1
|
Nakaya Y, Yamamoto K, Kobayashi M. Descending projections from the insular cortex to the trigeminal spinal subnucleus caudalis facilitate excitatory outputs to the parabrachial nucleus in rats. Pain 2023; 164:e157-e173. [PMID: 35969237 PMCID: PMC9916064 DOI: 10.1097/j.pain.0000000000002755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/09/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Nociceptive information from the orofacial area projects to the trigeminal spinal subnucleus caudalis (Sp5C) and is then conveyed to several nuclei, including the parabrachial nucleus (PBN). The insular cortex (IC) receives orofacial nociceptive information and sends corticofugal projections to the Sp5C. The Sp5C consists of glutamatergic and GABAergic/glycinergic interneurons that induce excitatory postsynaptic currents and inhibitory postsynaptic currents, respectively, in projection neurons. Therefore, quantification of glutamatergic IC inputs in combination with identifying postsynaptic neuronal subtypes is critical to elucidate IC roles in the regulation of Sp5C activities. We investigated features of synaptic transmission from the IC to glutamatergic and GABAergic/glycinergic Sp5C neurons of laminae I/II using vesicular GABA transporter-Venus transgenic rats that received an injection of adeno-associated virus-channelrhodopsin-2-mCherry into the IC. Selective stimulation of IC axon terminals in Sp5C slice preparations induced monosynaptic excitatory postsynaptic currents in both excitatory glutamatergic and inhibitory GABAergic/glycinergic Sp5C neurons with a comparable amplitude. Paired whole-cell patch-clamp recordings showed that unitary inhibitory postsynaptic currents from inhibitory neurons influencing excitatory neurons, including neurons projecting to the PBN, exhibited a high failure rate and were suppressed by both bicuculline and strychnine, suggesting that excitatory neurons in the Sp5C receive both GABAergic and glycinergic inhibition with low impact. Moreover, selective stimulation of IC axons increased the firing rate at the threshold responses. Finally, we demonstrated that selective stimulation of IC axons in the Sp5C by a chemogenetic approach decreased the thresholds of both mechanical and thermal nociception. Thus, IC projection to the Sp5C is likely to facilitate rather than suppress excitatory outputs from the Sp5C.
Collapse
Affiliation(s)
- Yuka Nakaya
- Department of Pharmacology, Nihon University School of Dentistry, Tokyo, Japan
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Kiyofumi Yamamoto
- Department of Pharmacology, Nihon University School of Dentistry, Tokyo, Japan
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, Tokyo, Japan
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
- Molecular Dynamics Imaging Unit, RIKEN Center for Life Science Technologies, Kobe, Japan
| |
Collapse
|
2
|
Tashiro A, Bereiter DA. The effects of estrogen on temporomandibular joint pain as influenced by trigeminal caudalis neurons. J Oral Sci 2020; 62:150-155. [PMID: 32132330 DOI: 10.2334/josnusd.19-0405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The signs and symptoms of persistent temporomandibular joint (TMJ)/muscle disorder (TMJD) pain suggest the existence of a central neural dysfunction or a problem of pain amplification. The etiology of chronic TMJD is not known; however, female sex hormones have been identified as significant risk factors. Converging lines of evidence indicate that the junctional region between the trigeminal subnucleus caudalis (Vc) and the upper cervical spinal cord, termed the Vc/C1-2 region, is the primary site for the synaptic integration of sensory input from TMJ nociceptors. In this paper, the mechanisms behind the estrogen effects on the processing of nociceptive inputs by neurons in the Vc/C1-2 region reported by human and animal studies are reviewed. The Vc/C1-2 region has direct connections to endogenous pain and autonomic control pathways, which are modified by estrogen status and are suggested to be critical for somatomotor and autonomic reflex responses of TMJ-related sensory signals.
