1
|
Ghouli MR, Binder DK. Neuroglia in epilepsy. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:69-86. [PMID: 40148058 DOI: 10.1016/b978-0-443-19102-2.00016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Epilepsy is a group of neurologic diseases characterized by spontaneous, repetitive disruption to neuronal activity. Neurons have been at the core of epilepsy research efforts, and pharmacotherapies historically have been generated by targeting neuronal mechanisms. As a result, most currently available antiseizure drugs (ASDs) work to either decrease excitatory glutamatergic neurotransmission or to increase inhibitory GABAergic neurotransmission. However, ASDs may have undesirable side effects on cognition and also fail to control seizures in approximately 30% of epilepsy patients. In recent years, glia have surfaced as essential modulators of neuronal function in health and disease. The redirection of focus onto neuroglia provides new perspectives and opportunities to generate novel therapeutic targets that may treat refractory epilepsy and diminish the unwanted side effect profile of current treatments. In this chapter, we discuss the contribution of astroglia, oligodendroglia, and microglia to the genesis, development, and progression of epilepsy, and we highlight key enzymes, receptors, transporters, and channels that may be pursued as nonneuronal targets for novel ASDs.
Collapse
Affiliation(s)
- Manolia R Ghouli
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States; Center for Glial-Neuronal Interactions, University of California, Riverside, Riverside, CA, United States
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States; Center for Glial-Neuronal Interactions, University of California, Riverside, Riverside, CA, United States.
| |
Collapse
|
2
|
Chen L, Yang W, Yang F, Xu T, Yu Y, Wu Q, Han Y. Astrocyte mitochondria: Potential therapeutic targets for epilepsy. Heliyon 2024; 10:e29950. [PMID: 38756598 PMCID: PMC11096718 DOI: 10.1016/j.heliyon.2024.e29950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Epilepsy is a chronic, relapsing neurological disorder, and current treatments focus primarily on neurons, yet one-third of patients still develop drug-resistant epilepsy. Therefore, there is an urgent need to explore new therapeutic targets. Interestingly, astrocytes can transfer their healthy mitochondria into neighboring neurons, thus preventing neuronal damage. Astrocyte mitochondria have been shown to have a therapeutic role in stroke and neurodegenerative diseases. However, their therapeutic effect in epilepsy and its related mechanisms have been less studied. In this review, we mainly summarize the regulatory role of astrocyte mitochondria in glutamate, calcium ion, and adenosine triphosphate (ATP) homeostasis and outline the protective role of astrocyte mitochondria in nervous system diseases, revealing a new target for epilepsy treatment.
Collapse
Affiliation(s)
| | | | - Fei Yang
- First Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Tingwan Xu
- First Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Yanying Yu
- First Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Qian Wu
- First Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Yanbing Han
- First Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| |
Collapse
|
3
|
Li J, Qi H, Chen Y, Zhu X. Epilepsy and demyelination: Towards a bidirectional relationship. Prog Neurobiol 2024; 234:102588. [PMID: 38378072 DOI: 10.1016/j.pneurobio.2024.102588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Demyelination stands out as a prominent feature in individuals with specific types of epilepsy. Concurrently, individuals with demyelinating diseases, such as multiple sclerosis (MS) are at a greater risk of developing epilepsy compared to non-MS individuals. These bidirectional connections raise the question of whether both pathological conditions share common pathogenic mechanisms. This review focuses on the reciprocal relationship between epilepsy and demyelination diseases. We commence with an overview of the neurological basis of epilepsy and demyelination diseases, followed by an exploration of how our comprehension of these two disorders has evolved in tandem. Additionally, we discuss the potential pathogenic mechanisms contributing to the interactive relationship between these two diseases. A more nuanced understanding of the interplay between epilepsy and demyelination diseases has the potential to unveiling the molecular intricacies of their pathological relationships, paving the way for innovative directions in future clinical management and treatment strategies for these diseases.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China; Clinical Medicine, Medical School of Southeast University, Nanjing, China
| | - Honggang Qi
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Yuzhou Chen
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China; Clinical Medicine, Medical School of Southeast University, Nanjing, China
| | - Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
4
|
Enger R, Heuser K. Astrocytes as critical players of the fine balance between inhibition and excitation in the brain: spreading depolarization as a mechanism to curb epileptic activity. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1360297. [PMID: 38405021 PMCID: PMC10884165 DOI: 10.3389/fnetp.2024.1360297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024]
Abstract
Spreading depolarizations (SD) are slow waves of complete depolarization of brain tissue followed by neuronal silencing that may play a role in seizure termination. Even though SD was first discovered in the context of epilepsy research, the link between SD and epileptic activity remains understudied. Both seizures and SD share fundamental pathophysiological features, and recent evidence highlights the frequent occurrence of SD in experimental seizure models. Human data on co-occurring seizures and SD are limited but suggestive. This mini-review addresses possible roles of SD during epileptiform activity, shedding light on SD as a potential mechanism for terminating epileptiform activity. A common denominator for many forms of epilepsy is reactive astrogliosis, a process characterized by morphological and functional changes to astrocytes. Data suggest that SD mechanisms are potentially perturbed in reactive astrogliosis and we propose that this may affect seizure pathophysiology.
Collapse
Affiliation(s)
- Rune Enger
- Letten Centre and GliaLab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kjell Heuser
- Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
5
|
Tukacs V, Mittli D, Hunyadi-Gulyás É, Darula Z, Juhász G, Kardos J, Kékesi KA. Comparative analysis of hippocampal extracellular space uncovers widely altered peptidome upon epileptic seizure in urethane-anaesthetized rats. Fluids Barriers CNS 2024; 21:6. [PMID: 38212833 PMCID: PMC10782730 DOI: 10.1186/s12987-024-00508-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/31/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND The brain extracellular fluid (ECF), composed of secreted neurotransmitters, metabolites, peptides, and proteins, may reflect brain processes. Analysis of brain ECF may provide new potential markers for synaptic activity or brain damage and reveal additional information on pathological alterations. Epileptic seizure induction is an acute and harsh intervention in brain functions, and it can activate extra- and intracellular proteases, which implies an altered brain secretome. Thus, we applied a 4-aminopyridine (4-AP) epilepsy model to study the hippocampal ECF peptidome alterations upon treatment in rats. METHODS We performed in vivo microdialysis in the hippocampus for 3-3 h of control and 4-AP treatment phase in parallel with electrophysiology measurement. Then, we analyzed the microdialysate peptidome of control and treated samples from the same subject by liquid chromatography-coupled tandem mass spectrometry. We analyzed electrophysiological and peptidomic alterations upon epileptic seizure induction by two-tailed, paired t-test. RESULTS We detected 2540 peptides in microdialysate samples by mass spectrometry analysis; and 866 peptides-derived from 229 proteins-were found in more than half of the samples. In addition, the abundance of 322 peptides significantly altered upon epileptic seizure induction. Several proteins of significantly altered peptides are neuropeptides (Chgb) or have synapse- or brain-related functions such as the regulation of synaptic vesicle cycle (Atp6v1a, Napa), astrocyte morphology (Vim), and glutamate homeostasis (Slc3a2). CONCLUSIONS We have detected several consequences of epileptic seizures at the peptidomic level, as altered peptide abundances of proteins that regulate epilepsy-related cellular processes. Thus, our results indicate that analyzing brain ECF by in vivo microdialysis and omics techniques is useful for monitoring brain processes, and it can be an alternative method in the discovery and analysis of CNS disease markers besides peripheral fluid analysis.
Collapse
Affiliation(s)
- Vanda Tukacs
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Dániel Mittli
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvári Körút 62, Szeged, 6726, Hungary
| | - Zsuzsanna Darula
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvári Körút 62, Szeged, 6726, Hungary
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, Temesvári Körút 62, Szeged, 6726, Hungary
| | - Gábor Juhász
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- InnoScience Hungary Ltd., Bátori Út 9, Mátranovák, 3142, Hungary
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Katalin Adrienna Kékesi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
- InnoScience Hungary Ltd., Bátori Út 9, Mátranovák, 3142, Hungary.
- Department of Physiology and Neurobiology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
| |
Collapse
|
6
|
Mitroshina E, Kalinina E, Vedunova M. Optogenetics in Alzheimer's Disease: Focus on Astrocytes. Antioxidants (Basel) 2023; 12:1856. [PMID: 37891935 PMCID: PMC10604138 DOI: 10.3390/antiox12101856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, resulting in disability and mortality. The global incidence of AD is consistently surging. Although numerous therapeutic agents with promising potential have been developed, none have successfully treated AD to date. Consequently, the pursuit of novel methodologies to address neurodegenerative processes in AD remains a paramount endeavor. A particularly promising avenue in this search is optogenetics, enabling the manipulation of neuronal activity. In recent years, research attention has pivoted from neurons to glial cells. This review aims to consider the potential of the optogenetic correction of astrocyte metabolism as a promising strategy for correcting AD-related disorders. The initial segment of the review centers on the role of astrocytes in the genesis of neurodegeneration. Astrocytes have been implicated in several pathological processes associated with AD, encompassing the clearance of β-amyloid, neuroinflammation, excitotoxicity, oxidative stress, and lipid metabolism (along with a critical role in apolipoprotein E function). The effect of astrocyte-neuronal interactions will also be scrutinized. Furthermore, the review delves into a number of studies indicating that changes in cellular calcium (Ca2+) signaling are one of the causes of neurodegeneration. The review's latter section presents insights into the application of various optogenetic tools to manipulate astrocytic function as a means to counteract neurodegenerative changes.
Collapse
Affiliation(s)
- Elena Mitroshina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia (M.V.)
| | | | | |
Collapse
|
7
|
Bedner P, Steinhäuser C. Role of Impaired Astrocyte Gap Junction Coupling in Epileptogenesis. Cells 2023; 12:1669. [PMID: 37371139 DOI: 10.3390/cells12121669] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
The gap-junction-coupled astroglial network plays a central role in the regulation of neuronal activity and synchronisation, but its involvement in the pathogenesis of neuronal diseases is not yet understood. Here, we present the current state of knowledge about the impact of impaired glial coupling in the development and progression of epilepsy and discuss whether astrocytes represent alternative therapeutic targets. We focus mainly on temporal lobe epilepsy (TLE), which is the most common form of epilepsy in adults and is characterised by high therapy resistance. Functional data from TLE patients and corresponding experimental models point to a complete loss of astrocytic coupling, but preservation of the gap junction forming proteins connexin43 and connexin30 in hippocampal sclerosis. Several studies further indicate that astrocyte uncoupling is a causal event in the initiation of TLE, as it occurs very early in epileptogenesis, clearly preceding dysfunctional changes in neurons. However, more research is needed to fully understand the role of gap junction channels in epilepsy and to develop safe and effective therapeutic strategies targeting astrocytes.
Collapse
Affiliation(s)
- Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
8
|
Pathak D, Sriram K. Neuron-astrocyte omnidirectional signaling in neurological health and disease. Front Mol Neurosci 2023; 16:1169320. [PMID: 37363320 PMCID: PMC10286832 DOI: 10.3389/fnmol.2023.1169320] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Astrocytes are an abundantly distributed population of glial cells in the central nervous system (CNS) that perform myriad functions in the normal and injured/diseased brain. Astrocytes exhibit heterogeneous phenotypes in response to various insults, a process known as astrocyte reactivity. The accuracy and precision of brain signaling are primarily based on interactions involving neurons, astrocytes, oligodendrocytes, microglia, pericytes, and dendritic cells within the CNS. Astrocytes have emerged as a critical entity within the brain because of their unique role in recycling neurotransmitters, actively modulating the ionic environment, regulating cholesterol and sphingolipid metabolism, and influencing cellular crosstalk in diverse neural injury conditions and neurodegenerative disorders. However, little is known about how an astrocyte functions in synapse formation, axon specification, neuroplasticity, neural homeostasis, neural network activity following dynamic surveillance, and CNS structure in neurological diseases. Interestingly, the tripartite synapse hypothesis came to light to fill some knowledge gaps that constitute an interaction of a subpopulation of astrocytes, neurons, and synapses. This review highlights astrocytes' role in health and neurological/neurodegenerative diseases arising from the omnidirectional signaling between astrocytes and neurons at the tripartite synapse. The review also recapitulates the disruption of the tripartite synapse with a focus on perturbations of the homeostatic astrocytic function as a key driver to modulate the molecular and physiological processes toward neurodegenerative diseases.
