to the brain and protects nervous tissue from harmful substances and infectious agents present in the bloodstream. The BBB also prevents the entry of potential drugs. As a result, various drug targeting and delivery strategies are currently being developed to enhance the transport of drugs from the blood to the brain. Following a general introduction, we briefly overview in this review article the fundamental physiological properties of the BBB. Then, we describe current strategies to bypass the BBB (i.e., invasive methods, alternative approaches, and temporary opening) and to cross it (i.e., noninvasive approaches). This section is followed by a chapter addressing the chemical and technological solutions developed to cross the BBB. A special emphasis is given to prodrug-targeting approaches and targeted nanotechnology-based systems, two promising strategies for BBB targeting and delivery of drugs to the brain.
Collapse
Affiliation(s)
- Patrick Vlieghe
- VECT-HORUS S.A.S., Faculté de Médecine Secteur Nord, CS80011, Boulevard Pierre Dramard, 13344 Marseille Cedex 15, France.
| | | |
Collapse
|
29
|
Kuo YC, Lu CH. Expression of P-glycoprotein and multidrug resistance-associated protein on human brain-microvascular endothelial cells with electromagnetic stimulation. Colloids Surf B Biointerfaces 2012; 91:57-62. [DOI: 10.1016/j.colsurfb.2011.10.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/19/2011] [Accepted: 10/19/2011] [Indexed: 11/15/2022]
|
30
|
Omidi Y, Barar J. Impacts of blood-brain barrier in drug delivery and targeting of brain tumors. BIOIMPACTS : BI 2012; 2:5-22. [PMID: 23678437 DOI: 10.5681/bi.2012.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 11/26/2011] [Accepted: 12/20/2011] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Entry of blood circulating agents into the brain is highly selectively con-trolled by specific transport machineries at the blood brain barrier (BBB), whose excellent barrier restrictiveness make brain drug delivery and targeting very challenging. METHODS Essential information on BBB cellular microenvironment were reviewed and discussed towards impacts of BBB on brain drug delivery and targeting. RESULTS Brain capillary endothelial cells (BCECs) form unique biological structure and architecture in association with astrocytes and pericytes, in which microenvironment the BCECs express restrictive tight junctional complexes that block the paracellular inward/outward traverse of biomolecules/compounds. These cells selectively/specifically control the transportation process through carrier and/or receptor mediated transport machineries that can also be exploited for the delivery of pharmaceuticals into the brain. Intelligent molecular therapies should be designed using such transport machineries for the efficient delivery of designated drugs into the brain. For better clinical outcomes, these smart pharmaceuticals should be engineered as seamless nanosystems to provide simultaneous imaging and therapy (multimodal theranostics). CONCLUSION The exceptional functional presence of BBB selectively controls inward and outward transportation mechanisms, thus advanced smart multifunctional nanomedicines are needed for the effective brain drug delivery and targeting. Fully understanding the biofunctions of BBB appears to be a central step for engineering of intelligent seamless therapeutics consisting of homing device for targeting, imaging moiety for detecting, and stimuli responsive device for on-demand liberation of therapeutic agent.
Collapse
Affiliation(s)
- Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran ; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
31
|
Fardel O, Kolasa E, Le Vee M. Environmental chemicals as substrates, inhibitors or inducers of drug transporters: implication for toxicokinetics, toxicity and pharmacokinetics. Expert Opin Drug Metab Toxicol 2011; 8:29-46. [DOI: 10.1517/17425255.2012.637918] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
Peptide-based vectors for blood–brain barrier targeting and delivery of drugs to the central nervous system. Ther Deliv 2010; 1:489-94. [DOI: 10.4155/tde.10.44] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
33
|
Abstract
The blood-brain barrier (BBB) is a dynamic physical and biological barrier between blood circulation and the central nervous system (CNS). This unique feature of the BBB lies in the structure of the neurovascular unit and its cerebral micro-vascular endothelial cells. The BBB restricts the passage of blood-borne drugs, neurotoxic substances and peripheral immune cells from entering the brain, while selectively facilitating the transport of nutrients across the BBB into the brain. Thus, the integrity and proper function of the BBB is crucial to homeostasis and physiological function of the CNS. A number of transport and carrier systems are expressed and polarized on the luminal or abluminal surface of the BBB to realize these discrete functions. Among these systems, ABC transporters play a critical role in keeping drugs and neurotoxic substances from entering the brain and in transporting toxic metabolites out of the brain. A number of studies have demonstrated that ABCB1 and ABCG2 are critical to drug efflux at the BBB and that ABCC1 is essential for the blood-cerebral spinal fluid (CSF) barrier. The presence of these efflux ABC transporters also creates a major obstacle for drug delivery into the brain. We have comprehensively reviewed the literature on ABC transporters and drug efflux at the BBB. Understanding the molecular mechanisms of these transporters is important in the development of new drugs and new strategies for drug delivery into the brain.