Collapse
Affiliation(s)
| | - David A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry
| |
Collapse
|
3
|
Kobayashi M, Nakaya Y. Anatomical aspects of corticotrigeminal projections to the medullary dorsal horn. J Oral Sci 2020; 62:144-146. [DOI: 10.2334/josnusd.19-0386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry
- Molecular Imaging Research Center, Riken
| | - Yuka Nakaya
- Department of Pharmacology, Nihon University School of Dentistry
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry
| |
Collapse
|
4
|
Castro A, Li Y, Raver C, Chandra R, Masri R, Lobo MK, Keller A. Neuropathic pain after chronic nerve constriction may not correlate with chloride dysregulation in mouse trigeminal nucleus caudalis neurons. Pain 2017; 158:1366-1372. [PMID: 28426550 PMCID: PMC5482239 DOI: 10.1097/j.pain.0000000000000926] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Changes in chloride reversal potential in rat spinal cord neurons have previously been associated with persistent pain in nerve injury and inflammation models. These changes correlate with a decrease in the expression of the potassium chloride transporter, KCC2, and with increases in neuronal excitability. Here, we test the hypothesis that similar changes occur in mice with neuropathic pain induced by chronic constriction injury of the trigeminal infraorbital nerve (CCI-ION). This model allows us to distinguish an acute pain phase (3-5 days after injury) from a persistent pain phase (12-14 days after CCI-ION). Chronic constriction injury of the trigeminal infraorbital nerve induced significant decreases in mechanical pain thresholds in both the acute and persistent phases. To estimate GABAA reversal potentials in neurons from trigeminal nucleus caudalis, we obtained perforated patch recordings in vitro. GABAA reversal potential decreased by 8% during the acute phase in unidentified neurons, but not in GABAergic interneurons. However, at 12 to 14 days after CCI-ION, GABAA reversal potential recovered to normal values. Quantitative real-time polymerase chain reaction analysis revealed no significant changes, at either 3 to 5 days or 12 to 14 days after CCI-ION, in either KCC2 or NKCC1. These findings suggest that CCI-ION in mice results in transient and modest changes in chloride reversal potentials, and that these changes may not persist during the late phase. This suggests that, in the mouse model of CCI-ION, chloride dysregulation may not have a prominent role in the central mechanisms leading to the maintenance of chronic pain.
Collapse
Affiliation(s)
- Alberto Castro
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine
- Program in Neuroscience, University of Maryland
| | - Ying Li
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine
- Program in Neuroscience, University of Maryland
| | - Charles Raver
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine
- Program in Neuroscience, University of Maryland
| | - Ramesh Chandra
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine
- Program in Neuroscience, University of Maryland
| | - Radi Masri
- Program in Neuroscience, University of Maryland
- Department of Endodontics, Prosthodontics and Operative Surgery, Baltimore College of Dentistry. Baltimore, MD 21201
| | - Mary Kay Lobo
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine
- Program in Neuroscience, University of Maryland
| | - Asaf Keller
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine
- Program in Neuroscience, University of Maryland
| |
Collapse
|
5
|
Li MY, Wu ZY, Lu YC, Yin JB, Wang J, Zhang T, Dong YL, Wang F. Connections between EM2-containing terminals and GABA/μ-opioid receptor co-expressing neurons in the rat spinal trigeminal caudal nucleus. Front Neural Circuits 2014; 8:125. [PMID: 25386121 PMCID: PMC4208411 DOI: 10.3389/fncir.2014.00125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/29/2014] [Indexed: 01/15/2023] Open
Abstract
Endomorphin-2 (EM2) demonstrates a potent antinociceptive effect via the μ-opioid receptor (MOR). To provide morphological evidence for the pain control effect of EM2, the synaptic connections between EM2-immunoreactive (IR) axonal terminals and γ-amino butyric acid (GABA)/MOR co-expressing neurons in lamina II of the spinal trigeminal caudal nucleus (Vc) were investigated in the rat. Dense EM2-, MOR- and GABA-IR fibers and terminals were mainly observed in lamina II of the Vc. Within lamina II, GABA- and MOR-neuronal cell bodies were also encountered. The results of immunofluorescent histochemical triple-staining showed that approximately 14.2 or 18.9% of GABA-IR or MOR-IR neurons also showed MOR- or GABA-immunopositive staining in lamina II; approximately 45.2 and 36.1% of the GABA-IR and MOR-IR neurons, respectively, expressed FOS protein in their nuclei induced by injecting formalin into the left lower lip of the mouth. Most of the GABA/MOR, GABA/FOS, and MOR/FOS double-labeled neurons made close contacts with EM2-IR fibers and terminals. Immuno-electron microscopy confirmed that the EM2-IR terminals formed synapses with GABA-IR or MOR-IR dendritic processes and neuronal cell bodies in lamina II of the Vc. These results suggest that EM2 might participate in pain transmission and modulation by binding to MOR-IR and GABAergic inhibitory interneuron in lamina II of the Vc to exert inhibitory effect on the excitatory interneuron in lamina II and projection neurons in laminae I and III.