Collapse
|
9
|
Purnell BS, Alves M, Boison D. Astrocyte-neuron circuits in epilepsy. Neurobiol Dis 2023; 179:106058. [PMID: 36868484 DOI: 10.1016/j.nbd.2023.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The epilepsies are a diverse spectrum of disease states characterized by spontaneous seizures and associated comorbidities. Neuron-focused perspectives have yielded an array of widely used anti-seizure medications and are able to explain some, but not all, of the imbalance of excitation and inhibition which manifests itself as spontaneous seizures. Furthermore, the rate of pharmacoresistant epilepsy remains high despite the regular approval of novel anti-seizure medications. Gaining a more complete understanding of the processes that turn a healthy brain into an epileptic brain (epileptogenesis) as well as the processes which generate individual seizures (ictogenesis) may necessitate broadening our focus to other cell types. As will be detailed in this review, astrocytes augment neuronal activity at the level of individual neurons in the form of gliotransmission and the tripartite synapse. Under normal conditions, astrocytes are essential to the maintenance of blood-brain barrier integrity and remediation of inflammation and oxidative stress, but in epilepsy these functions are impaired. Epilepsy results in disruptions in the way astrocytes relate to each other by gap junctions which has important implications for ion and water homeostasis. In their activated state, astrocytes contribute to imbalances in neuronal excitability due to their decreased capacity to take up and metabolize glutamate and an increased capacity to metabolize adenosine. Furthermore, due to their increased adenosine metabolism, activated astrocytes may contribute to DNA hypermethylation and other epigenetic changes that underly epileptogenesis. Lastly, we will explore the potential explanatory power of these changes in astrocyte function in detail in the specific context of the comorbid occurrence of epilepsy and Alzheimer's disease and the disruption in sleep-wake regulation associated with both conditions.
Collapse
Affiliation(s)
- Benton S Purnell
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America
| | - Mariana Alves
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Brain Health Institute, Rutgers University, Piscataway, NJ, United States of America.
| |
Collapse
|
10
|
Andrioli A, Fabene PF, Mudò G, Barresi V, Di Liberto V, Frinchi M, Bentivoglio M, Condorelli DF. Downregulation of the Astroglial Connexin Expression and Neurodegeneration after Pilocarpine-Induced Status Epilepticus. Int J Mol Sci 2022; 24:ijms24010023. [PMID: 36613467 PMCID: PMC9819917 DOI: 10.3390/ijms24010023] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Astrocytic networks and gap junctional communication mediated by connexins (Cxs) have been repeatedly implicated in seizures, epileptogenesis, and epilepsy. However, the effect of seizures on Cx expression is controversial. The present study focused on the response of Cxs to status epilepticus (SE), which is in turn an epileptogenic insult. The expression of neuronal Cx36 and astrocytic Cx30 and Cx43 mRNAs was investigated in the brain of rats in the first day after pilocarpine-induced SE. In situ hybridization revealed a progressive decrease in Cx43 and Cx30 mRNA levels, significantly marked 24 h after SE onset in neocortical areas and the hippocampus, and in most thalamic domains, whereas Cx36 mRNA did not exhibit obvious changes. Regional evaluation with quantitative real-time-RT-PCR confirmed Cx43 and Cx30 mRNA downregulation 24 h after SE, when ongoing neuronal cell death was found in the same brain regions. Immunolabeling showed at the same time point marked a decrease in Cx43, microglia activation, and interleukin-1β induction in some microglial cells. The data showed a transient downregulation of astroglial Cxs in the cortical and thalamic areas in which SE triggers neurodegenerative events in concomitance with microglia activation and cytokine expression. This could potentially represent a protective response of neuroglial networks to SE-induced acute damage.
Collapse
Affiliation(s)
- Anna Andrioli
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Paolo Francesco Fabene
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- Verona Unit, National Institute of Neuroscience (INN), 37129 Verona, Italy
| | - Giuseppa Mudò
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BiND), University of Palermo, 90133 Palermo, Italy
| | - Vincenza Barresi
- Unit of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Valentina Di Liberto
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BiND), University of Palermo, 90133 Palermo, Italy
| | - Monica Frinchi
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BiND), University of Palermo, 90133 Palermo, Italy
| | - Marina Bentivoglio
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- Verona Unit, National Institute of Neuroscience (INN), 37129 Verona, Italy
| | - Daniele Filippo Condorelli
- Unit of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Correspondence:
| |
Collapse
|
11
|
Nishimura Y, Masaki K, Matsuse D, Yamaguchi H, Tanaka T, Matsuo E, Hayashida S, Watanabe M, Matsushita T, Sadashima S, Sasagasako N, Yamasaki R, Isobe N, Iwaki T, Kira J. Early and extensive alterations of glial connexins, distal oligodendrogliopathy type demyelination, and nodal/paranodal pathology are characteristic of multiple system atrophy. Brain Pathol 2022; 33:e13131. [PMID: 36368713 PMCID: PMC10154368 DOI: 10.1111/bpa.13131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
The pathological hallmark of multiple system atrophy (MSA) is aberrant accumulation of phosphorylated α-synuclein in oligodendrocytes, forming glial cytoplasmic inclusions (GCIs). Extensive demyelination occurs particularly in the olivopontocerebellar and striatonigral pathways, but its precise mechanism remains elusive. Glial connexins (Cxs), which form gap junction channels between astrocytes and oligodendrocytes, play critical roles in myelin maintenance, and have not been studied in MSA. Therefore, we immunohistochemically investigated glial Cx changes in the cerebellar afferent fibers in 15 autopsied patients with MSA. We classified demyelinating lesions into three stages based on Klüver-Barrera staining: early (Stage I), intermediate (Stage II), and late (Stage III) stages showing subtle, moderate, and severe myelin reduction, respectively. Myelin-associated glycoprotein, but not myelin oligodendrocyte glycoprotein, was preferentially decreased in Stage I, suggesting distal oligodendrogliopathy type demyelination. Accumulation of phosphorylated α-synuclein in oligodendrocytes was frequently seen in Stage I but less frequently observed in Stages II and III. Tubulin polymerization-promoting protein (TPPP/p25α)-positive oligodendrocytes were preserved in Stage I but successively decreased in Stages II and III. Even at Stage I, Cx32 was nearly absent from myelin, despite the relative preservation of other nodal proteins, such as neurofascin, claudin-11/oligodendrocyte-specific protein, and contactin-associated protein 1, which successively decreased in the later stages. Cx32 was re-distributed in the oligodendrocyte cytoplasm and co-localized with GCIs. Cx47 gradually decreased at the oligodendrocyte surface in a stage-dependent manner but was not co-localized with GCIs. Astrocytic Cx43 was down-regulated in Stage I but up-regulated in Stages II and III, reflecting astrogliosis. Cx43/Cx47 gap junctions significantly decreased from Stage I to III. Activated microglia/macrophages and T cells infiltrated in Stage I rather than Stages II and III. Therefore, early and extensive alterations of glial Cxs, particularly Cx32 loss, occur in MSA and may accelerate distal oligodendrogliopathy type demyelination and nodal/paranodal dysfunction through disruption of inter-glial communication.
Collapse
Affiliation(s)
- Yuji Nishimura
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Katsuhisa Masaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Dai Matsuse
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Hiroo Yamaguchi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Tatsunori Tanaka
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
- Sumitomo Pharma Osaka Japan
| | - Eriko Matsuo
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Shotaro Hayashida
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Mitsuru Watanabe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Takuya Matsushita
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Shoko Sadashima
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Naokazu Sasagasako
- Department of Neurology, Neuro‐Muscular Center National Omuta Hospital Fukuoka Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Toru Iwaki
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Jun‐ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
- Translational Neuroscience Center, Graduate School of Medicine, and School of Pharmacy at Fukuoka International University of Health and Welfare Ookawa Japan
- Department of Neurology, Brain and Nerve Center Fukuoka Central Hospital Fukuoka Japan
| |
Collapse
|
12
|
Hayatdavoudi P, Hosseini M, Hajali V, Hosseini A, Rajabian A. The role of astrocytes in epileptic disorders. Physiol Rep 2022; 10:e15239. [PMID: 35343625 PMCID: PMC8958496 DOI: 10.14814/phy2.15239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 04/17/2023] Open
Abstract
Epilepsy affects about 1% of the population and approximately 30% of epileptic patients are resistant to current antiepileptic drugs. As a hallmark in epileptic tissue, many of the epileptic patients show changes in glia morphology and function. There are characteristic changes in different types of glia in different epilepsy models. Some of these changes such as astrogliosis are enough to provoke epileptic seizures. Astrogliosis is well known in mesial temporal lobe epilepsy (MTLE), the most common form of refractory epilepsy. A better understanding of astrocytes alterations could lead to novel and efficient pharmacological approaches for epilepsy. In this review, we present the alterations of astrocyte morphology and function and present some instances of targeting astrocytes in seizure and epilepsy.
Collapse
Affiliation(s)
- Parichehr Hayatdavoudi
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of PhysiologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
| | - Vahid Hajali
- Department of NeuroscienceFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical SciencesMashhadIran
- Department of PharmacologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Arezoo Rajabian
- Department of Internal MedicineFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
13
|
Wan HJ, Hu WH, Wang X, Zhang C, Wang SS, Zheng Z, Zhou F, Sang L, Zhang K, Zhang JG, Shao XQ. Interictal pattern on scalp electroencephalogram predicts excellent surgical outcome of epilepsy caused by focal cortical dysplasia. Epilepsia Open 2022; 7:350-360. [PMID: 35202517 PMCID: PMC9159252 DOI: 10.1002/epi4.12587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/25/2021] [Accepted: 02/18/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Focal cortical dysplasia (FCD) represents an essential cause of drug-resistant epilepsy with surgery as an effective treatment option. This study aimed to identify the important predictors of favorable surgical outcomes and the impact of the interictal scalp electroencephalogram (EEG) patterns in predicting postsurgical seizure outcomes. METHODS We retrospectively evaluated 210 consecutive patients between 2015 and 2019. They were diagnosed with FCD by pathology, underwent resection, and had at least one year of postsurgical follow-up. Predictors of seizure freedom were analyzed. RESULTS Based on the information at the latest follow-up, seizure outcome was classified as Engel Class I (seizure-free) in 81.4% and Engel Class II-IV (non-seizure-free) in 18.6% of patients. There were 43, 105, and 62 cases of FCD type I, type II, and type III, respectively. The interictal EEG showed a repetitive discharge pattern (REDP) in 87 (41.4%) patients, polyspike discharge pattern (PDP) in 41 (19.5%), and the coexistence of REDP and PDP in the same location in 32 (15.2%) patients. The analyzed patterns in order of frequency were repetitive discharges lasting 5 seconds or more (32.4%); polyspikes (16.7%); RED type 1 (11.4%); continuous epileptiform discharges occupying >80% of the recording (11.4%); RED type 2 (6.2%); brushes (3.3%); focal, fast, continuous spikes (2.4%); focal fast rhythmic epileptiform discharges (1.43%); and frequent rhythmic bursting epileptiform activity (1.4%). The coexistence of REDP and PDP in the same location on scalp EEG and complete resection of the assumed epileptogenic zone (EZ) was independently associated with favorable postsurgical prognosis. SIGNIFICANCE Resective epilepsy surgery for intractable epilepsy caused by FCD has favorable outcomes. Interictal scalp EEG patterns were revealed to be predictive of excellent surgical outcomes and may help clinical decision-making and enable better presurgical evaluation.
