1
|
Horjus J, van Mourik-Banda T, Heerings MAP, Hakobjan M, De Witte W, Heersema DJ, Jansen AJ, Strijbis EMM, de Jong BA, Slettenaar AEJ, Zeinstra EMPE, Hoogervorst ELJ, Franke B, Kruijer W, Jongen PJ, Visser LJ, Poelmans G. Whole Exome Sequencing in Multi-Incident Families Identifies Novel Candidate Genes for Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms231911461. [PMID: 36232761 PMCID: PMC9570223 DOI: 10.3390/ijms231911461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is a degenerative disease of the central nervous system in which auto-immunity-induced demyelination occurs. MS is thought to be caused by a complex interplay of environmental and genetic risk factors. While most genetic studies have focused on identifying common genetic variants for MS through genome-wide association studies, the objective of the present study was to identify rare genetic variants contributing to MS susceptibility. We used whole exome sequencing (WES) followed by co-segregation analyses in nine multi-incident families with two to four affected individuals. WES was performed in 31 family members with and without MS. After applying a suite of selection criteria, co-segregation analyses for a number of rare variants selected from the WES results were performed, adding 24 family members. This approach resulted in 12 exonic rare variants that showed acceptable co-segregation with MS within the nine families, implicating the genes MBP, PLK1, MECP2, MTMR7, TOX3, CPT1A, SORCS1, TRIM66, ITPR3, TTC28, CACNA1F, and PRAM1. Of these, three genes (MBP, MECP2, and CPT1A) have been previously reported as carrying MS-related rare variants. Six additional genes (MTMR7, TOX3, SORCS1, ITPR3, TTC28, and PRAM1) have also been implicated in MS through common genetic variants. The proteins encoded by all twelve genes containing rare variants interact in a molecular framework that points to biological processes involved in (de-/re-)myelination and auto-immunity. Our approach provides clues to possible molecular mechanisms underlying MS that should be studied further in cellular and/or animal models.
Collapse
Affiliation(s)
- Julia Horjus
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Tineke van Mourik-Banda
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Marco A. P. Heerings
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Marina Hakobjan
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Ward De Witte
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Dorothea J. Heersema
- Department of Neurology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Anne J. Jansen
- Department of Neurology, Bravis Hospital, 4708 AE Bergen op Zoom, The Netherlands
| | - Eva M. M. Strijbis
- Department of Neurology, Amsterdam UMC, location VUmc, 1081 HV Amsterdam, The Netherlands
| | - Brigit A. de Jong
- Department of Neurology, MS Center Amsterdam, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | | | | | | | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, 6525 GD Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Wiebe Kruijer
- Independent Life Science Consultant, 3831 CE Leusden, The Netherlands
| | - Peter J. Jongen
- MS4 Research Institute, 6522 KJ Nijmegen, The Netherlands
- Department of Community & Occupational Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Leo J. Visser
- Department of Neurology, St. Elisabeth-Tweesteden Hospital, 5022 GC Tilburg, The Netherlands
- Department of Care Ethics, University of Humanistic Studies, 3512 HD Utrecht, The Netherlands
| | - Geert Poelmans
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Correspondence:
| |
Collapse
|
2
|
Jurcau A, Simion A. Neuroinflammation in Cerebral Ischemia and Ischemia/Reperfusion Injuries: From Pathophysiology to Therapeutic Strategies. Int J Mol Sci 2021; 23:14. [PMID: 35008440 PMCID: PMC8744548 DOI: 10.3390/ijms23010014] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/18/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Its increasing incidence has led stroke to be the second leading cause of death worldwide. Despite significant advances in recanalization strategies, patients are still at risk for ischemia/reperfusion injuries in this pathophysiology, in which neuroinflammation is significantly involved. Research has shown that in the acute phase, neuroinflammatory cascades lead to apoptosis, disruption of the blood-brain barrier, cerebral edema, and hemorrhagic transformation, while in later stages, these pathways support tissue repair and functional recovery. The present review discusses the various cell types and the mechanisms through which neuroinflammation contributes to parenchymal injury and tissue repair, as well as therapeutic attempts made in vitro, in animal experiments, and in clinical trials which target neuroinflammation, highlighting future therapeutic perspectives.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
- Neurology Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| | - Aurel Simion
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
- Neurorehabilitation Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| |
Collapse
|
3
|