Collapse
Affiliation(s)
- Shanshan Shen
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Canada K1A 0R6
| | | |
Collapse
|
34
|
Sunkara G, Ayalasomayajula SP, DeRuiter J, Kompella UB. Probenecid treatment enhances retinal and brain delivery of N-4-benzoylaminophenylsulfonylglycine: an anionic aldose reductase inhibitor. Brain Res Bull 2009; 81:327-32. [PMID: 19761819 DOI: 10.1016/j.brainresbull.2009.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Revised: 09/02/2009] [Accepted: 09/03/2009] [Indexed: 01/21/2023]
Abstract
Anion efflux transporters are expected to minimize target tissue delivery of N-[4-(benzoylaminophenyl)sulfonyl]glycine (BAPSG), a novel carboxylic acid aldose reductase inhibitor, which exists as a monocarboxylate anion at physiological conditions. Therefore, the objective of this study was to determine whether BAPSG delivery to various eye tissues including the retina and the brain can be enhanced by probenecid, a competitive inhibitor of anion transporters. To determine the influence of probenecid on eye and brain distribution of BAPSG, probenecid was administered intraperitoneally (120 mg/kg body weight; i.p.) 20 min prior to BAPSG (50 mg/kg; i.p.) administration. Drug disposition in various eye tissues including the retina and the brain was determined at 15 min, 1, 2 and 4h after BAPSG dose in male Sprauge-Dawley rats. To determine whether probenecid alters plasma clearance of BAPSG, influence of probenecid (120 mg/kg; i.p.) on the plasma pharmacokinetics of intravenously administered BAPSG (15 mg/kg) was studied as well. Finally, the effect of probenecid co-administration on the ocular tissue distribution of BAPSG was assessed in rabbits following topical (eye drop) administration. Following pretreatment with probenecid in the rat study, retinal delivery at 1h was increased by about 11-fold (2580 ng/g vs. 244 ng/g; p<0.05). Further, following probenecid pretreatment, significant BAPSG levels were detectable in the brain (45 + or - 20 ng/g) at 1h, unlike controls where the drug was not detectable. Plasma concentrations, plasma elimination half-life, and total body clearance of intravenously administered BAPSG were not altered by i.p. probenecid pretreatment. In the topical dosing study, a significant decline in BAPSG delivery was observed in the iris-ciliary body but no significant changes were observed in other tissues of the anterior segment of the eye including tears. Thus, inhibition of anion transporters is a useful approach to elevate retinal and brain delivery of BAPSG.