Collapse
Affiliation(s)
- Hui-Juan Wan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.,Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Wen-Han Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Sheng-Song Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Zhong Zheng
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Feng Zhou
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Lin Sang
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Jian-Guo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Xiao-Qiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| |
Collapse
|
14
|
Çavdar S, Köse B, Özkan M, Sur Erdem İ. Comparison of astrocytes and gap junction proteins in the white matter of genetic absence epileptic and control rats: an experimental study. Neurol Res 2022; 44:708-718. [DOI: 10.1080/01616412.2022.2039527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Safiye Çavdar
- Department of Anatomy, Koç University School of Medicine, Istanbul, Turkey
| | - Büşra Köse
- Department of Anatomy, Koç University School of Medicine, Istanbul, Turkey
| | - Mazhar Özkan
- Department of Anatomy, Tekirdağ Namık Kemal University School of Medicine, Istanbul, Turkey
| | - İlknur Sur Erdem
- Department of Molecular Biology, Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
15
|
Twible C, Abdo R, Zhang Q. Astrocyte Role in Temporal Lobe Epilepsy and Development of Mossy Fiber Sprouting. Front Cell Neurosci 2021; 15:725693. [PMID: 34658792 PMCID: PMC8514632 DOI: 10.3389/fncel.2021.725693] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Epilepsy affects approximately 50 million people worldwide, with 60% of adult epilepsies presenting an onset of focal origin. The most common focal epilepsy is temporal lobe epilepsy (TLE). The role of astrocytes in the presentation and development of TLE has been increasingly studied and discussed within the literature. The most common histopathological diagnosis of TLE is hippocampal sclerosis. Hippocampal sclerosis is characterized by neuronal cell loss within the Cornu ammonis and reactive astrogliosis. In some cases, mossy fiber sprouting may be observed. Mossy fiber sprouting has been controversial in its contribution to epileptogenesis in TLE patients, and the mechanisms surrounding the phenomenon have yet to be elucidated. Several studies have reported that mossy fiber sprouting has an almost certain co-existence with reactive astrogliosis within the hippocampus under epileptic conditions. Astrocytes are known to play an important role in the survival and axonal outgrowth of central and peripheral nervous system neurons, pointing to a potential role of astrocytes in TLE and associated cellular alterations. Herein, we review the recent developments surrounding the role of astrocytes in the pathogenic process of TLE and mossy fiber sprouting, with a focus on proposed signaling pathways and cellular mechanisms, histological observations, and clinical correlations in human patients.
Collapse
Affiliation(s)
- Carolyn Twible
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada
| | - Rober Abdo
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada.,Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Qi Zhang
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada.,Department of Pathology and Lab Medicine, London Health Sciences Centre, University Hospital, London, ON, Canada
| |
Collapse
|
16
|
Çavdar S, Köse B, Sur-Erdem İ, Özkan M. Comparing astrocytic gap junction of genetic absence epileptic rats with control rats: an experimental study. Brain Struct Funct 2021; 226:2113-2123. [PMID: 34097147 DOI: 10.1007/s00429-021-02310-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
The synchronization of astrocytes via gap junctions (GJ) is a crucial mechanism in epileptic conditions, contributing to the synchronization of the neuronal networks. Little is known about the endogenous response of GJ in genetic absence epileptic animal models. We evaluated and quantified astrocyte GJ protein connexin (Cx) 30 and 43 in the somatosensory cortex (SSCx), ventrobasal (VB), centromedian (CM), lateral geniculate (LGN) and thalamic reticular (TRN) nuclei of thalamus of genetic absence epilepsy rats from Strasbourg (GAERS), Wistar albino glaxo rats from Rijswijk (WAG/Rij) and control Wistar animals using immunohistochemistry and Western Blot. The Cx30 and Cx43 immunopositive astrocytes per unit area were quantified for each region of the three animal strains. Furthermore, Cx30 and Cx43 Western Blot was applied to the tissue samples from the same regions of the three strain. The number of Cx30 immunopositive astrocytes showed significant increase in both GAERS and WAG/Rij compared to control Wistar in all brain regions studied except LGN of WAG/Rij animals. Furthermore, Cx43 in both GAERS and WAG/Rij showed significant increase in SSCx, VB and TRN. The protein expression was increased in both Cx30 and Cx43 in the two epileptic strains compared to control Wistar animals. The significant increase in the astrocytic GJ proteins Cx30 and Cx43 and the differences in the co-expression of Cx30 and Cx43 in the genetically absence epileptic strains compared to control Wistar animals may suggest that astrocytic Cx's may be involved in the mechanism of absence epilepsy. Increased number of astrocytic Cx's in GAERS and WAG/Rij may represent a compensatory response of the thalamocortical circuitry to the absence seizures or may be related to the production and/or development of absence seizures.
Collapse
Affiliation(s)
- Safiye Çavdar
- Department of Anatomy, Koç University School of Medicine, 34450 Sarıyer, Istanbul, Turkey.
| | - Büşra Köse
- Department of Anatomy, Koç University School of Medicine, 34450 Sarıyer, Istanbul, Turkey
| | - İlknur Sur-Erdem
- Department of Molecular Biology, Koç University School of Medicine, Istanbul, Turkey
| | - Mazhar Özkan
- Department of Anatomy, Tekirdağ Namık Kemal University School of Medicine, Istanbul, Turkey
| |
Collapse
|
17
|
Liu YD, Tang G, Qian F, Liu L, Huang JR, Tang FR. Astroglial Connexins in Neurological and Neuropsychological Disorders and Radiation Exposure. Curr Med Chem 2021; 28:1970-1986. [PMID: 32520676 DOI: 10.2174/0929867327666200610175037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 11/22/2022]
Abstract
Radiotherapy is a common treatment for brain and spinal cord tumors and also a risk factor for neuropathological changes in the brain leading to different neurological and neuropsychological disorders. Astroglial connexins are involved in brain inflammation, development of Alzheimer's Disease (AD), depressive, epilepsy, and amyotrophic lateral sclerosis, and are affected by radiation exposure. Therefore, it is speculated that radiation-induced changes of astroglial connexins may be related to the brain neuropathology and development of neurological and neuropsychological disorders. In this paper, we review the functional expression and regulation of astroglial connexins expressed between astrocytes and different types of brain cells (including oligodendrocytes, microglia, neurons and endothelial cells). The roles of these connexins in the development of AD, depressive, epilepsy, amyotrophic lateral sclerosis and brain inflammation have also been summarized. The radiation-induced astroglial connexins changes and development of different neurological and neuropsychological disorders are then discussed. Based on currently available data, we propose that radiation-induced astroglial connexins changes may be involved in the genesis of different neurological and neuropsychological disorders which depends on the age, brain regions, and radiation doses/dose rates. The abnormal astroglial connexins may be novel therapeutic targets for the prevention of radiation-induced cognitive impairment, neurological and neuropsychological disorders.
Collapse
Affiliation(s)
- Yuan Duo Liu
- Medical School of Yangtze University, Jingzhou 434000, China
| | - Ge Tang
- Woodlands Health Campus, National Healthcare Group Singapore, Singapore
| | - Feng Qian
- Medical School of Yangtze University, Jingzhou 434000, China
| | - Lian Liu
- Medical School of Yangtze University, Jingzhou 434000, China
| | | | - Feng Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore
| |
Collapse
|
18
|
Synaptic Reshaping and Neuronal Outcomes in the Temporal Lobe Epilepsy. Int J Mol Sci 2021; 22:ijms22083860. [PMID: 33917911 PMCID: PMC8068229 DOI: 10.3390/ijms22083860] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 12/11/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common types of focal epilepsy, characterized by recurrent spontaneous seizures originating in the temporal lobe(s), with mesial TLE (mTLE) as the worst form of TLE, often associated with hippocampal sclerosis. Abnormal epileptiform discharges are the result, among others, of altered cell-to-cell communication in both chemical and electrical transmissions. Current knowledge about the neurobiology of TLE in human patients emerges from pathological studies of biopsy specimens isolated from the epileptogenic zone or, in a few more recent investigations, from living subjects using positron emission tomography (PET). To overcome limitations related to the use of human tissue, animal models are of great help as they allow the selection of homogeneous samples still presenting a more various scenario of the epileptic syndrome, the presence of a comparable control group, and the availability of a greater amount of tissue for in vitro/ex vivo investigations. This review provides an overview of the structural and functional alterations of synaptic connections in the brain of TLE/mTLE patients and animal models.
Collapse
|
19
|
Sitovskaya DA, Zabrodskaya YM, Sokolova TV, Kuralbaev AK, Nezdorovina VG, Dobrogorskaya LN. [Structural heterogeneity of epileptic foci in local drug-resistant epilepsy]. Arkh Patol 2020; 82:5-15. [PMID: 33274620 DOI: 10.17116/patol2020820615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND To study etiopathogenesis is one of the most important tasks of modern neurology. Various types of structural changes occur in drug-resistant epilepsy (DRE); however, they are described as distinct phenomena. OBJECTIVE To provide a comprehensive characterization of structural changes in the cortex and adjacent white matter in the electrophysiological activity zone (in the epileptic focus) in patients undergoing surgery for DRE. MATERIAL AND METHODS Biopsy material of fragments of the temporal lobe and hippocampus from 16 patients aged 21 to 54 years (mean age, 25 years) with DRE were intraoperatively obtained at the Prof. A.L. Polenov Russian Research Institute of Neurosurgery. The investigators studied histological sections stained with H&E, toluidine blue according to the Nissl method and the Spielmeyer method, as well as the results of immunohistochemical reactions with glial fibrillary acidic protein (GFAP), vimentin, and neurofilaments (NF) (Dako antibodies, Denmark). RESULTS Histological examination revealed a set of heterogeneous changes, reflecting the complex pathogenetic interactions that developed during the formation of an epileptic focus. Structural brain damage involved both gray and white matter. Focal cortical dysplasia was diagnosed in 14 (87.5%) cases; white matter neuronal heterotopia in 100%; neuronal reactive and destructive changes in 100%; epileptic leukoencephalopathy (vascular demyelination, microcysts, sclerosis and dystonia, gliosis) in 100%, cortical atrophy in 12.5%, and hippocampal sclerosis in 20% (in 2 out of the 10 examinees). CONCLUSION The morphopathological heterogeneity in the structure of epileptic foci reflects the complexity of etiopathogenetic interactions, the polymorphism of epileptic manifestations, and the individual nature of formation of the epileptic system, which requires an integral approach to understanding the pathogenesis and morphogenesis of formation of the epileptic system and provides a direction for a personalized approach to epilepsy treatment.