Yang C, Hawkins KE, Doré S, Candelario-Jalil E. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol 2018; 316:C135-C153. [PMID: 30379577 DOI: 10.1152/ajpcell.00136.2018] [Citation(s) in RCA: 475] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As part of the neurovascular unit, the blood-brain barrier (BBB) is a unique, dynamic regulatory boundary that limits and regulates the exchange of molecules, ions, and cells between the blood and the central nervous system. Disruption of the BBB plays an important role in the development of neurological dysfunction in ischemic stroke. Blood-borne substances and cells have restricted access to the brain due to the presence of tight junctions between the endothelial cells of the BBB. Following stroke, there is loss of BBB tight junction integrity, leading to increased paracellular permeability, which results in vasogenic edema, hemorrhagic transformation, and increased mortality. Thus, understanding principal mediators and molecular mechanisms involved in BBB disruption is critical for the development of novel therapeutics to treat ischemic stroke. This review discusses the current knowledge of how neuroinflammation contributes to BBB damage in ischemic stroke. Specifically, we provide an updated overview of the role of cytokines, chemokines, oxidative and nitrosative stress, adhesion molecules, matrix metalloproteinases, and vascular endothelial growth factor as well as the role of different cell types in the regulation of BBB permeability in ischemic stroke.
Collapse
Affiliation(s)
- Changjun Yang
- Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Kimberly E Hawkins
- Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Sylvain Doré
- Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida.,Departments of Anesthesiology, Neurology, Psychiatry, Psychology, and Pharmaceutics, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| |
Collapse
|
4
|
Roselli F, Chandrasekar A, Morganti-Kossmann MC. Interferons in Traumatic Brain and Spinal Cord Injury: Current Evidence for Translational Application. Front Neurol 2018; 9:458. [PMID: 29971040 PMCID: PMC6018073 DOI: 10.3389/fneur.2018.00458] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022] Open
Abstract
This review article provides a general perspective of the experimental and clinical work surrounding the role of type-I, type-II, and type-III interferons (IFNs) in the pathophysiology of brain and spinal cord injury. Since IFNs are themselves well-known therapeutic targets (as well as pharmacological agents), and anti-IFNs monoclonal antibodies are being tested in clinical trials, it is timely to review the basis for the repurposing of these agents for the treatment of brain and spinal cord traumatic injury. Experimental evidence suggests that IFN-α may play a detrimental role in brain trauma, enhancing the pro-inflammatory response while keeping in check astrocyte proliferation; converging evidence from genetic models and neutralization by monoclonal antibodies suggests that limiting IFN-α actions in acute trauma may be a suitable therapeutic strategy. Effects of IFN-β administration in spinal cord and brain trauma have been reported but remain unclear or limited in effect. Despite the involvement in the inflammatory response, the role of IFN-γ remains controversial: although IFN-γ appears to improve the outcome of traumatic spinal cord injury, genetic models have produced either beneficial or detrimental results. IFNs may display opposing actions on the injured CNS relative to the concentration at which they are released and strictly dependent on whether the IFN or their receptors are targeted either via administration of neutralizing antibodies or through genetic deletion of either the mediator or its receptor. To date, IFN-α appears to most promising target for drug repurposing, and monoclonal antibodies anti IFN-α or its receptor may find appropriate use in the treatment of acute brain or spinal cord injury.
Collapse
Affiliation(s)
- Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany.,Department of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | | | - Maria C Morganti-Kossmann
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia.,Department of Child Health, Barrow Neurological Institute at Phoenix Children's Hospital, University of Arizona College of Medicine, Phoenix, AZ, United States
| |
Collapse
|
5
|
Ng D, Gommerman JL. The Regulation of Immune Responses by DC Derived Type I IFN. Front Immunol 2013; 4:94. [PMID: 23626590 PMCID: PMC3631742 DOI: 10.3389/fimmu.2013.00094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/08/2013] [Indexed: 11/13/2022] Open
Abstract
Our immune system bears the tremendous task of mounting effective anti-microbial responses whilst maintaining immunoregulatory functions to avoid autoimmunity. In order to quickly respond to pathogens, Dendritic cells (DC) are armed with pattern recognition receptors (PRRs), allowing them to recognize highly conserved pathogen-associated molecular patterns (PAMPs) that are uniquely expressed by invading microbes. PRR activation can trigger DCs to release the pleiotropic cytokine, Type I interferons (IFN), which facilitates various biological functions in different immune cell types. In this review, we will discuss the classical PRR-induced Type I IFN response in DCs as well as describe a novel mechanism for Type I IFN induction by the tumor-necrosis factor receptor superfamily (TNFRSF) members, TNFR-1 and lymphotoxin-β receptor (LTβR). While PRR activation during viral infection, produces large amounts of Type I IFN in a relative short period of time, TNFRSF-induced Type I IFN expression is modest with gradual kinetics. Type I IFN can exert pro-inflammatory effects, but in some cases it also facilitates immune-regulatory functions. Therefore, DCs are important regulators of immune responses by carefully modulating Type I IFN expression.