Collapse
|
35
|
Sanderson L, Dogruel M, Rodgers J, De Koning HP, Thomas SA. Pentamidine movement across the murine blood-brain and blood-cerebrospinal fluid barriers: effect of trypanosome infection, combination therapy, P-glycoprotein, and multidrug resistance-associated protein. J Pharmacol Exp Ther 2009; 329:967-77. [PMID: 19261919 PMCID: PMC2683775 DOI: 10.1124/jpet.108.149872] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 03/03/2009] [Indexed: 11/22/2022] Open
Abstract
During the first stage of human African trypanosomiasis (HAT), Trypanosoma brucei gambiense is found mainly in the blood, and pentamidine treatment is used. Pentamidine is predominantly ineffective once the parasites have invaded the central nervous system (CNS). This lack of efficacy is thought to be due to the inability of pentamidine to cross the blood-brain barrier, although this has never been explored directly. This study addresses this using brain perfusion in healthy mice, P-glycoprotein-deficient mice, and in a murine model of HAT (T. brucei brucei). The influence of additional antitrypanosomal drugs on pentamidine delivery to the CNS also was investigated. Results revealed that [(3)H]pentamidine can cross the blood-brain barrier, although a proportion was retained by the capillary endothelium and failed to reach the healthy or trypanosome-infected brain (up to day 21 p.i.). The CNS distribution of pentamidine was increased in the final (possibly terminal) stage of trypanosome infection, partly because of loss of barrier integrity (days 28-35 p.i.) as measured by [(14)C]sucrose and [(3)H]suramin. Furthermore, pentamidine distribution to the CNS involved influx and efflux [via P-glycoprotein and multidrug resistance-associated protein (MRP)] transporters and was affected by the other antitrypanosomal agents, suramin, melarsoprol, and nifurtimox, but not eflornithine. These interactions could contribute to side effects or lead to the development of parasite resistance to the drugs. Thus, great care must be taken when designing drug combinations containing pentamidine or other diamidine analogs. However, coadministration of P-glycoprotein and/or MRP inhibitors with pentamidine or other diamidines might provide a means of improving efficacy against CNS stage HAT.
Collapse
Affiliation(s)
- Lisa Sanderson
- King's College London, Pharmaceutical Sciences Research Division, Hodgkin Building, Guy's Campus, London, SE1 1UL, UK
| | | | | | | | | |
Collapse
|
36
|
Poller B, Gutmann H, Krähenbühl S, Weksler B, Romero I, Couraud PO, Tuffin G, Drewe J, Huwyler J. The human brain endothelial cell line hCMEC/D3 as a human blood-brain barrier model for drug transport studies. J Neurochem 2008; 107:1358-68. [PMID: 19013850 DOI: 10.1111/j.1471-4159.2008.05730.x] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The human brain endothelial capillary cell line hCMEC/D3 has been developed recently as a model for the human blood-brain barrier. In this study a further characterization of this model was performed with special emphasis on permeability properties and active drug transport. Para- or transcellular permeabilities (P(e)) of inulin (0.74 x 10(-3) cm/min), sucrose (1.60 x 10(-3) cm/min), lucifer yellow (1.33 x 10(-3) cm/min), morphine (5.36 x 10(-3) cm/min), propranolol (4.49 x 10(-3) cm/min) and midazolam (5.13 x 10(-3) cm/min) were measured. By addition of human serum the passive permeability of sucrose could be reduced significantly by up to 39%. Furthermore, the expression of a variety of drug transporters (ABCB1, ABCG2, ABCC1-5) as well as the human transferrin receptor was demonstrated on the mRNA level. ABCB1, ABCG2 and transferrin receptor proteins were detected and functional activity of ABCB1, ABCG2 and the ABCC family was quantified in efflux experiments. Furthermore, ABCB1-mediated bidirectional transport of rhodamine 123 was studied. The transport rate from the apical to the basolateral compartment was significantly lower than that in the inverse direction, indicating directed p-glycoprotein transport. The results of this study demonstrate the usefulness of the hCMEC/D3 cell line as an in vitro model to study drug transport at the level of the human blood-brain barrier.