Collapse
Affiliation(s)
- D A Sitovskaya
- Prof. A.L. Polenov Russian Research Institute of Neurosurgery Branch of the V.A. Almazov National Medical Research Center of the Ministry of Health of Russia, St. Petersburg, Russia.,Saint Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - Yu M Zabrodskaya
- Prof. A.L. Polenov Russian Research Institute of Neurosurgery Branch of the V.A. Almazov National Medical Research Center of the Ministry of Health of Russia, St. Petersburg, Russia.,S.M. Kirov Military Medical Academy, St. Petersburg, Russia
| | - T V Sokolova
- Prof. A.L. Polenov Russian Research Institute of Neurosurgery Branch of the V.A. Almazov National Medical Research Center of the Ministry of Health of Russia, St. Petersburg, Russia
| | - A K Kuralbaev
- V.A. Almazov National Medical Research Center of the Ministry of Health of Russia, St. Petersburg, Russia
| | - V G Nezdorovina
- Prof. A.L. Polenov Russian Research Institute of Neurosurgery Branch of the V.A. Almazov National Medical Research Center of the Ministry of Health of Russia, St. Petersburg, Russia
| | - L N Dobrogorskaya
- Prof. A.L. Polenov Russian Research Institute of Neurosurgery Branch of the V.A. Almazov National Medical Research Center of the Ministry of Health of Russia, St. Petersburg, Russia
| |
Collapse
|
20
|
Astrocytic Connexin43 Channels as Candidate Targets in Epilepsy Treatment. Biomolecules 2020; 10:biom10111578. [PMID: 33233647 PMCID: PMC7699773 DOI: 10.3390/biom10111578] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
In epilepsy research, emphasis is put on exploring non-neuronal targets such as astrocytic proteins, since many patients remain pharmacoresistant to current treatments, which almost all target neuronal mechanisms. This paper reviews available data on astrocytic connexin43 (Cx43) signaling in seizures and epilepsy. Cx43 is a widely expressed transmembrane protein and the constituent of gap junctions (GJs) and hemichannels (HCs), allowing intercellular and extracellular communication, respectively. A plethora of research papers show altered Cx43 mRNA levels, protein expression, phosphorylation state, distribution and/or functional coupling in human epileptic tissue and experimental models. Human Cx43 mutations are linked to seizures as well, as 30% of patients with oculodentodigital dysplasia (ODDD), a rare genetic condition caused by mutations in the GJA1 gene coding for Cx43 protein, exhibit neurological symptoms including seizures. Cx30/Cx43 double knock-out mice show increased susceptibility to evoked epileptiform events in brain slices due to impaired GJ-mediated redistribution of K+ and glutamate and display a higher frequency of spontaneous generalized chronic seizures in an epilepsy model. Contradictory, Cx30/Cx43 GJs can traffic nutrients to high-energy demanding neurons and initiate astrocytic Ca2+ waves and hyper synchronization, thereby supporting proconvulsant effects. The general connexin channel blocker carbenoxolone and blockers from the fenamate family diminish epileptiform activity in vitro and improve seizure outcome in vivo. In addition, interventions with more selective peptide inhibitors of HCs display anticonvulsant actions. To conclude, further studies aiming to disentangle distinct roles of HCs and GJs are necessary and tools specifically targeting Cx43 HCs may facilitate the search for novel epilepsy treatments.
Collapse
|
21
|
Angeli S, Kousiappa I, Stavrou M, Sargiannidou I, Georgiou E, Papacostas SS, Kleopa KA. Altered Expression of Glial Gap Junction Proteins Cx43, Cx30, and Cx47 in the 5XFAD Model of Alzheimer's Disease. Front Neurosci 2020; 14:582934. [PMID: 33117125 PMCID: PMC7575794 DOI: 10.3389/fnins.2020.582934] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/14/2020] [Indexed: 11/13/2022] Open
Abstract
Glial gap junction proteins, called connexins (Cxs), form gap junctions in the central nervous system (CNS) to allow the bidirectional cytosolic exchange of molecules between adjacent cells. Their involvement in inheritable diseases and the use of experimental animal models that closely mimic such diseases revealed the critical role of glial GJs in myelination and homeostasis. Cxs are also implicated in acquired demyelinating disorders, such as Multiple Sclerosis (MS) and Alzheimer's disease (AD). Animal and human studies have revealed a role of the astrocytic Cx43 in the progression of AD but the role of Cx47, which is the main partner of Cx43 in the astrocyte-oligodendrocyte GJs is still unknown. The aim of this study was to investigate the astrocytic connexins, Cx43 and Cx30 in relation to oligodendrocytic Cx47 in the cortex and thalamus of the 5XFAD mouse model of AD. The model was characterized by increased Aβ deposition, gliosis, neuronal loss, and memory impairment. Compared to wild-type mice, Cx43 and Cx30 showed increased immunoreactivity in older 5XFAD mice, reflecting astrogliosis, while Cx47 immunoreactivity was reduced. Moreover, Cx47 GJ plaques showed reduced colocalization with Cx43 plaques. Oligodendrocyte precursor cells (OPCs) and mature oligodendrocyte populations were also depleted, and myelin deficits were observed. Our findings indicate reduced astrocyte-oligodendrocyte gap junction connectivity and possibly a shift in Cx43 expression toward astrocyte-astrocyte gap junctions and/or hemichannels, that could impair oligodendrocyte homeostasis and myelination. However, other factors, such as Aβ toxicity, could directly affect oligodendrocyte survival in AD. Our study provides evidence that Cxs might have implications in the progression of AD, although the role of oligodendrocyte Cxs in AD requires further investigation.
Collapse
Affiliation(s)
- Stella Angeli
- Neurobiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Ioanna Kousiappa
- Neurobiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Marios Stavrou
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Cyprus, Nicosia, Cyprus
| | - Irene Sargiannidou
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Elena Georgiou
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Savvas S. Papacostas
- Neurobiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Dementia and Cognitive Disorders Center, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Medical School, University of Nicosia, Nicosia, Cyprus
| | - Kleopas A. Kleopa
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Center for Neuromuscular disorders, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Center for Multiple Sclerosis and Related Disorders, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
22
|
Okada M, Fukuyama K, Shiroyama T, Murata M. A Working Hypothesis Regarding Identical Pathomechanisms between Clinical Efficacy and Adverse Reaction of Clozapine via the Activation of Connexin43. Int J Mol Sci 2020; 21:ijms21197019. [PMID: 32987640 PMCID: PMC7583770 DOI: 10.3390/ijms21197019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/04/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Clozapine (CLZ) is an approved antipsychotic agent for the medication of treatment-resistant schizophrenia but is also well known as one of the most toxic antipsychotics. Recently, the World Health Organization’s (WHO) global database (VigiBase) reported the relative lethality of severe adverse reactions of CLZ. Agranulocytosis is the most famous adverse CLZ reaction but is of lesser lethality compared with the other adverse drug reactions of CLZ. Unexpectedly, VigiBase indicated that the prevalence and relative lethality of pneumonia, cardiotoxicity, and seizures associated with CLZ were more serious than that of agranulocytosis. Therefore, haematological monitoring in CLZ patients monitoring system provided success in the prevention of lethal adverse events from CLZ-induced agranulocytosis. Hereafter, psychiatrists must amend the CLZ patients monitoring system to protect patients with treatment-resistant schizophrenia from severe adverse CLZ reactions, such as pneumonia, cardiotoxicity, and seizures, according to the clinical evidence and pathophysiology. In this review, we discuss the mechanisms of clinical efficacy and the adverse reactions of CLZ based on the accumulating pharmacodynamic findings of CLZ, including tripartite synaptic transmission, and we propose suggestions for amending the monitoring and medication of adverse CLZ reactions associated with pneumonia, cardiotoxicity, and seizures.
Collapse
Affiliation(s)
- Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.F.); (T.S.)
- Correspondence: ; Tel.: +81-59-231-5018
| | - Kouji Fukuyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.F.); (T.S.)
| | - Takashi Shiroyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.F.); (T.S.)
| | - Masahiko Murata
- National Hospital Organization Sakakibara Hospital, 777 Sakakibara, Tsu, Mie 514-1292, Japan;
| |
Collapse
|
23
|
Courtney CD, Christian-Hinman C. Assessin' the Vexin' Connexin Between Severity of Epilepsy and Hippocampal Gliosis. Epilepsy Curr 2020; 20:294-296. [PMID: 34025243 PMCID: PMC7653651 DOI: 10.1177/1535759720944924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Constitutive Deletion of Astrocytic Connexins Aggravates Kainate-Induced Epilepsy Deshpande T, Li T, Henning L, Wu Z, Mueller JAL, Seifert G, Steinhäuser C, Bedner P. Glia. 2020. doi:10.1002/glia.23832 The astroglial gap junctional network formed by connexin (Cx) channels plays a central role in regulating neuronal activity and network synchronization. However, its involvement in the development and progression of epilepsy is not yet understood. Loss of interastrocytic gap junction (GJ) coupling has been observed in the sclerotic hippocampus of patients with mesial temporal lobe epilepsy (MTLE) and in mouse models of MTLE, leading to the suggestion that it plays a causative role in the pathogenesis. To further elucidate this clinically relevant question, we investigated consequences of astrocyte disconnection on the time course and severity of kainate-induced MTLE with hippocampal sclerosis (HS) by comparing mice deficient for astrocytic Cx proteins with wild-type (WT) mice. Continuous telemetric EEG recordings and video monitoring performed over a period of 4 weeks after epilepsy induction revealed substantially higher seizure and interictal spike activity during the chronic phase in Cx deficient versus WT mice, while the severity of status epilepticus was not different. Immunohistochemical analysis showed that, despite the elevated chronic seizure activity, astrocyte disconnection did not aggravate the severity of HS. Indeed, the extent of CA1 pyramidal cell loss was similar between the experimental groupsx, while astrogliosis, granule cell dispersion, angiogenesis, and microglia activation were even reduced in Cx deficient as compared to WT mice. Interestingly, seizure-induced neurogenesis in the adult dentate gyrus was also independent of astrocytic Cxs. Together, our data indicate that constitutive loss of GJ coupling between astrocytes promotes neuronal hyperexcitability and attenuates seizure-induced histopathological outcomes.
Collapse
|
24
|
Kim HJ, Kim MJ, Mostafa MN, Park JH, Choi HS, Kim YS, Choi EK. RhoA/ROCK Regulates Prion Pathogenesis by Controlling Connexin 43 Activity. Int J Mol Sci 2020; 21:ijms21041255. [PMID: 32070020 PMCID: PMC7072953 DOI: 10.3390/ijms21041255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 11/16/2022] Open
Abstract
Scrapie infection, which converts cellular prion protein (PrPC) into the pathological and infectious isoform (PrPSc), leads to neuronal cell death, glial cell activation and PrPSc accumulation. Previous studies reported that PrPC regulates RhoA/Rho-associated kinase (ROCK) signaling and that connexin 43 (Cx43) expression is upregulated in in vitro and in vivo prion-infected models. However, whether there is a link between RhoA/ROCK and Cx43 in prion disease pathogenesis is uncertain. Here, we investigated the role of RhoA/ROCK signaling and Cx43 in prion diseases using in vitro and in vivo models. Scrapie infection induced RhoA activation, accompanied by increased phosphorylation of LIM kinase 1/2 (LIMK1/2) at Thr508/Thr505 and cofilin at Ser3 and reduced phosphorylation of RhoA at Ser188 in hippocampal neuronal cells and brains of mice. Scrapie infection-induced RhoA activation also resulted in PrPSc accumulation followed by a reduction in the interaction between RhoA and p190RhoGAP (a GTPase-activating protein). Interestingly, scrapie infection significantly enhanced the interaction between RhoA and Cx43. Moreover, RhoA and Cx43 colocalization was more visible in both the membrane and cytoplasm of scrapie-infected hippocampal neuronal cells than in controls. Finally, RhoA and ROCK inhibition reduced PrPSc accumulation and the RhoA/Cx43 interaction, leading to decreased Cx43 hemichannel activity in scrapie-infected hippocampal neuronal cells. These findings suggest that RhoA/ROCK regulates Cx43 activity, which may have an important role in the pathogenesis of prion disease.