Collapse
Affiliation(s)
- Dennis Ng
- Department of Immunology, University of Toronto Toronto, ON, Canada
| | | |
Collapse
|
6
|
Abstract
Multiple sclerosis (MS) is characterized by autoimmune inflammation and subsequent neurodegeneration. It is believed that early in the disease course, proinflammatory T cells that are activated in the periphery by antigen presentation cross the blood-brain barrier (BBB) into the CNS directed by various chemotaxic agents. However, to date, there has been no formal demonstration of a specific precipitating antigen. Once inside the CNS, activated T cells including T helper-1 (T(h)1), T(h)17, γδ and CD8+ types are believed to secrete proinflammatory cytokines. Decreased levels of T(h)2 cells also correlate with relapses and disease progression in MS, since T(h)2-derived cytokines are predominantly anti-inflammatory. In healthy tissue, inflammatory effects are opposed by specific subsets of regulatory T cells (T(regs)) including CD4+, CD25+ and FoxP3+ cells that have the ability to downregulate the activity of proinflammatory T cells, allowing repair and recovery to generally follow inflammatory insult. Given their function, the pathogenesis of MS most likely involves deficits of T(reg) function, which allow autoimmune inflammation and resultant neurodegeneration to proceed relatively unchecked. Interferons (IFNs) are naturally occurring cytokines possessing a wide range of anti-inflammatory properties. Recombinant forms of IFNβ are widely used as first-line treatment in relapsing forms of MS. The mechanism of action of IFNβ is complex, involving effects at multiple levels of cellular function. IFNβ appears to directly increase expression and concentration of anti-inflammatory agents while downregulating the expression of proinflammatory cytokines. IFNβ treatment may reduce the trafficking of inflammatory cells across the BBB and increase nerve growth factor production, leading to a potential increase in neuronal survival and repair. IFNβ can also increase the number of CD56bright natural killer cells in the peripheral blood. These cells are efficient producers of anti-inflammatory mediators, and may have the ability to curb neuron inflammation. The mechanistic effects of IFNβ manifest clinically as reduced MRI lesion activity, reduced brain atrophy, increased time to reach clinically definite MS after the onset of neurological symptoms, decreased relapse rate and reduced risk of sustained disability progression. The mechanism of action of IFNβ in MS is multifactorial and incompletely understood. Ongoing and future studies will increase our understanding of the actions of IFNβ on the immune system and the CNS, which will in turn aid advances in the management of MS.
Collapse
Affiliation(s)
- Bernd C Kieseier
- Department of Neurology, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
7
|
Role of ethanolamine phosphate in the hippocampus of rats with acute experimental autoimmune encephalomyelitis. Neurochem Int 2011; 58:22-34. [DOI: 10.1016/j.neuint.2010.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 09/28/2010] [Accepted: 10/14/2010] [Indexed: 11/21/2022]
|
8
|
Billiau A. Anti-inflammatory properties of Type I interferons. Antiviral Res 2006; 71:108-16. [PMID: 16626815 PMCID: PMC7114336 DOI: 10.1016/j.antiviral.2006.03.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 03/13/2006] [Accepted: 03/14/2006] [Indexed: 01/22/2023]
Abstract
The notion that Type I interferons (interferon-alpha and -beta) possess anti-inflammatory potential is supported by data from clinical application in multiple sclerosis, by studies on cultured immune-competent cells and by investigation of experimental diseases in whole animals. These observations deserve the attention of virologists for their potential role in the pathogenesis and clinical management of virus infections.