Collapse
Affiliation(s)
- Birk Poller
- Department of Clinical Pharmacology and Toxicology, University Hospital of Basel, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Dauchy S, Dutheil F, Weaver RJ, Chassoux F, Daumas-Duport C, Couraud PO, Scherrmann JM, De Waziers I, Declèves X. ABC transporters, cytochromes P450 and their main transcription factors: expression at the human blood-brain barrier. J Neurochem 2008; 107:1518-28. [DOI: 10.1111/j.1471-4159.2008.05720.x] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Dauchy S, Miller F, Couraud PO, Weaver RJ, Weksler B, Romero IA, Scherrmann JM, De Waziers I, Declèves X. Expression and transcriptional regulation of ABC transporters and cytochromes P450 in hCMEC/D3 human cerebral microvascular endothelial cells. Biochem Pharmacol 2008; 77:897-909. [PMID: 19041851 DOI: 10.1016/j.bcp.2008.11.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 11/02/2008] [Accepted: 11/04/2008] [Indexed: 11/26/2022]
Abstract
We investigated the expression of genes encoding ABC transporters, cytochromes P450 (CYPs) and some transcription factors in the hCMEC/D3 immortalized human cerebral microvascular endothelial cell line, a promising in vitro model of the human BBB, and we compared these expressions to a non-brain endothelial cell line (HUVEC) and freshly human brain microvessels. qRT-PCR showed that the MDR1, BCRP, MRP1, MRP3, MRP4 and MRP5 genes were expressed and that the main CYP gene was CYP2U1 in hCMEC/D3. The pattern of ABC and CYPs gene expression in hCMEC/D3 differed from HUVEC which did not express MDR1. Moreover, expression of P-gp and BCRP was lower in hCMEC/D3 than in human brain microvessels but remain functional as shown by rhodamine 123 efflux assay. The gene encoding the aryl hydrocarbon receptor (AhR), a transcription factor that regulates the expression of some ABC and CYPs was highly expressed in hCMEC/D3 and HUVEC, while the pregnane-X-receptor (PXR) and the constitutive androstane receptor (CAR) were barely detected. We investigated the function of the AhR-mediated regulatory pathway in hCMEC/D3 by treating them with the AhR agonist TCDD. The expressions of two AhR-target genes, CYP1A1 and CYP1B1, were increased 26-fold and 28-fold. But the expressions of ABC transporter genes were not significantly altered. We have thus determined the pattern of expression of the genes encoding ABC transporters, CYPs and three transcription factors in hCMEC/D3 and shown that the AhR pathway might afford an original functional transport and metabolic pattern in cerebral endothelial cells that is different from other peripheral endothelial cells.
Collapse
Affiliation(s)
- Sandrine Dauchy
- Neuropsychopharmacologie des addictions (CNRS UMR 7157), Université Paris Descartes, Faculté de Pharmacie, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Pelkonen O, Kapitulnik J, Gundert-Remy U, Boobis A, Stockis A. Local Kinetics and Dynamics of Xenobiotics. Crit Rev Toxicol 2008; 38:697-720. [DOI: 10.1080/10408440802194931] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Pahnke J, Wolkenhauer O, Krohn M, Walker LC. Clinico-pathologic function of cerebral ABC transporters - implications for the pathogenesis of Alzheimer's disease. Curr Alzheimer Res 2008; 5:396-405. [PMID: 18690837 DOI: 10.2174/156720508785132262] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In recent years it has become evident that ABC transporters fulfill important barrier functions in normal organs and during disease processes. Most importantly, resistance to drugs in cancer cells led to intense oncological and pharmacological investigations in which researchers were able to highlight important pharmacological interactions of chemotherapeuticals with ABC transporter function. Recently, the development of neurodegenerative diseases and the maintenance of neuronal stem cells have been linked to the activity of ABC transporters. Here, we summarize findings from cell culture experiments, animal models and studies of patients with Alzheimer's disease. Furthermore, we discuss pharmacological interactions and computational methods for risk assessment.
Collapse
Affiliation(s)
- Jens Pahnke
- University of Rostock, Department of Neurology, Neurodegeneration Research Laboratory (NRL), Gehlsheimer Str. 20, 18147 Rostock, Germany.
| | | | | | | |
Collapse
|
41
|
Nevala H, Ylikomi T, Tähti H. Evaluation of the selected barrier properties of retinal pigment epithelial cell line ARPE-19 for an in-vitro blood-brain barrier model. Hum Exp Toxicol 2008; 27:741-9. [DOI: 10.1177/0960327107082230] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In-vitro models that maintain complex transport mechanisms and structural properties associated with the blood-brain barrier in vivo would be useful in drug permeability and neurotoxicological studies. To evaluate the suitability of a human retinal pigment epithelial cell line for a blood-brain barrier model, we have compared the barrier properties of the human retinal pigment epithelial cell line ARPE-19, the human colonic adenocarcinoma cell line Caco-2, and primary porcine microvessel endothelial cells. The tight junction proteins occludin and ZO-1 were stained immunocytochemically. The paracellular ionic permeability was evaluated by measuring the trans-epithelial or trans-endothelial electric resistance. To evaluate the active transport mechanisms, the existence and the activity of the efflux transporters, P-glycoprotein and multidrug resistance-associated proteins, were studied. All the cell types in this study stained positively for occludin and ZO-1. However, the trans-endothelial electric resistance of ARPE-19 cells was low compared with that of primary porcine microvessel endothelial cell and Caco-2 cells. In addition, both the P-glycoprotein expression and its activity in ARPE-19 cells were low. In conclusion, the barrier properties of the human ARPE-19 cell line were not satisfactory for a blood-brain barrier model. For future studies, it is important to develop a human brain endothelial cell line with expression of the complex in-vivo properties of the blood-brain barrier.