Collapse
Affiliation(s)
- Hee-Jun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Korea; (H.-J.K.); (M.-J.K.); (M.N.M.); (J.-H.P.); (H.-S.C.); (Y.-S.K.)
| | - Mo-Jong Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Korea; (H.-J.K.); (M.-J.K.); (M.N.M.); (J.-H.P.); (H.-S.C.); (Y.-S.K.)
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do 24252, Korea
| | - Mohd Najib Mostafa
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Korea; (H.-J.K.); (M.-J.K.); (M.N.M.); (J.-H.P.); (H.-S.C.); (Y.-S.K.)
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do 24252, Korea
| | - Jeong-Ho Park
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Korea; (H.-J.K.); (M.-J.K.); (M.N.M.); (J.-H.P.); (H.-S.C.); (Y.-S.K.)
| | - Hong-Seok Choi
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Korea; (H.-J.K.); (M.-J.K.); (M.N.M.); (J.-H.P.); (H.-S.C.); (Y.-S.K.)
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Korea; (H.-J.K.); (M.-J.K.); (M.N.M.); (J.-H.P.); (H.-S.C.); (Y.-S.K.)
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Korea
| | - Eun-Kyoung Choi
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Korea; (H.-J.K.); (M.-J.K.); (M.N.M.); (J.-H.P.); (H.-S.C.); (Y.-S.K.)
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do 24252, Korea
- Correspondence: ; Tel.: +82-31-380-1893; Fax: +82-31-388-3427
| |
Collapse
|
25
|
Uncoupling of the Astrocyte Syncytium Differentially Affects AQP4 Isoforms. Cells 2020; 9:cells9020382. [PMID: 32046059 PMCID: PMC7072498 DOI: 10.3390/cells9020382] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 11/25/2022] Open
Abstract
The water channel protein aquaporin-4 (AQP4) and the gap junction forming proteins connexin-43 (Cx43) and connexin-30 (Cx30) are astrocytic proteins critically involved in brain water and ion homeostasis. While AQP4 is mainly involved in water flux across the astrocytic endfeet membranes, astrocytic gap junctions provide syncytial coupling allowing intercellular exchange of water, ions, and other molecules. We have previously shown that mice with targeted deletion of Aqp4 display enhanced gap junctional coupling between astrocytes. Here, we investigate whether uncoupling of the astrocytic syncytium by deletion of the astrocytic connexins Cx43 and Cx30 affects AQP4 membrane localization and expression. By using quantitative immunogold cytochemistry, we show that deletion of astrocytic connexins leads to a substantial reduction of perivascular AQP4, concomitant with a down-regulation of total AQP4 protein and mRNA. Isoform expression analysis shows that while the level of the predominant AQP4 M23 isoform is reduced in Cx43/Cx30 double deficient hippocampal astrocytes, the levels of M1, and the alternative translation AQP4ex isoform protein levels are increased. These findings reveal a complex interdependence between AQP4 and connexins, which are both significantly involved in homeostatic functions and astrogliopathologies.
Collapse
|
26
|
Bedner P, Jabs R, Steinhäuser C. Properties of human astrocytes and NG2 glia. Glia 2019; 68:756-767. [DOI: 10.1002/glia.23725] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Peter Bedner
- Institute of Cellular Neurosciences, Medical FacultyUniversity of Bonn Bonn Germany
| | - Ronald Jabs
- Institute of Cellular Neurosciences, Medical FacultyUniversity of Bonn Bonn Germany
| | | |
Collapse
|
27
|
Yeo JH, Choi EJ, Lee J. Inhibition of gap junctional intercellular communication by an anti-migraine agent, flunarizine. PLoS One 2019; 14:e0222326. [PMID: 31513635 PMCID: PMC6742374 DOI: 10.1371/journal.pone.0222326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/27/2019] [Indexed: 02/08/2023] Open
Abstract
Gap junctions (GJs), which consist of proteins called connexins, are intercellular channels that allow the passage of ions, second messengers, and small molecules. GJs and connexins are considered as emerging therapeutic targets for various diseases. Previously, we screened numerous compounds using our recently developed iodide yellow fluorescent protein gap junctional intercellular communication (I-YFP GJIC) assay and found that flunarizine (FNZ), used for migraine prophylaxis and as an add-on therapy for epilepsy, inhibits GJIC in LN215 human glioma cells. In this study, we confirmed that FNZ inhibits GJIC using the I-YFP GJIC assay. We demonstrated that FNZ inhibits GJ activities via a mechanism that is independent of calcium channels and dopaminergic D2, histaminergic H1, or 5-HT receptors. In addition, we showed that FNZ significantly increases connexin 43 (Cx43) phosphorylation on the cell surface, but does not alter the total amount of Cx43. The beneficial effects of FNZ on migraines and epilepsy might be related to GJ inhibition.
Collapse
Affiliation(s)
- Joo Hye Yeo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Songdogwahak-ro, Yeonsu-gu, Korea
| | - Eun Ju Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Songdogwahak-ro, Yeonsu-gu, Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Songdogwahak-ro, Yeonsu-gu, Korea
| |
Collapse
|
28
|
Medina-Ceja L, Villalpando-Vargas F, Girón de la Cruz GI, Lara-Vazquez AM, Flores-Mancilla L, Salazar-Sánchez JC, Morales-Villagrán A. Effect of Chronic Krill Oil Supplement on Seizures Induced by Pentylenetetrazole in the Hippocampus of Adult Rats with Previous Febrile Seizures. J Food Sci 2019; 84:1703-1711. [PMID: 31218711 DOI: 10.1111/1750-3841.14679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 04/19/2019] [Accepted: 05/05/2019] [Indexed: 11/28/2022]
Abstract
We evaluated the effect of krill oil (KO) supplement on seizures induced by pentylenetetrazole (PTZ) in animals with previous febrile seizures (FSs) induced by hyperthermia to determine its effectiveness in seizure susceptibility and as an anticonvulsant. Male Wistar rats with FS separated into water (W, 1 mL), palm oil (PO, 300 mg/kg, total volume 1 mL), or KO (300 mg/kg, total volume 1 mL) groups. All drugs were administered chronically via the intragastric route. Electrical activity was recorded by intracranial EEG simultaneously with convulsive behavior. All animals' brains were processed by immunofluorescence against GFAP, NeuN, and connexins (Cx); cellular quantification was performed in hippocampus and pyramidal or granular layer thickness was evaluated with cresyl violet (CV) staining. The results showed a significant delay in convulsive behavior and a slight increased survival time after PTZ administration in the group treated with KO compared with PO and W groups. The epileptiform activity showed high amplitude and frequency, with no significant differences between groups, nor were there differences in the number and duration of discharge trains. KO and PO increased the number of astrocytes and the number of neurons compared with the W group. KO and PO decreased the expression of Cx36 without affecting Cx43 expression or the thickness of layers. Based on these data, we consider it important to perform more experiments to determine the anticonvulsant role of KO, taking into account the partial effect found in this study. KO could be used as a coadjuvant of traditional anticonvulsive treatments. PRACTICAL APPLICATION: In this study was evaluated the anticonvulsive effect of a chronic krill oil (KO) supplement in animals with seizures. Results showed that KO had partial anticonvulsive effects measured by EEG activity and convulsive behavior analysis. These data justify further research that looks at KO supplementation as a prospective coadjuvant of pharmacologic management of seizure disorder.
Collapse
Affiliation(s)
- Laura Medina-Ceja
- Laboratory of Neurophysiology, Dept. of Cellular and Molecular Biology, CUCBA, Univ. of Guadalajara, Jalisco, México
| | - Fridha Villalpando-Vargas
- Laboratory of Neurophysiology, Dept. of Cellular and Molecular Biology, CUCBA, Univ. of Guadalajara, Jalisco, México
| | - Gloria I Girón de la Cruz
- Laboratory of Neurophysiology, Dept. of Cellular and Molecular Biology, CUCBA, Univ. of Guadalajara, Jalisco, México
| | - Adriana M Lara-Vazquez
- Laboratory of Neurophysiology, Dept. of Cellular and Molecular Biology, CUCBA, Univ. of Guadalajara, Jalisco, México
| | - Leopoldo Flores-Mancilla
- Laboratory of Neurophysiology and Behavior, Human Medicine and Health Science Academic Unit, Autonomous Univ. of Zacatecas, Zacatecas, México
| | - Juan C Salazar-Sánchez
- Laboratory of Neurophysiology, Dept. of Cellular and Molecular Biology, CUCBA, Univ. of Guadalajara, Jalisco, México
| | | |
Collapse
|
29
|
Lauranzano E, Campo E, Rasile M, Molteni R, Pizzocri M, Passoni L, Bello L, Pozzi D, Pardi R, Matteoli M, Ruiz-Moreno A. A Microfluidic Human Model of Blood-Brain Barrier Employing Primary Human Astrocytes. ACTA ACUST UNITED AC 2019; 3:e1800335. [PMID: 32648668 DOI: 10.1002/adbi.201800335] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/20/2019] [Indexed: 12/19/2022]
Abstract
The neurovascular unit (NVU) is the most important biological barrier between vascular districts and central nervous system (CNS) parenchyma, which maintains brain homeostasis, protects the CNS from pathogens penetration, and mediates neuroimmune communication. T lymphocytes migration across the blood-brain barrier is heavily affected in different brain diseases, representing a major target for novel drug development. In vitro models of NVU could represent a primary tool to investigate the molecular events occurring at this interface. To move toward the establishment of personalized therapies, a patient-related NVU-model is set, incorporating human primary astrocytes integrated into a microfluidic platform. The model is morphologically and functionally characterized, proving to be an advantageous tool to investigate human T lymphocytes transmigration and thus the efficacy of potential novel drugs affecting this process.
Collapse
Affiliation(s)
- Eliana Lauranzano
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Elena Campo
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Marco Rasile
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy.,Department of Biomedical Science, Laboratory of Pharmacology and Brain Pathology, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
| | - Raffaella Molteni
- Division of Immunology, Transplantation and Infectious Diseases, Leukocyte Biology Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Marco Pizzocri
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Lorena Passoni
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Lorenzo Bello
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy.,Department of Oncology and Hematology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Davide Pozzi
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy.,Department of Biomedical Science, Laboratory of Pharmacology and Brain Pathology, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
| | - Ruggero Pardi
- Division of Immunology, Transplantation and Infectious Diseases, Leukocyte Biology Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.,School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Michela Matteoli
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy.,Department of Biomedical Science, Laboratory of Pharmacology and Brain Pathology, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
| | - Ana Ruiz-Moreno
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy
| |
Collapse
|
30
|
Abstract
Gap junction (GJ) is concerned with cell growth, differentiation, immune response, as well as many physiological and pathological processes. Cx43, as an important GJ protein, is associated with a variety of diseases. This study investigated the effect of miR-301a-3p in bacterial meningitis by targeting the Cx43 gene. The negative correlation between Cx43 and miR-301a-3p was because of the abnormal expression of related genes. MiR-301a-3p agomir was transfected into astrocytes for higher expression; CCK8 assay and flow cytometry showed that the high expression of miR-301a-3p would inhibit apoptosis and induces proliferation of astrocytes, whereas miR-301a-3p antagomir would inhibit proliferation and induce apoptosis. Bioinformatics analysis showed that Cx43 was the target gene of miR-301a-3p, and dual-luciferase assay and experiments repeated showed that miR-301a-3p regulated the expression of Cx43 on the 3'-untranslated region seed region. Therefore, miR-301a-3p played a biological role in the development of bacterial meningitis by regulating the expression of the target gene Cx43.