Collapse
Affiliation(s)
- Alfons Billiau
- Rega Institute, University of Leuven, Minderbroedersstraat 10, BE-3000 Leuven, Belgium.
| |
Collapse
|
9
|
Turowski P, Adamson P, Greenwood J. Pharmacological targeting of ICAM-1 signaling in brain endothelial cells: potential for treating neuroinflammation. Cell Mol Neurobiol 2005; 25:153-70. [PMID: 15962512 DOI: 10.1007/s10571-004-1380-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
(1) The vasculature of the blood-brain barrier allows only comparatively few leukocytes to enter and survey the healthy central nervous system (CNS). However, during pathological CNS inflammation, the number of leukocytes adhering to and penetrating the CNS vasculature increases strongly. (2) Endothelial adhesion molecules do not only mediate firm adhesion of leukocyte to vascular beds but also trigger signaling cascades within the endothelial cell, which play a crucial role in modulating subsequent leukocyte diapedesis. (3) Signaling through endothelial intercellular adhesion molecule-1 (ICAM-1, CD54) has been shown to induce changes of the endothelial cytoskeleton, transcription, and interendothelial junctions, all of which may be important in modulating endothelial disposition to infiltrating leukocytes. Furthermore, a number of recent reports document that drugs interfering with endothelial ICAM-1 signaling, efficiently reduce leukocyte migration both in vitro and in animal models of CNS inflammation. (4) These approaches are novel in as much as they target vascular beds rather than the penetrating leukocytes. Since endothelial ICAM-1 signaling appears to differ between different vascular beds we propose that such compounds could potentially be used as exquisite drugs in the treatment of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Patric Turowski
- Division of Cell Therapy, Institute of Ophthalmology, University College London, 11-43 Bath Street, London ECIV 9EL, UK.
| | | | | |
Collapse
|
10
|
Tliba O, Tliba S, Da Huang C, Hoffman RK, DeLong P, Panettieri RA, Amrani Y. Tumor necrosis factor alpha modulates airway smooth muscle function via the autocrine action of interferon beta. J Biol Chem 2003; 278:50615-23. [PMID: 14519761 DOI: 10.1074/jbc.m303680200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Current evidence suggests that tumor necrosis factor alpha (TNFalpha) and the family of interferons (IFNs) synergistically regulate many cellular responses that are believed to be critical in chronic inflammatory diseases, although the underlying mechanisms of such interaction are complex, cell-specific, and not completely understood. In this study, TNFalpha in a time-dependent manner activated both janus tyrosine kinase 1 and Tyk2 tyrosine kinase and increased the nuclear translocation of interferon-regulatory factor-1, STAT1, and STAT2 in human airway smooth muscle cells. In cells transfected with a luciferase reporter, TNFalpha stimulated gamma-activated site-dependent gene transcription in a time- and concentration-dependent manner. Using neutralizing antibodies to IFNbeta and TNFalpha receptor 1, we show that TNFalpha-induced secretion of IFNbeta mediated gamma-activated site-dependent gene expression via activation of TNFalpha receptor 1. In addition, neutralizing antibody to IFNbeta also completely abrogated the activation of interferon stimulation response element-dependent gene transcription induced by TNFalpha. Secreted IFNbeta acted as a negative regulator of TNFalpha-induced interleukin-6 expression, while IFNbeta augmented TNFalpha-induced RANTES (regulated on activation normal T cell expressed and secreted) secretion but had little effect on TNFalpha-induced intercellular adhesion molecule-1 expression. Furthermore TNFalpha, a modest airway smooth muscle mitogen, markedly induced DNA synthesis when cells were treated with neutralizing anti-IFNbeta. Together these data show that TNFalpha, via the autocrine action of IFNbeta, differentially regulates the expression of proinflammatory genes and DNA synthesis.