Collapse
Affiliation(s)
- Meng-Ying Li
- Department of Nutrition and Food Hygiene, The Fourth Military Medical University Xi'an, China
| | - Zhen-Yu Wu
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Ya-Cheng Lu
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Jun-Bin Yin
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Jian Wang
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Ting Zhang
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Yu-Lin Dong
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Feng Wang
- Department of Nutrition and Food Hygiene, The Fourth Military Medical University Xi'an, China
| |
Collapse
|
6
|
Sokolov AY, Lyubashina OA, Amelin AV, Panteleev SS. The role of gamma-aminobutyric acid in migraine pathogenesis. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414020093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Luo DS, Huang J, Dong YL, Wu ZY, Wei YY, Lu YC, Wang YY, Yanagawa Y, Wu SX, Wang W, Li YQ. Connections between EM2- and SP-containing terminals and GABAergic neurons in the mouse spinal dorsal horn. Neurol Sci 2014; 35:1421-7. [PMID: 24718557 DOI: 10.1007/s10072-014-1774-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/25/2014] [Indexed: 12/22/2022]
Abstract
Endomorphin-2 (EM2) demonstrates a potent antinociceptive effect in pain modulation. To investigate the potential interactions of EM2- and substance P (SP)-containing primary afferents and γ-amino butyric acid (GABA)-containing interneurons in lamina II in nociceptive transmission, connections between EM2- and SP-containing terminals and GABAergic neurons in the spinal dorsal horn were studied. Double-immunofluorescent labeling showed that approximately 62.3 % of EM2-immunoreactive neurons exhibited SP-immunostaining, and 76.9 % of SP-immunoreactive neurons demonstrated EM2-immunoreactivities in the dorsal root ganglion (DRG). Dense double-labeled EM2- and SP-immunoreactivities were mainly observed in lamina II of the lumbar dorsal horn. Furthermore, triple-immunofluorescent labeling results revealed that EM2 and SP double-labeled terminals overlapped with GABAergic neurons. Immuno-electron microscopy confirmed that the EM2- or SP-immunoreactive terminals formed synapses with GABA-immunoreactive dendrites in lamina II of the lumbar dorsal horn. During noxious information transmission induced by formalin plantar injection, GABAergic neurons expressing FOS in their nuclei were contacted with EM2- or SP-immunoreactive terminals. These results suggest that the interactions between EM2- and SP-containing terminals and GABAergic interneurons in the lamina II influence pain transmission and modulation in the spinal dorsal horn.