Collapse
|
31
|
Li Q, Li QQ, Jia JN, Liu ZQ, Zhou HH, Mao XY. Targeting gap junction in epilepsy: Perspectives and challenges. Biomed Pharmacother 2018; 109:57-65. [PMID: 30396092 DOI: 10.1016/j.biopha.2018.10.068] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Gap junctions (GJs) are multiple cellular intercellular connections that allow ions to pass directly into the cytoplasm of neighboring cells. Electrical coupling mediated by GJs plays a role in the generation of highly synchronous electrical activity. Accumulative investigations show that GJs in the brain are involved in the generation, synchronization and maintenance of seizure events. At the same time, GJ blockers exert potent curative potential on epilepsy in vivo or in vitro. This review aims to shed light on the role of GJs in epileptogenesis. Targeting GJs is likely to be served as a novel therapeutic approach on epileptic patients.
Collapse
Affiliation(s)
- Qin Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, China
| | - Qiu-Qi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, China
| | - Ji-Ning Jia
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, China.
| |
Collapse
|
32
|
Conflicting Roles of Connexin43 in Tumor Invasion and Growth in the Central Nervous System. Int J Mol Sci 2018; 19:ijms19041159. [PMID: 29641478 PMCID: PMC5979343 DOI: 10.3390/ijms19041159] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment is known to have increased levels of cytokines and metabolites, such as glutamate, due to their release from the surrounding cells. A normal cell around the tumor that responds to the inflammatory environment is likely to be subsequently altered. We discuss how these abnormalities will support tumor survival via the actions of gap junctions (GJs) and hemichannels (HCs) which are composed of hexamer of connexin43 (Cx43) protein. In particular, we discuss how GJ intercellular communication (GJIC) in glioma cells, the primary brain tumor, is a regulatory factor and its attenuation leads to tumor invasion. In contrast, the astrocytes, which are normal cells around the glioma, are “hijacked” by tumor cells, either by receiving the transmission of malignant substances from the cancer cells via GJIC, or perhaps via astrocytic HC activity through the paracrine signaling which enable the delivery of these substances to the distal astrocytes. This astrocytic signaling would promote tumor expansion in the brain. In addition, brain metastasis from peripheral tissues has also been known to be facilitated by GJs formed between cerebral vascular endothelial cells and cancer cells. Astrocytes and microglia are generally thought to eliminate cancer cells at the blood–brain barrier. In contrast, some reports suggest they facilitate tumor progression as tumor cells take advantage of the normal functions of astrocytes that support the survival of the neurons by exchanging nutrients and metabolites. In summary, GJIC is essential for the normal physiological function of growth and allowing the diffusion of physiological substances. Therefore, whether GJIC is cancer promoting or suppressing may be dependent on what permeates through GJs, when it is active, and to which cells. The nature of GJs, which has been ambiguous in brain tumor progression, needs to be revisited and understood together with new findings on Cx proteins and HC activities.
Collapse
|
33
|
Du M, Li J, Chen L, Yu Y, Wu Y. Astrocytic Kir4.1 channels and gap junctions account for spontaneous epileptic seizure. PLoS Comput Biol 2018; 14:e1005877. [PMID: 29590095 PMCID: PMC5891073 DOI: 10.1371/journal.pcbi.1005877] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/09/2018] [Accepted: 11/06/2017] [Indexed: 01/30/2023] Open
Abstract
Experimental recordings in hippocampal slices indicate that astrocytic dysfunction may cause neuronal hyper-excitation or seizures. Considering that astrocytes play important roles in mediating local uptake and spatial buffering of K+ in the extracellular space of the cortical circuit, we constructed a novel model of an astrocyte-neuron network module consisting of a single compartment neuron and 4 surrounding connected astrocytes and including extracellular potassium dynamics. Next, we developed a new model function for the astrocyte gap junctions, connecting two astrocyte-neuron network modules. The function form and parameters of the gap junction were based on nonlinear regression fitting of a set of experimental data published in previous studies. Moreover, we have created numerical simulations using the above single astrocyte-neuron network module and the coupled astrocyte-neuron network modules. Our model validates previous experimental observations that both Kir4.1 channels and gap junctions play important roles in regulating the concentration of extracellular potassium. In addition, we also observe that changes in Kir4.1 channel conductance and gap junction strength induce spontaneous epileptic activity in the absence of external stimuli. Astrocytes are critical regulators of normal physiological activity in the central nervous system, and one of their key functions is removing extracellular K+. In recent years, numerous biological studies have shown that astrocytic Kir4.1 channels and gap junctions between astrocytes act as major K+ clearance mechanisms. Dysfunction of either of these regulatory mechanisms may cause generation of K+-induced seizures. However, it is unclear how and to what extent these two K+-regulating processes lead to spontaneous epileptic activity. These questions were addressed in the present study by constructing novel single astrocyte-neuron network models and a coupled astrocyte-neuron module network connected by an astrocyte gap junction based on existing experimental observations and previous theoretical reports. Simulation results first verified that either down-regulation of astrocytic Kir4.1 channels or a decrease of the gap junction strength between astrocytes causes neuropathological hyper-excitability and spontaneous epileptic activity. These results imply that dysfunctional astrocytes should be considered as targets for therapeutic strategies in epilepsy.
Collapse
Affiliation(s)
- Mengmeng Du
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, China
- State Key Laboratory of Medical Neurobiology, School of Life Science and Human Phenome Institute, Institutes of Brain Science, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jiajia Li
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuguo Yu
- State Key Laboratory of Medical Neurobiology, School of Life Science and Human Phenome Institute, Institutes of Brain Science, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- * E-mail: (YY); (YW)
| | - Ying Wu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory for NeuroInformation of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China
- * E-mail: (YY); (YW)
| |
Collapse
|
34
|
Jullienne A, Fukuda AM, Ichkova A, Nishiyama N, Aussudre J, Obenaus A, Badaut J. Modulating the water channel AQP4 alters miRNA expression, astrocyte connectivity and water diffusion in the rodent brain. Sci Rep 2018; 8:4186. [PMID: 29520011 PMCID: PMC5843607 DOI: 10.1038/s41598-018-22268-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/20/2018] [Indexed: 12/27/2022] Open
Abstract
Aquaporins (AQPs) facilitate water diffusion through the plasma membrane. Brain aquaporin-4 (AQP4) is present in astrocytes and has critical roles in normal and disease physiology. We previously showed that a 24.9% decrease in AQP4 expression after in vivo silencing resulted in a 45.8% decrease in tissue water mobility as interpreted from magnetic resonance imaging apparent diffusion coefficients (ADC). Similar to previous in vitro studies we show decreased expression of the gap junction protein connexin 43 (Cx43) in vivo after intracortical injection of siAQP4 in the rat. Moreover, siAQP4 induced a loss of dye-coupling between astrocytes in vitro, further demonstrating its effect on gap junctions. In contrast, silencing of Cx43 did not alter the level of AQP4 or water mobility (ADC) in the brain. We hypothesized that siAQP4 has off-target effects on Cx43 expression via modification of miRNA expression. The decreased expression of Cx43 in siAQP4-treated animals was associated with up-regulation of miR224, which is known to target AQP4 and Cx43 expression. This could be one potential molecular mechanism responsible for the effect of siAQP4 on Cx43 expression, and the resultant decrease in astrocyte connectivity and dramatic effects on ADC values and water mobility.
Collapse
Affiliation(s)
- Amandine Jullienne
- Basic Sciences Department, Loma Linda University, Loma Linda, CA, 92354, USA
- Department of Physiology, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Andrew M Fukuda
- Basic Sciences Department, Loma Linda University, Loma Linda, CA, 92354, USA
- Department of Physiology, Loma Linda University, Loma Linda, CA, 92354, USA
| | | | - Nina Nishiyama
- Department of Physiology, Loma Linda University, Loma Linda, CA, 92354, USA
| | | | - André Obenaus
- Basic Sciences Department, Loma Linda University, Loma Linda, CA, 92354, USA
- Department of Pediatrics, University of California Irvine, Irvine, CA, 92697, USA
| | - Jérôme Badaut
- Basic Sciences Department, Loma Linda University, Loma Linda, CA, 92354, USA.
- Department of Physiology, Loma Linda University, Loma Linda, CA, 92354, USA.
- CNRS-UMR 5287, University of Bordeaux, 33076, Bordeaux, France.
| |
Collapse
|
35
|
Stone TJ, Rowell R, Jayasekera BAP, Cunningham MO, Jacques TS. Review: Molecular characteristics of long-term epilepsy-associated tumours (LEATs) and mechanisms for tumour-related epilepsy (TRE). Neuropathol Appl Neurobiol 2018; 44:56-69. [DOI: 10.1111/nan.12459] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/22/2017] [Indexed: 12/14/2022]
Affiliation(s)
- T. J. Stone
- Developmental Biology and Cancer Programme; UCL Great Ormond Street Institute of Child Health; London UK
- Department of Histopathology; Great Ormond Street Hospital for Children NHS Foundation Trust; London UK
| | - R. Rowell
- Institute of Neuroscience; Newcastle University; Newcastle Upon Tyne UK
- Department of Neurosurgery; Royal Victoria Hospital; Newcastle Upon Tyne UK
| | - B. A. P. Jayasekera
- Institute of Neuroscience; Newcastle University; Newcastle Upon Tyne UK
- Department of Neurosurgery; Royal Victoria Hospital; Newcastle Upon Tyne UK
| | - M. O. Cunningham
- Institute of Neuroscience; Newcastle University; Newcastle Upon Tyne UK
- Department of Neurosurgery; Royal Victoria Hospital; Newcastle Upon Tyne UK
| | - T. S. Jacques
- Developmental Biology and Cancer Programme; UCL Great Ormond Street Institute of Child Health; London UK
- Department of Histopathology; Great Ormond Street Hospital for Children NHS Foundation Trust; London UK
| |
Collapse
|
36
|
Mao XY, Tokay T, Zhou HH, Jin WL. Long-range and short-range tumor-stroma networks synergistically contribute to tumor-associated epilepsy. Oncotarget 2017; 7:33451-60. [PMID: 26967053 PMCID: PMC5078109 DOI: 10.18632/oncotarget.7962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/23/2016] [Indexed: 12/15/2022] Open
Abstract
Epileptic seizures are frequently caused by brain tumors. Traditional anti-epileptic treatments do not acquire satisfactory responses. Preoperative and postoperative seizures seriously influence the quality of life of patients. Thus, tumor-associated epilepsy (TAE) is an important subject of the current research. The delineation of the etiology of epileptogenesis in patients with primary brain tumor may help to find the novel and effective drug targets for treating this disease. In this review, we describe the current status of treatment of TAE. More importantly, we focus on the factors that are involved in the functional connectivity between tumors and stromal cells. We propose that there exist two modes, namely, long-range and short-range modes, which likely trigger neuronal hyperexcitation and subsequent epileptic seizures. The long-range mode is referred to as factors released by tumors including glutamate and GABA, binding to the corresponding receptor on the cellular membrane and causing neuronal hyperactivity, while the short-range mode is considered to involve direct intracellular communication between tumor cells and stromas. Gap junctions and tunneling nanotube network are involved in cellular interconnections. Future investigations focused on those two modes may find a potential novel therapeutic target for treating TAE.