Collapse
Affiliation(s)
- Omar Tliba
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Veldhuis WB, Floris S, van der Meide PH, Vos IMP, de Vries HE, Dijkstra CD, Bär PR, Nicolay K. Interferon-beta prevents cytokine-induced neutrophil infiltration and attenuates blood-brain barrier disruption. J Cereb Blood Flow Metab 2003; 23:1060-9. [PMID: 12973022 DOI: 10.1097/01.wcb.0000080701.47016.24] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inflammation can contribute to brain injury, such as that resulting from ischemia or trauma. The authors have previously shown that the cytokine interferon-beta (IFN-beta) affords protection against ischemic brain injury, which was associated with a diminished infiltration of neutrophils and a reduction in blood-brain barrier (BBB) disruption. The goal of the current study was to directly assess the effects of IFN-beta on neutrophil infiltration, with the use of an in vivo assay of neutrophil infiltration with relevance to ischemic brain injury. Intrastriatal injection of recombinant rat cytokine-induced neutrophil chemoattractant-1, a member of the interleukin-8 family (1 microg in 1 microl), triggered massive infiltration of neutrophils and extensive BBB disruption 6 hours later, as measured using immunofluorescence microscopy and magnetic resonance imaging in the rat, respectively. Depleting the animals of neutrophils before interleukin-8 injection prevented BBB disruption. Treatment with IFN-beta (5 x 106 U/kg) almost completely prevented neutrophil infiltration and attenuated BBB damage. Gelatinase zymography showed matrix metalloproteinase-9 expression in the ipsilateral striatum after interleukin-8 injection. Both neutrophil depletion and IFN-beta treatment downregulated matrix metalloproteinase-9. IFN-beta has already been approved for human use as a treatment for the chronic inflammatory disorder multiple sclerosis. The potential value of IFN-beta as a treatment that can attenuate acute brain inflammation is considered.
Collapse
Affiliation(s)
- Wouter B Veldhuis
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kilinc M, Saatci-Cekirge I, Karabudak R. Serial analysis of soluble intercellular adhesion molecule-1 level in relapsing-remitting multiple sclerosis patients during IFN-beta1b treatment. J Interferon Cytokine Res 2003; 23:127-33. [PMID: 12716484 DOI: 10.1089/107999003321532457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this controlled study, we investigated the serum and cerebrospinal fluid (CSF) levels of soluble intercellular adhesion molecule-1 (sICAM-1) in relapsing-remitting multiple sclerosis (RRMS) patients and changes in the levels of this adhesion molecule during interferon-beta1b (IFN-beta1b) treatment. We also investigated the changes in the levels of sICAM-1 in correlation with disease activity and with findings on magnetic resonance images (MRI). The study included 24 patients (16 females and 8 males) who were confirmed to have RRMS based on the criteria of Poser et al. Sixteen of the patients received IFN-beta1b (Betaseron, Berlex Laboratories, Schering AG Germany, Berlin) treatment, and 8 did not receive this therapy. The levels of sICAM-1 in the MS patients' serum and CSF were significantly higher than levels in individuals with noninflammatory neurologic disease (p = 0.0081 and p = 0.0001, respectively). In the first 3 months of the study, MS patients treated with IFN-beta1b showed a significant rise in sICAM-1 levels (p = 0.0023), whereas their untreated counterparts showed no significant change. Neither of the groups showed a significant correlation between sICAM-1 level and disease activity demonstrated by MRI or between sICAM-1 level and clinical disease activity. The findings suggest that IFN-beta1b treatment may have a short-term upregulating effect on sICAM-1.
Collapse
Affiliation(s)
- Munire Kilinc
- Neurology Department, Baskent University Hospital, Ankara, Turkey.
| | | | | |
Collapse
|
13
|
Giorelli M, De Blasi A, Defazio G, Avolio C, Iacovelli L, Livrea P, Trojano M. Differential regulation of membrane bound and soluble ICAM 1 in human endothelium and blood mononuclear cells: effects of interferon beta-1a. CELL COMMUNICATION & ADHESION 2002; 9:259-72. [PMID: 12745437 DOI: 10.1080/15419060216305] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The membrane-associated Intercellular Adhesion Molecule 1 (mICAM 1) is fundamental for adhesion of leukocytes to endothelial cells. A soluble form of ICAM 1 (sICAM 1) exists in the human serum, and is seen as marker of disease activity in patients suffering from Multiple Sclerosis (MS). High levels of sICAM 1 have been detected in MS patients benefiting from interferon beta (IFNbeta) treatment, but little is known on the molecular origins of sICAM 1. This study investigated the interrelationship and the mechanisms of production of sICAM 1 and mICAM 1 in human endothelium (Human Umbilical Vein Endothelial Cells, HUVECs) and mononuclear leukocytes (MNL) upon stimulation with IFNbeta-1a and other inducers. We found that the expression of mICAM 1 and the release of sICAM 1 are differentially regulated in both these cytotypes. HUVECs and MNL express specific mRNA for both mICAM 1 and sICAM 1, and modification of the content of each of these transcripts results in regulation of both the ICAM 1 isoforms. We show that IFNbeta-1a is strong regulator of the ICAM 1 RNA splicing machinery. Effect of IFNbeta-1a over expression of the ICAM 1 isoforms might have a relevant immunomoregulatory role in Multiple Sclerosis.