Collapse
Affiliation(s)
- Dao-Shu Luo
- Department of Anatomy, Histology and Embryology, Basic Medical College, Fujian Medical University, Fuzhou, 350004, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
GABAergic influence on temporomandibular joint-responsive spinomedullary neurons depends on estrogen status. Neuroscience 2013; 259:53-62. [PMID: 24316475 DOI: 10.1016/j.neuroscience.2013.11.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 12/19/2022]
Abstract
Sensory input from the temporomandibular joint (TMJ) to neurons in superficial laminae at the spinomedullary (Vc/C1-2) region is strongly influenced by estrogen status. This study determined if GABAergic mechanisms play a role in estrogen modulation of TMJ nociceptive processing in ovariectomized female rats treated with high- (HE) or low-dose (LE) estradiol (E2) for 2days. Superficial laminae neurons were activated by ATP (1mM) injections into the joint space. The selective GABAA receptor antagonist, bicuculline methiodide (BMI, 5 or 50μM, 30μl), applied at the site of recording greatly enhanced the magnitude and duration of ATP-evoked responses in LE rats, but not in units from HE rats. The convergent cutaneous receptive field (RF) area of TMJ neurons was enlarged after BMI in LE but not HE rats, while resting discharge rates were increased after BMI independent of estrogen status. By contrast, the selective GABAA receptor agonist, muscimol (50μM, 30μl), significantly reduced the magnitude and duration of ATP-evoked activity, resting discharge rate, and cutaneous RF area of TMJ neurons in LE and HE rats, whereas lower doses (5μM) affected only units from LE rats. Protein levels of GABAA receptor β3 isoform at the Vc/C1-2 region were similar for HE and LE rats. These results suggest that GABAergic mechanisms contribute significantly to background discharge rates and TMJ-evoked input to superficial laminae neurons at the Vc/C1-2 region. Estrogen status may gate the magnitude of GABAergic influence on TMJ neurons at the earliest stages of nociceptive processing at the spinomedullary region.
Collapse
|
9
|
Egea J, Malmierca E, Rosa AO, del Barrio L, Negredo P, Nuñez A, López MG. Participation of calbindin-D28K in nociception: results from calbindin-D28K knockout mice. Pflugers Arch 2011; 463:449-58. [PMID: 22134771 DOI: 10.1007/s00424-011-1063-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/05/2011] [Accepted: 11/16/2011] [Indexed: 11/30/2022]
Abstract
Since calbindin-D(28K) (CB-D(28K))-positive neurons have been related to nociceptive sensory processing, we have hypothesized that altered CB-D(28K) expression could alter nociceptive transmission. We have used +/+ and -/- knockout (KO) mice for CB-D(28k) in different behavioral models of pain and sensory responses at the caudalis subdivision of the trigeminal spinal nucleus in order to understand how this protein may participate in nociception. Behavioral responses to formalin injection in the hind paw or at the whisker pad or in the hind paw glutamate or i.p. acetic acid tests showed an increase of the pain threshold in CB-D(28k) -/- mice. KO mice showed a diminution of the inhibitory activity at Sp5C nucleus and a marked reduction of GABA content. Sp5C neurons from CB-D(28k) -/- mice did not change their spontaneous activity or tactile response after formalin injection in the whisker pad. In contrast, Sp5C neurons increased their spontaneous firing rate and tactile response after formalin injection in their receptive field in CB-D(28k) +/+ mice. The results of this study demonstrate the active role played by CB-D(28k) in nociceptive sensory transmission. The lack of this calcium binding protein, associated to deficient GABAergic neurotransmission, translates into dysfunction of sensory processing of nociceptive stimuli.
Collapse
Affiliation(s)
- Javier Egea
- Instituto Teófilo Hernando, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Bereiter DA, Okamoto K. Neurobiology of estrogen status in deep craniofacial pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 97:251-84. [PMID: 21708314 DOI: 10.1016/b978-0-12-385198-7.00010-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pain in the temporomandibular joint (TMJ) region often occurs with no overt signs of injury or inflammation. Although the etiology of TMJ-related pain may involve multiple factors, one likely risk factor is female gender or estrogen status. Evidence is reviewed from human and animal studies, supporting the proposition that estrogen status acts peripherally or centrally to influence TMJ nociceptive processing. A new model termed the "TMJ pain matrix" is proposed as critical for the initial integration of TMJ-related sensory signals in the lower brainstem that is both modified by estrogen status, and closely linked to endogenous pain and autonomic control pathways.