Collapse
Affiliation(s)
- H Nevala
- Medical School, Cell Research Center, University of Tampere, Finland
| | - T Ylikomi
- Medical School, Cell Research Center, University of Tampere, Finland; Tampere University Hospital, Tampere, Finland
| | - H Tähti
- Medical School, Cell Research Center, University of Tampere, Finland
| |
Collapse
|
42
|
HARITOVA AM, SCHRICKX J, LASHEV LD, FINK-GREMMELS J. Expression of MDR1, MRP2 and BCRP mRNA in tissues of turkeys. J Vet Pharmacol Ther 2008; 31:378-85. [DOI: 10.1111/j.1365-2885.2008.00968.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
43
|
Enokizono J, Kusuhara H, Ose A, Schinkel AH, Sugiyama Y. Quantitative investigation of the role of breast cancer resistance protein (Bcrp/Abcg2) in limiting brain and testis penetration of xenobiotic compounds. Drug Metab Dispos 2008; 36:995-1002. [PMID: 18322075 DOI: 10.1124/dmd.107.019257] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The role of breast cancer resistance protein (BCRP/ABCG2) in limiting the brain and testis penetration of xenobiotic compounds in the blood-brain and -testis barriers was investigated using Bcrp(-/-) mice. Tissue/plasma concentration ratios in the brain (K(p,brain)) and testis (K(p,testis)) obtained under steady-state conditions were significantly increased in Bcrp(-/-) mice for PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine), N-hydroxyl PhIP, MeIQx (2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline), dantrolene, and prazosin. In addition, the K(p,brain) of triamterene and the K(p,testis) of 4'-hydroxyl PhIP were also significantly increased in Bcrp(-/-) mice. The effect of functional impairment of Bcrp on the brain uptake of PhIP, dantrolene, and daidzein in Bcrp(-/-) mice determined using in situ brain perfusion was weaker than that observed on the K(p) values. In vitro transcellular transport experiments using cell lines expressing mouse Bcrp or P-glycoprotein (Mdr1a/Abcb1a) showed that, among the tested Bcrp substrates, PhIP, MeIQx, prazosin, and triamterene are common substrates of Bcrp and P-glycoprotein. The K(p) values of common substrates exhibited a smaller increase both in the brain and testis of Bcrp(-/-) mice than expected from the in vitro Bcrp activities. The Bcrp-specific substrates were weak acids, whereas basic or neutral BCRP substrates were also P-glycoprotein substrates. These results suggest that BCRP limits the tissue penetration of xenobiotic compounds in the blood-brain and -testis barriers, but its in vivo importance is also modulated by P-glycoprotein activity.