Collapse
Affiliation(s)
- Maurizio Giorelli
- Department of Neurologic and Psychiatric Sciences, University of Bari, Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
14
|
Kuruganti PA, Hinojoza JR, Eaton MJ, Ehmann UK, Sobel RA. Interferon-beta counteracts inflammatory mediator-induced effects on brain endothelial cell tight junction molecules-implications for multiple sclerosis. J Neuropathol Exp Neurol 2002; 61:710-24. [PMID: 12152786 DOI: 10.1093/jnen/61.8.710] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To elucidate mechanisms of endothelial cell (EC) dysfunction in CNS inflammatory responses and beneficial effects of interferon-beta (IFN-gamma) in multiple sclerosis (MS), we analyzed effects of individual and combinations of soluble inflammatory mediators on the intracellular localization of the EC tight junction-associated molecules zonula occludens-1 and -2 (ZO-1 and ZO-2) in human brain ECs. The cytoplasm in the majority of cells in control EC cultures was clear; ZO-1 and ZO-2 were localized peripherally near sites of cell contact and associated with submembranous cytoplasmic filaments. H2O2 induced reversible time- and concentration-dependent translocation of ZO-1 and ZO-2 to a random distribution within EC cytoplasm and retraction of EC borders. For low concentrations, these effects were accompanied by less prominent submembranous filaments but not by evidence of cytotoxicity, increased cell death or altered amounts of ZO-1. Tumor necrosis factor-beta induced similar alterations but interferon-y did not. Co-treatment with either cytokine increased H2O2 effects whereas IFN-beta reversed H2O2-induced effects. In control white matter samples, EC cytoplasm was clear and ZO-1 was located on cell borders. In inflammatory/demyelinating lesions, EC ZO-1 was diffuse, indicating that the alterations induced in vitro mimic those in active MS lesions. These findings suggest that in MS patients, IFN-beta treatment may counteract inflammatory mediator effects on CNS EC tight junction molecules, thereby preserving EC barrier function.
Collapse
Affiliation(s)
- Poonam A Kuruganti
- Department of Pathology, Stanford University School of Medicine, California 94305, USA
| | | | | | | | | |
Collapse
|
15
|
Greenwood J, Etienne-Manneville S, Adamson P, Couraud PO. Lymphocyte migration into the central nervous system: implication of ICAM-1 signalling at the blood-brain barrier. Vascul Pharmacol 2002; 38:315-22. [PMID: 12529926 DOI: 10.1016/s1537-1891(02)00199-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lymphocyte recruitment to the central nervous system (CNS) is a critical step in the pathogenesis of diseases such as multiple sclerosis (MS), meningitis and posterior uveitis. The principle sequential stages that control lymphocyte emigration from the blood have been widely reported, but only recently has attention been directed towards the role of the vascular endothelium in actively supporting transvascular migration. It has now been shown that adhesion molecules, particularly those of the immunoglobulin super family (e.g. ICAM-1, VCAM-1 and PECAM-1), not only act as ligands for leucocyte receptors but can also serve as signal transducers. Engagement of these receptors initiates endothelial signalling cascades that result in downstream effector mechanisms which in turn influence the progression of neuroinflammation. In particular, it has been shown that ICAM-1-mediated signalling in brain endothelial cells is a crucial regulatory step in the process of lymphocyte migration through the blood-brain barrier and as such represents an additional phase in the multistep paradigm of leucocyte recruitment. In this article we review current understanding of endothelial cell ICAM-1 signalling and discuss the importance of these findings in relation to leucocyte trafficking to the CNS.
Collapse
Affiliation(s)
- John Greenwood
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | | | | | | |
Collapse
|