Collapse
Affiliation(s)
- David A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | | |
Collapse
|
11
|
Wu SX, Wang W, Li H, Wang YY, Feng YP, Li YQ. The synaptic connectivity that underlies the noxious transmission and modulation within the superficial dorsal horn of the spinal cord. Prog Neurobiol 2010; 91:38-54. [DOI: 10.1016/j.pneurobio.2010.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 12/10/2009] [Accepted: 01/14/2010] [Indexed: 01/27/2023]
|
12
|
Berry AS, Tomidokoro Y, Ghiso J, Thornton J. Human chorionic gonadotropin (a luteinizing hormone homologue) decreases spatial memory and increases brain amyloid-beta levels in female rats. Horm Behav 2008; 54:143-52. [PMID: 18413150 PMCID: PMC2613844 DOI: 10.1016/j.yhbeh.2008.02.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 02/03/2008] [Accepted: 02/11/2008] [Indexed: 10/22/2022]
Abstract
Numerous studies have suggested that estradiol (E) improves spatial memory as female rats with E perform better than those without E. However there is an inverse relationship between E and luteinizing hormone (LH) levels and LH could play a role. We examined whether treatment with the LH homologue human chorionic gonadotropin (hCG), would impair spatial memory of adult E-treated female rats. In the object location memory task, ovariectomized (ovxed) rats treated with E and either a single high dose (400 IU/kg) or a lower repeated dose of hCG (75 IU/kg hourly for 8 h) showed spatial memory disruption compared to ovxed rats treated with estradiol alone. Impairment was attributed to memory disruption as performance improved with shortened delay between task exposure and testing. Tests on another spatial memory task, the Barnes maze, confirmed that hCG (400 IU/kg) can impair memory: although E+veh treated animals made significantly fewer hole errors across time, E+hCG-treated did not. In humans, high LH levels have been correlated with Alzheimer's disease (AD). Because brain amyloid-beta (Abeta) species have been implicated as a toxic factor thought to cause memory loss in AD, we analyzed whether hCG-treated animals had increased Abeta levels. Levels of Abeta from whole brains or hippocampi were assessed by Western blot. hCG treatment to E-implanted females significantly increased soluble Abeta40 and Abeta42 levels. These results indicate that high levels of LH/hCG can impair spatial memory, and an increase in brain Abeta species may account for the memory impairment in hCG-treated rats.
Collapse
Affiliation(s)
- Anne S. Berry
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin OH 44074 USA
| | - Yasushi Tomidokoro
- Department of Pathology, New York University School of Medicine, 550 First Ave, New York, NY 10016 USA
| | - Jorge Ghiso
- Department of Pathology, New York University School of Medicine, 550 First Ave, New York, NY 10016 USA
| | - Jan Thornton
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin OH 44074 USA
- Biology Department, Oberlin College, 119 Woodland Street, Oberlin OH 44074 USA
| |
Collapse
|
13
|
Renno WM, Alkhalaf M, Mousa A, Kanaan RA. A comparative study of excitatory and inhibitory amino acids in three different brainstem nuclei. Neurochem Res 2007; 33:150-9. [PMID: 17940899 DOI: 10.1007/s11064-007-9427-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 06/22/2007] [Indexed: 12/20/2022]
Abstract
This study was designed to shed more light onto the three different brainstem regions which are implicated in the pain pathway for the level of various excitatory and inhibitory neurotransmitters before and following neuronal stimulation. The in vivo microdialysis technique was used in awake, freely moving adult Sprague-Dawley rats. The neurotransmitters studied included aspartate, glutamate, GABA, glycine, and taurine. The three brainstem regions examined included the mid-brain periaqueductal gray (PAG), the medullary nucleus raphe magnus (NRM), and the spinal trigeminal nucleus (STN). Neuronal stimulation was achieved following the administration of the sodium channel activator veratridine. The highest baseline levels of glutamate (P < 0.0001), aspartate (P < 0.0001), GABA (P < 0.01), taurine (P < 0.0001), and glycine (P < 0.001) were seen in the NRM. On the other hand, the lowest baseline levels of glutamate, GABA, glycine, and taurine were found in the PAG, while that of aspartate was found in the STN. Following the administration of veratridine, the highest release of the above neurotransmitters except for the aspartate and glycine was found in the PAG where the level of glutamate increased by 1,310 +/- 293% (P < 0.001), taurine by 1,008 +/- 143% (P < 0.01), and GABA by 10,358 +/- 1,920% (P < 0.0001) when comparison was performed among the three brainstem regions and in relation to the baseline levels. The highest release of aspartate was seen in the STN (2,357 +/- 1,060%, P < 0.001), while no significant difference was associated with glycine. On the other hand, the lowest release of GABA and taurine was found in the STN (696 +/- 91 and 305 +/- 25%, respectively), and glutamate and aspartate in the NRM (558 +/- 200 and 874 +/- 315%, respectively). Our results indicate, and for the first time, that although some differences are seen in the baseline levels of the above neurotransmitters in the three regions studied, there are quite striking variations in the level of release of these neurotransmitters following neuronal stimulation in these regions. In our opinion this is the first study to describe the pain activation/modulation related changes of the excitatory and inhibitory amino acids profile of the three different brainstem areas.