Collapse
Affiliation(s)
- Junichi Enokizono
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
44
|
Bauer B, Hartz AMS, Lucking JR, Yang X, Pollack GM, Miller DS. Coordinated nuclear receptor regulation of the efflux transporter, Mrp2, and the phase-II metabolizing enzyme, GSTpi, at the blood-brain barrier. J Cereb Blood Flow Metab 2008; 28:1222-34. [PMID: 18349876 DOI: 10.1038/jcbfm.2008.16] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Xenobiotic efflux pumps at the blood-brain barrier are critical modulators of central nervous system pharmacotherapy. We previously found expression of the ligand-activated nuclear receptor, pregnane X receptor (PXR), in rat brain capillaries, and showed increased expression and transport activity of the drug efflux transporter, P-glycoprotein, in capillaries exposed to PXR ligands (pregnenolone-16alpha-carbonitrile (PCN) and dexamethasone) in vitro and in vivo. Here, we show increased protein expression and transport activity of another efflux pump, multidrug resistance-associated protein isoform 2 (Mrp2), in rat brain capillaries after in vitro and in vivo exposure to PCN and dexamethasone. The phase-II drug-metabolizing enzyme, glutathione S-transferase-pi (GSTpi), was found to be expressed in brain capillaries, where it colocalized to a large extent with Mrp2 at the endothelial cell luminal plasma membrane. Like Mrp2, GSTpi protein expression increased with PXR activation. Colocalization and coordinated upregulation suggest functional coupling of the metabolizing enzyme and efflux transporter. These findings indicate that, as in hepatocytes, brain capillaries possess a regulatory network consisting of nuclear receptors, metabolizing enzymes, and efflux transporters, which modulate blood-brain barrier function.
Collapse
Affiliation(s)
- Björn Bauer
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
45
|
Sequeira D, Watchko JF, Daood MJ, O'Day TL, Mahmood B. Unconjugated bilirubin efflux by bovine brain microvascular endothelial cells in vitro. Pediatr Crit Care Med 2007; 8:570-5. [PMID: 17906594 DOI: 10.1097/01.pcc.0000288716.63685.1b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The passage of unconjugated bilirubin (UCB) across the blood-brain barrier into the central nervous system is a crucial first step in the development of kernicterus. The objective of the current study was to characterize the passage of UCB across primary bovine brain microvascular endothelial cell (BBMVEC) monolayers in vitro. DESIGN Experimental study. SETTING Research institute. SUBJECTS BBMVECs. INTERVENTIONS Tritiated UCB (H-UCB) transport at 60, 80, 100, 200, 300, and 400 nM concentrations was tested in both the apical to basolateral (A--> B) and basolateral to apical (B-->A) directions in BBMVEC monolayers in vitro with or without preincubation with pharmacologic active transport inhibitors cyclosporine A, indomethacin, or MK571. MEASUREMENTS AND MAIN RESULTS The rate of H-UCB transport in the B-->A direction was 6.2- to 7.3-fold higher than in the A-->B direction, suggesting active efflux of UCB. Cyclosporine A (5 microM), a model inhibitor of P-glycoprotein, enhanced A-->B while decreasing B-->A UCB transport, resulting in an overall decrease in BBMVEC UCB efflux of between 46% and 54%. Indomethacin (10 microM) and MK-571 (50 microM), respectively a substrate and potent inhibitor of multidrug resistance-associated protein-1, had no effect. CONCLUSIONS We conclude that 1) UCB is transported by BBMVEC monolayers in vitro in a net B-->A direction (i.e., active efflux); and 2) cyclosporine A partially inhibits such transport. We speculate that the blood-brain barrier limits the passage and central nervous system retention of UCB by active transport and that this may be accounted in part by P-glycoprotein.
Collapse
Affiliation(s)
- Deryk Sequeira
- Department of Pediatrics, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
The blood-brain barrier (BBB), together with the blood-cerebrospinal-fluid barrier, protects and regulates the homeostasis of the brain. However, these barriers also limit the transport of small-molecule and, particularly, biopharmaceutical drugs such as proteins, genes and interference RNA to the brain, thereby limiting the treatment of many brain diseases. As a result, various drug delivery and targeting strategies are currently being developed to enhance the transport and distribution of drugs into the brain. In this review, we discuss briefly the biology and physiology of the BBB as the most important barrier for drug transport to the brain and, in more detail, the possibilities for delivering large-molecule drugs, particularly genes, by receptor-mediated nonviral drug delivery to the (human) brain. In addition, the systemic and intracellular pharmacokinetics of nonviral gene delivery, together with targeted brain imaging, are reviewed briefly.