Collapse
Affiliation(s)
- Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Tursonjan Tokay
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China.,National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
37
|
Freitas-Andrade M, She J, Bechberger J, Naus CC, Sin WC. Acute connexin43 temporal and spatial expression in response to ischemic stroke. J Cell Commun Signal 2017; 12:193-204. [PMID: 29134540 DOI: 10.1007/s12079-017-0430-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 02/07/2023] Open
Abstract
Connexin43 (Cx43) gap junctions expressed in astrocytes can significantly impact neuronal survival in stroke. However, little is known regarding Cx43 spatial and temporal expression during the initial stages of brain ischemia. Using immunohistochemistry and Western blot analysis, we examined Cx43 spatial and temporal expression as a function of neuronal injury within the first 24 h after permanent middle cerebral artery occlusion (pMCAO). Western blot analysis showed a significant increase in Cx43 protein expression in the core ischemic area at 2 and 3 h after pMCAO. However, after 6 h of pMCAO Cx43 levels were significantly reduced. This reduction was due to cell death and concomitant Cx43 degradation in the expanding focal ischemic region, while the peri-infarct zone revealed intense Cx43 staining. The neuronal cell-death marker Fluoro-Jade C labeled injured neurons faintly at 1 h post-pMCAO with a time-dependent increase in both intensity and size of punctate staining. In addition, decreased microtubule-associated protein 2 (MAP2) immunoreactivity and thionin staining similarly indicated cell damage beginning at 1 h after pMCAO. Taken together, Cx43 expression is sensitive to neuronal injury and can be detected as early as 2 h post-pMCAO. These findings underscore Cx43 gap junction as a potential early target for therapeutic intervention in ischemic stroke.
Collapse
Affiliation(s)
- Moises Freitas-Andrade
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Jennifer She
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - John Bechberger
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Christian C Naus
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Wun Chey Sin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
38
|
Kim Y, Griffin JM, Nor MNM, Zhang J, Freestone PS, Danesh-Meyer HV, Rupenthal ID, Acosta M, Nicholson LFB, O'Carroll SJ, Green CR. Tonabersat Prevents Inflammatory Damage in the Central Nervous System by Blocking Connexin43 Hemichannels. Neurotherapeutics 2017; 14:1148-1165. [PMID: 28560708 PMCID: PMC5722754 DOI: 10.1007/s13311-017-0536-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The cis benzopyran compound tonabersat (SB-220453) has previously been reported to inhibit connexin26 expression in the brain by attenuating the p38-mitogen-activated protein kinase pathway. We show here that tonabersat directly inhibits connexin43 hemichannel opening. Connexin43 hemichannels have been called "pathological pores" based upon their role in secondary lesion spread, edema, inflammation, and neuronal loss following central nervous system injuries, as well as in chronic inflammatory disease. Both connexin43 hemichannels and pannexin channels released adenosine triphosphate (ATP) during ischemia in an in vitro ischemia model, but only connexin43 hemichannels contributed to ATP release during reperfusion. Tonabersat inhibited connexin43 hemichannel-mediated ATP release during both ischemia and reperfusion phases, with direct channel block confirmed using electrophysiology. Tonabersat also reduced connexin43 gap junction coupling in vitro, but only at higher concentrations, with junctional plaques internalized and degraded via the lysosomal pathway. Systemic delivery of tonabersat in a rat bright-light retinal damage model (a model for dry age-related macular degeneration) resulted in significantly improved functional outcomes assessed using electroretinography. Tonabersat also prevented thinning of the retina, especially the outer nuclear layer and choroid, assessed using optical coherence tomography. We conclude that tonabersat, already given orally to over 1000 humans in clinical trials (as a potential treatment for, and prophylactic treatment of, migraine because it was thought to inhibit cortical spreading depression), is a connexin hemichannel inhibitor and may have the potential to be a novel treatment of central nervous system injury and chronic neuroinflammatory disease.
Collapse
Affiliation(s)
- Yeri Kim
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
- New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Jarred M Griffin
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Mohd N Mat Nor
- New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
- School of Optometry and Vision Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
- Faculty of Medicine, University Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Jie Zhang
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
- New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Peter S Freestone
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Helen V Danesh-Meyer
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
- New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Ilva D Rupenthal
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
- New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
- Buchanan Ocular Therapeutics Unit, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Monica Acosta
- New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
- School of Optometry and Vision Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Louise F B Nicholson
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Simon J O'Carroll
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Colin R Green
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand.
- New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand.
| |
Collapse
|
39
|
Dong H, Zhou XW, Wang X, Yang Y, Luo JW, Liu YH, Mao Q. Complex role of connexin 43 in astrocytic tumors and possible promotion of glioma‑associated epileptic discharge (Review). Mol Med Rep 2017; 16:7890-7900. [PMID: 28983585 DOI: 10.3892/mmr.2017.7618] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 06/19/2017] [Indexed: 02/05/2023] Open
Abstract
Connexin (Cx)43 is a multifunction protein which forms gap junction channels and hemi‑channels. It also contains abundant binding domains which possess the ability to interact with certain Cx43‑associated proteins and therefore serve a fundamental role in various physiological and pathological functions. However, the understanding of the association between cancer and Cx43 along with Cx43‑gap junctions (GJ) remains unclear. All available data illustrate that Cx43 and its associated GJ serve important functions in cancers. The expression levels of Cx43 demonstrate a downward trend and an increase in the levels of malignancy, particularly in astrocytomas. The GJ intercellular communication activity in glioma cells can be adjusted via Cx43 phosphorylation and through the combination of Cx43 and its associated protein. Available evidence reveals Cx43 as a tumor‑inhibiting factor that suppresses glioma growth and proliferation. However, its mechanism is also regarded as complicated and ambiguous. Furthermore, it is apparent that Cx43‑GJ and the carboxyl tail may contribute to glioma growth and proliferation too. However, this valuable role could be weakened by its effects on migration and invasiveness. The detailed mechanism remains unclear and full of controversies. Cx43 can enhance the motor ability and invasiveness of astrocytic glioma cells. It is also able to influence glioma cells to detach from the tumor core to the peritumoral neocortex. This peritumoral region has recently been regarded as the basic focus of glioma‑associated seizure. Thus, Cx43 may take part in the onset and development of glioma‑associated epileptic discharge. In addition, change and increase of Cx43 expression in GJs has been observed in seizure perilesional tissue, which is associated with brain tumors. Cx43 or GJ/hemi‑channels exert enduring effects in the promotion of glioma‑associated epileptic release through direct mass effects and change of the tumor microenvironment. However, there are still a number of issues concerning this aspect that require further exploration. Cx43, as a potential treatment target against this incurable disease and its common symptom of epilepsy, requires further investigation.
Collapse
Affiliation(s)
- Hui Dong
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xing-Wang Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiang Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yuan Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jie-Wen Luo
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yan-Hui Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qing Mao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
40
|
Chen B, Sun L, Wu X, Ma J. Correlation between connexin and traumatic brain injury in patients. Brain Behav 2017; 7:e00770. [PMID: 28948071 PMCID: PMC5607540 DOI: 10.1002/brb3.770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/08/2017] [Accepted: 06/14/2017] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Identification of molecular alterations of damaged tissue in patients with neurological disorders can provide novel insight and potential therapeutic target for treatment of the diseases. It has been suggested by animal studies that connexins (CXs), a family of gap junction proteins, could contribute to neuronal cell death and associate with neurological deficits during trauma-induced damage. Nevertheless, whether specific CXs are involved in traumatic brain injury (TBI) has remained unexplored in human patients. METHODS In a clinical setting, we performed a correlation study of 131 TBI patients who received brain surgery. CXs (including CX40, CX43, and CX45) were examined in the harvested brain tissues for studying the relationships with the Glasgow Coma Scale scores of the patients. RESULTS Specifically, the protein levels of CX43 (negatively) and CX40 (positively) are associated with the extent of disease severity. Meanwhile, the phosphorylation status of CX43 was strongly associated with the severe TBI patients who contain relatively high kinase activities of PKC (protein kinase C) and MAPK (mitogen-activated protein kinase), two possible activators for CX43 phosphorylation. CONCLUSION These data highlight that a cluster of connexin family gap junction proteins not previously studied in humans is significantly correlated with the disease progression of TBI.
Collapse
Affiliation(s)
| | - Liwei Sun
- Tianjin Huanhu Hospital Tianjin China
| | | | - Jun Ma
- School of Public Health Tianjin Medical University Tianjin China
| |
Collapse
|
41
|
Oberheim Bush NA, Nedergaard M. Do Evolutionary Changes in Astrocytes Contribute to the Computational Power of the Hominid Brain? Neurochem Res 2017; 42:2577-2587. [PMID: 28822066 DOI: 10.1007/s11064-017-2363-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 07/21/2017] [Indexed: 01/22/2023]
Abstract
It is now well accepted that astrocytes are essential in all major nervous system functions of the rodent brain, including neurotransmission, energy metabolism, modulation of blood flow, ion and water homeostasis, and, indeed, higher cognitive functions, although the contribution of astrocytes in cognition is still in early stages of study. Here we review the most current research findings on human astrocytes, including their structure, molecular characterization, and functional properties. We also highlight novel tools that have been established for translational approaches to the comparative study of astrocytes from humans and experimental animals. Understanding the differences in astrocytes is essential to elucidate the contribution of astrocytes to normal physiology, cognitive processing and diverse pathologies of the central nervous system.
Collapse
Affiliation(s)
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY, USA
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
42
|
Deshpande T, Li T, Herde MK, Becker A, Vatter H, Schwarz MK, Henneberger C, Steinhäuser C, Bedner P. Subcellular reorganization and altered phosphorylation of the astrocytic gap junction protein connexin43 in human and experimental temporal lobe epilepsy. Glia 2017; 65:1809-1820. [DOI: 10.1002/glia.23196] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Tushar Deshpande
- Institute of Cellular Neurosciences, Medical Faculty; University of Bonn Germany
| | - Tingsong Li
- Institute of Cellular Neurosciences, Medical Faculty; University of Bonn Germany
- Department of Neurology; Children's Hospital, Chongqing Medical University; Chongqing China
| | - Michel K. Herde
- Institute of Cellular Neurosciences, Medical Faculty; University of Bonn Germany
| | - Albert Becker
- Department of Neuropathology; Medical Faculty, University of Bonn; Bonn Germany
| | - Hartmut Vatter
- Department of Neurosurgery; Medical Faculty, University of Bonn; Bonn Germany
| | - Martin K. Schwarz
- Department of Epileptology, Medical Faculty; University of Bonn; Bonn Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty; University of Bonn Germany
- Institute of Neurology, University College London; London UK
- German Center for Degenerative Diseases (DZNE); Bonn Germany
| | | | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty; University of Bonn Germany
| |
Collapse
|
43
|
Inhibition of Gap Junction Elevates Glutamate Uptake in Cultured Astrocytes. Neurochem Res 2017; 43:59-65. [PMID: 28589517 DOI: 10.1007/s11064-017-2316-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 10/19/2022]
Abstract
Glutamate uptake is a main function of astrocytes to keep extracellular glutamate levels low and protect neurons against glutamate-induced excitotoxicity. On the other hand, astrocyte networks formed by gap junctions, which are consisted with connexins and connecting neighboring cells, are reported to play a critical role in maintaining the homeostasis in the brain. In the present study, we examined the effects of gap junction inhibitors on the glutamate uptake activity in cultured rat cortical astrocytes. At first, we confirmed the effects of gap junction inhibitors, 1-octanol and carbenoxolone, on cell-cell communication by the scrape-loading assay using a fluorescent dye Lucifer yellow. Both of 1-octanol and carbenoxolone treatments for 20 min in cultured astrocytes significantly suppressed the cell-cell communication assessed as the distance of dye-spreading. 1-octanol and carbenoxolone increased the glutamate uptake by astrocytes and glutamate aspartate transporter (GLAST) expression on the cell membrane. These results suggest that gap junction inhibitors increase the glutamate uptake activity through the increase of GLAST proteins located on the cell membrane. The regulation of gap junction in astrocytes might protect neurons against glutamate-induced excitotoxicity.