Collapse
Affiliation(s)
- Waleed M Renno
- Department of Anatomy, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13110, Kuwait.
| | | | | | | |
Collapse
|
14
|
Wu L, Li H, Li YQ. Adenosine suppresses the response of neurons to gaba in the superficial laminae of the rat spinal dorsal horn. Neuroscience 2003; 119:145-54. [PMID: 12763076 DOI: 10.1016/s0306-4522(03)00074-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
With the nystatin-perforated whole-cell patch-clamp recording technique, the modulatory effects of adenosine on GABA-activated whole-cell currents were investigated in neurons acutely dissociated from the superficial laminae (laminae I and II) of the rat spinal dorsal horn. The results showed that: (1) GABA acted on GABA(A) receptor and elicited inward Cl(-) currents (I(GABA)) at a holding potential (V(H)) of -40 mV; (2) adenosine suppressed GABA-induced Cl(-) current with affecting neither the reversal potential of I(GABA) nor the apparent affinity of GABA to its receptor; (3) N6-cyclo-hexyladenosine, a selective A(1) adenosine receptor agonist, mimicked the suppressing effect of adenosine on I(GABA), whereas 8-cyclopentyl-1,3-dipropylxanthine, a selective A(1) adenosine receptor antagonist, blocked the suppressing effect of adenosine; (4) chelerythrine, an inhibitor of protein kinase C, reduced the suppressing effect of adenosine on I(GABA); (5) pretreatment with 1,2-bis-(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxy-methyl) ester, a Ca(2+) chelator, did not affect adenosine-induced suppression of I(GABA). The results indicate that: (1) the suppression of adenosine on I(GABA) is mediated by adenosine A(1) receptor and through a Ca(2+)-independent protein kinase C transduction pathway; (2) the interactions between adenosine and GABA might be involved in the modulation of nociceptive information transmission at spinal cord level.
Collapse
Affiliation(s)
- L Wu
- Department of Anatomy and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an 710032, China
| | | | | |
Collapse
|
15
|
Abstract
Upon receipt in the dorsal horn (DH) of the spinal cord, nociceptive (pain-signalling) information from the viscera, skin and other organs is subject to extensive processing by a diversity of mechanisms, certain of which enhance, and certain of which inhibit, its transfer to higher centres. In this regard, a network of descending pathways projecting from cerebral structures to the DH plays a complex and crucial role. Specific centrifugal pathways either suppress (descending inhibition) or potentiate (descending facilitation) passage of nociceptive messages to the brain. Engagement of descending inhibition by the opioid analgesic, morphine, fulfils an important role in its pain-relieving properties, while induction of analgesia by the adrenergic agonist, clonidine, reflects actions at alpha(2)-adrenoceptors (alpha(2)-ARs) in the DH normally recruited by descending pathways. However, opioids and adrenergic agents exploit but a tiny fraction of the vast panoply of mechanisms now known to be involved in the induction and/or expression of descending controls. For example, no drug interfering with descending facilitation is currently available for clinical use. The present review focuses on: (1) the organisation of descending pathways and their pathophysiological significance; (2) the role of individual transmitters and specific receptor types in the modulation and expression of mechanisms of descending inhibition and facilitation and (3) the advantages and limitations of established and innovative analgesic strategies which act by manipulation of descending controls. Knowledge of descending pathways has increased exponentially in recent years, so this is an opportune moment to survey their operation and therapeutic relevance to the improved management of pain.
Collapse
Affiliation(s)
- Mark J Millan
- Department of Psychopharmacology, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy/Seine, Paris, France.
| |
Collapse
|