Collapse
Affiliation(s)
- Albertus G de Boer
- Blood-Brain-Barrier Research Group, Division of Pharmacology, Leiden-Amsterdam Center for Drug Research, University of Leiden, Leiden, The Netherlands.
| | | |
Collapse
|
47
|
Nies AT. The role of membrane transporters in drug delivery to brain tumors. Cancer Lett 2007; 254:11-29. [PMID: 17275180 DOI: 10.1016/j.canlet.2006.12.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 12/14/2006] [Indexed: 01/11/2023]
Abstract
Most brain tumors are highly resistant to chemotherapy because many chemotherapeutic drugs poorly cross the blood-brain barrier, the blood-cerebrospinal-fluid barrier, and the plasma membrane of the tumor cells. This restricted drug delivery is largely due to the presence of integral plasma membrane proteins belonging to the solute carriers (SLCs) and to the ATP-binding cassette (ABC) superfamily of transporters that decisively determine substance uptake and efflux, respectively, by the barrier-forming cells and the tumor cells. This review focuses on the localization and function of drug-transporting members of both transporter groups in human brain.
Collapse
Affiliation(s)
- Anne T Nies
- Division of Tumor Biochemistry, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
48
|
Tachikawa M, Toki H, Tomi M, Hosoya KI. Gene expression profiles of ATP-binding cassette transporter A and C subfamilies in mouse retinal vascular endothelial cells. Microvasc Res 2007; 75:68-72. [PMID: 17574281 DOI: 10.1016/j.mvr.2007.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 05/10/2007] [Indexed: 11/15/2022]
Abstract
The purpose of this study was to quantify gene expression levels of the ATP-binding cassette (ABC) transporter A and C subfamilies ABCA1-A9, and ABCC1-6/Mrp1-6, C10/Mrp7 in mouse retinal vascular endothelial cells (RVEC) using a combination of a magnetic isolation method for mouse RVEC and real-time quantitative PCR analysis. The transcript level of endothelial cell markers, such as CD31, Tie-2, claudin-5, occludin, ABCB1a/mdr1a, and ABCG2, were more than 20-fold higher than those in the non-RVEC fraction, suggesting that RVEC in the RVEC fraction are concentrated at least 20-fold compared with those of the non-RVEC fraction. In the ABCA1 to A9 families, the transcript level of ABCA3 and A9 in the RVEC fraction was 1.2- and 32-fold higher than that in the non-RVEC fraction. Although ABCA3 was expressed in both the RVEC and non-RVEC fractions, A9 is predominantly expressed in the RVEC fraction. In the ABCC1 to C6 and C10 families, the transcript level of ABCC3, C4, and C6 in the RVEC fraction was 27-, 251-, and 242-fold higher, respectively, than that in the non-RVEC fraction, suggesting that ABCC3, C4, and C6 are predominantly expressed in the RVEC. In conclusion, ABCA3, ABCA9, ABCC3, ABCC4, and ABCC6 mRNAs are predominantly expressed at the inner blood-retina barrier (inner BRB) and appear to play a major role in the efflux transport of their substrates at the inner BRB.
Collapse
Affiliation(s)
- Masanori Tachikawa
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | | | | | | |
Collapse
|
49
|
Abstract
The central nervous system (CNS) is a sanctuary site and is protected by various barriers. These regulate brain homeostasis and the transport of endogenous and exogenous compounds by controlling their selective and specific uptake, efflux, and metabolism in the brain. Unfortunately, potential drugs for the treatment of most brain diseases are therefore often not able to cross these barriers. As a result, various drug delivery and targeting strategies are currently being developed to enhance the transport and distribution of drugs into the brain. Here we discuss briefly the biology and physiology of the blood-brain barrier (BBB) and the blood-cerebro-spinal-fluid barrier (BCSFB), and, in more detail, the possibilities for delivering large-molecular-weight drugs by local and global delivery and by viral and receptor-mediated nonviral drug delivery to the (human) brain.
Collapse
Affiliation(s)
- A G de Boer
- Blood-Brain Barrier Research Group, Division of Pharmacology, Leiden-Amsterdam Center for Drug Research, University of Leiden, 2300 RA Leiden, The Netherlands.
| | | |
Collapse
|
50
|
Confusion about measuring central nervous system effects. CURRENT BLADDER DYSFUNCTION REPORTS 2007. [DOI: 10.1007/s11884-007-0028-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|