Collapse
|
44
|
Vasile F, Dossi E, Rouach N. Human astrocytes: structure and functions in the healthy brain. Brain Struct Funct 2017; 222:2017-2029. [PMID: 28280934 PMCID: PMC5504258 DOI: 10.1007/s00429-017-1383-5] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/06/2017] [Indexed: 12/28/2022]
Abstract
Data collected on astrocytes’ physiology in the rodent have placed them as key regulators of synaptic, neuronal, network, and cognitive functions. While these findings proved highly valuable for our awareness and appreciation of non-neuronal cell significance in brain physiology, early structural and phylogenic investigations of human astrocytes hinted at potentially different astrocytic properties. This idea sparked interest to replicate rodent-based studies on human samples, which have revealed an analogous but enhanced involvement of astrocytes in neuronal function of the human brain. Such evidence pointed to a central role of human astrocytes in sustaining more complex information processing. Here, we review the current state of our knowledge of human astrocytes regarding their structure, gene profile, and functions, highlighting the differences with rodent astrocytes. This recent insight is essential for assessment of the relevance of findings using animal models and for comprehending the functional significance of species-specific properties of astrocytes. Moreover, since dysfunctional astrocytes have been described in many brain disorders, a more thorough understanding of human-specific astrocytic properties is crucial for better-adapted translational applications.
Collapse
Affiliation(s)
- Flora Vasile
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Elena Dossi
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| |
Collapse
|
45
|
Dossi E, Vasile F, Rouach N. Human astrocytes in the diseased brain. Brain Res Bull 2017; 136:139-156. [PMID: 28212850 PMCID: PMC5766741 DOI: 10.1016/j.brainresbull.2017.02.001] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/23/2022]
Abstract
Astrocytes are key active elements of the brain that contribute to information processing. They not only provide neurons with metabolic and structural support, but also regulate neurogenesis and brain wiring. Furthermore, astrocytes modulate synaptic activity and plasticity in part by controlling the extracellular space volume, as well as ion and neurotransmitter homeostasis. These findings, together with the discovery that human astrocytes display contrasting characteristics with their rodent counterparts, point to a role for astrocytes in higher cognitive functions. Dysfunction of astrocytes can thereby induce major alterations in neuronal functions, contributing to the pathogenesis of several brain disorders. In this review we summarize the current knowledge on the structural and functional alterations occurring in astrocytes from the human brain in pathological conditions such as epilepsy, primary tumours, Alzheimer's disease, major depressive disorder and Down syndrome. Compelling evidence thus shows that dysregulations of astrocyte functions and interplay with neurons contribute to the development and progression of various neurological diseases. Targeting astrocytes is thus a promising alternative approach that could contribute to the development of novel and effective therapies to treat brain disorders.
Collapse
Affiliation(s)
- Elena Dossi
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| | - Flora Vasile
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| |
Collapse
|
46
|
Hussein AM, Abbas KM, Abulseoud OA, El-Hussainy EHMA. Effects of ferulic acid on oxidative stress, heat shock protein 70, connexin 43, and monoamines in the hippocampus of pentylenetetrazole-kindled rats. Can J Physiol Pharmacol 2017; 95:732-742. [PMID: 28177659 DOI: 10.1139/cjpp-2016-0219] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study investigated the effects of ferulic acid (FA) on pentylenetetrazole (PTZ)-induced seizures, oxidative stress markers (malondialdehyde (MDA), catalase, and reduced glutathione (GSH)), connexin (Cx) 43, heat shock protein 70 (Hsp 70), and monoamines (serotonin (5-HT) and norepinephrine (NE)) levels in a rat model of PTZ-induced kindling. Sixty Sprague Dawley rats were divided into 5 equal groups: (a) normal group; (b) FA group: normal rats received FA at a dose of 40 mg/kg daily; (c) PTZ group: normal rats received PTZ at a dose of 50 mg/kg i.p. on alternate days for 15 days; (d) FA-before group: treatment was the same as for the PTZ group, except rats received FA; and (e) FA-after group: rats received FA from sixth dose of PTZ. PTZ caused a significant increase in MDA, Cx43, and Hsp70 along with a significant decrease in GSH, 5-HT, and NE levels and CAT activity in the hippocampus (p < 0.05). Pre- and post-treatment with FA caused significant improvement in behavioral parameters, MDA, CAT, GSH, 5-HT, NE, Cx43 expression, and Hsp70 expression in the hippocampal region (p < 0.05). We conclude that FA has neuroprotective effects in PTZ-induced epilepsy, which might be due to attenuation of oxidative stress and Cx43 expression and upregulation of neuroprotective Hsp70 and neurotransmitters (5-HT and NE).
Collapse
Affiliation(s)
- Abdelaziz M Hussein
- a Faculty of Medicine, Mansoura University, El Gomhoria Street, Mansoura, Egypt
| | - Khaled M Abbas
- a Faculty of Medicine, Mansoura University, El Gomhoria Street, Mansoura, Egypt
| | - Osama A Abulseoud
- b Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | | |
Collapse
|
47
|
Manjarrez-Marmolejo J, Franco-Pérez J. Gap Junction Blockers: An Overview of their Effects on Induced Seizures in Animal Models. Curr Neuropharmacol 2017; 14:759-71. [PMID: 27262601 PMCID: PMC5050393 DOI: 10.2174/1570159x14666160603115942] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 02/26/2016] [Accepted: 04/21/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Gap junctions are clusters of intercellular channels allowing the bidirectional pass of ions directly into the cytoplasm of adjacent cells. Electrical coupling mediated by gap junctions plays a role in the generation of highly synchronized electrical activity. The hypersynchronous neuronal activity is a distinctive characteristic of convulsive events. Therefore, it has been postulated that enhanced gap junctional communication is an underlying mechanism involved in the generation and maintenance of seizures. There are some chemical compounds characterized as gap junction blockers because of their ability to disrupt the gap junctional intercellular communication. OBJECTIVE Hence, the aim of this review is to analyze the available data concerning the effects of gap junction blockers specifically in seizure models. RESULTS Carbenoxolone, quinine, mefloquine, quinidine, anandamide, oleamide, heptanol, octanol, meclofenamic acid, niflumic acid, flufenamic acid, glycyrrhetinic acid and retinoic acid have all been evaluated on animal seizure models. In vitro, these compounds share anticonvulsant effects typically characterized by the reduction of both amplitude and frequency of the epileptiform activity induced in brain slices. In vivo, gap junction blockers modify the behavioral parameters related to seizures induced by 4-aminopyridine, pentylenetetrazole, pilocarpine, penicillin and maximal electroshock. CONCLUSION Although more studies are still required, these molecules could be a promising avenue in the search for new pharmaceutical alternatives for the treatment of epilepsy.
Collapse
Affiliation(s)
| | - Javier Franco-Pérez
- Laboratory of Physiology of Reticular Formation, National Institute of Neurology and Neurosurgery, M.V.S. Insurgentes Sur 3877, Col. La Fama, C.P. 14269, Mexico D.F., Mexico
| |
Collapse
|
48
|
Lee GH, Jang B, Choi HS, Kim HJ, Park JH, Jeon YC, Carp RI, Kim YS, Choi EK. Upregulation of Connexin 43 Expression Via C-Jun N-Terminal Kinase Signaling in Prion Disease. J Alzheimers Dis 2016; 49:1005-19. [PMID: 26599051 DOI: 10.3233/jad-150283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Prion infection leads to neuronal cell death, glial cell activation, and the accumulation of misfolded prion proteins. However, the altered cellular environments in animals with prion diseases are poorly understood. In the central nervous system, cells connect the cytoplasm of adjacent cells via connexin (Cx)-assembled gap junction channels to allow the direct exchange of small molecules, including ions, neurotransmitters, and signaling molecules, which regulate the activities of the connected cells. Here, we investigate the role of Cx43 in the pathogenesis of prion diseases. Upregulated Cx43 expression, which was dependent on c-Jun N-Terminal Kinase (JNK)/c-Jun signaling cascades, was found in prion-affected brain tissues and hippocampal neuronal cells. Scrapie infection-induced Cx43 formed aggregated plaques within the cytoplasmic compartments at the cell-cell interfaces. The ethidium bromide (EtBr) uptake assay and scrape-loading dye transfer assay demonstrated that increased Cx43 has functional consequences for the activity of Cx43 hemichannels. Interestingly, blockade of PrPSc accumulation reduced Cx43 expression through the inhibition of JNK signaling, indicating that PrPSc accumulation may be directly involved in JNK activation-mediated Cx43 upregulation. Overall, our findings describe a scrapie infection-mediated novel regulatory signaling pathway of Cx43 expression and may suggest a role for Cx43 in the pathogenesis of prion diseases.
Collapse
Affiliation(s)
- Geon-Hwi Lee
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea.,Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Byungki Jang
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea
| | - Hong-Seok Choi
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea.,Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Hee-Jun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea
| | - Jeong-Ho Park
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea.,Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Yong-Chul Jeon
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea
| | - Richard I Carp
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea.,Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Eun-Kyoung Choi
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea.,Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| |
Collapse
|
49
|
Ramani M, Mylvaganam S, Krawczyk M, Wang L, Zoidl C, Brien J, Reynolds JN, Kapur B, Poulter MO, Zoidl G, Carlen PL. Differential expression of astrocytic connexins in a mouse model of prenatal alcohol exposure. Neurobiol Dis 2016; 91:83-93. [DOI: 10.1016/j.nbd.2016.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 01/11/2016] [Accepted: 02/29/2016] [Indexed: 11/24/2022] Open
|
50
|
Hussein AM, Ghalwash M, Magdy K, Abulseoud OA. Beta Lactams Antibiotic Ceftriaxone Modulates Seizures, Oxidative Stress and Connexin 43 Expression in Hippocampus of Pentylenetetrazole Kindled Rats. J Epilepsy Res 2016; 6:8-15. [PMID: 27390674 PMCID: PMC4933683 DOI: 10.14581/jer.16002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022] Open
Abstract
Background and Purpose: This study aimed to investigate the effect of ceftriaxone on oxidative stress and gap junction protein (connexin 43, Cx-43) expression in pentylenetetrazole (PTZ) induced kindling model. Methods: Twenty four Sprague dawely rats were divided into 3 equal groups (a) normal group: normal rats. (b) PTZ kindled group: received PTZ at the dose of 50 mg/kg via intraperitoneal injection (i.p.) every other day for 2 weeks (c) ceftriaxone treated group: received ceftriaxone at the dose 200 mg\kg/12 hrs via i.p. injection daily from the 6th dose of PTZ for 3 days. Racine score, latency before beginning the first myoclonic jerk and duration of the jerks used as parameters of behavioral assessment. Immunohistopathological study for Cx-43 expression in hippocampus and measurement of markers of oxidative stress (malondialdehyde [MDA], low reduced glutathione [GSH] and catalase [CAT]) in hippocampal neurons were done. Results: PTZ kindling was associated with behavioral changes (in the form high stage of Racine score, long seizure duration and short latency for the first jerk), enhanced oxidative stress state (as demonstrated by high MDA, low GSH and CAT) and up regulation of Cx43 in hippocampal regions. While, ceftriaxone treatment ameliorated, significantly, PTZ-induced convulsions and caused significant improvement in oxidative stress markers and Cx-43 expression in hippocamal regions (p < 0.05). Conclusions: These findings support the anticonvulsive effects of some beta-lactams antibiotics which could offer a possible contributor in the basic treatment of temporal lobe epilepsy. This effect might be due to reduction of oxidative stress and Cx43 expression.
Collapse
Affiliation(s)
| | - Mohammed Ghalwash
- Department of Medical Physiology, Mansoura University, Mansoura, Egypt
| | - Khaled Magdy
- Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Osama A Abulseoud
- Chemistry and Drug Metabolism, IRP, National Institute on Drug Abuse, National Institutes of Health, Biomedical Research Center, Baltimore, USA
| |
Collapse
|