1
|
Abstract
Sleep and wakefulness are complex, tightly regulated behaviors that occur in virtually all animals. With recent exciting developments in neuroscience methodologies such as optogenetics, chemogenetics, and cell-specific calcium imaging technology, researchers can advance our understanding of how discrete neuronal groups precisely modulate states of sleep and wakefulness. In this chapter, we provide an overview of key neurotransmitter systems, neurons, and circuits that regulate states of sleep and wakefulness. We also describe long-standing models for the regulation of sleep/wake and non-rapid eye movement/rapid eye movement cycling. We contrast previous knowledge derived from classic approaches such as brain stimulation, lesions, cFos expression, and single-unit recordings, with emerging data using the newest technologies. Our understanding of neural circuits underlying the regulation of sleep and wakefulness is rapidly evolving, and this knowledge is critical for our field to elucidate the enigmatic function(s) of sleep.
Collapse
|
2
|
Johnson CM, Cui N, Xing H, Wu Y, Jiang C. The antitussive cloperastine improves breathing abnormalities in a Rett Syndrome mouse model by blocking presynaptic GIRK channels and enhancing GABA release. Neuropharmacology 2020; 176:108214. [PMID: 32622786 DOI: 10.1016/j.neuropharm.2020.108214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/21/2022]
Abstract
Rett Syndrome (RTT) is an X-linked neurodevelopmental disorder caused mainly by mutations in the MECP2 gene. One of the major RTT features is breathing dysfunction characterized by periodic hypo- and hyperventilation. The breathing disorders are associated with increased brainstem neuronal excitability, which can be alleviated with GABA agonists. Since neuronal hypoexcitability occurs in the forebrain of RTT models, it is necessary to find pharmacological agents with a relative preference to brainstem neurons. Here we show evidence for the improvement of breathing disorders of Mecp2-disrupted mice with the brainstem-acting drug cloperastine (CPS) and its likely neuronal targets. CPS is an over-the-counter cough medicine that has an inhibitory effect on brainstem neuronal networks. In Mecp2-disrupted mice, CPS (30 mg/kg, i.p.) decreased the occurrence of apneas/h and breath frequency variation. GIRK currents expressed in HEK cells were inhibited by CPS with IC50 1 μM. Whole-cell patch clamp recordings in locus coeruleus (LC) and dorsal tegmental nucleus (DTN) neurons revealed an overall inhibitory effect of CPS (10 μM) on neuronal firing activity. Such an effect was reversed by the GABAA receptor antagonist bicuculline (20 μM). Voltage clamp studies showed that CPS increased GABAergic sIPSCs in LC cells, which was blocked by the GABAB receptor antagonist phaclofen. Functional GABAergic connections of DTN neurons with LC cells were shown. These results suggest that CPS improves breathing dysfunction in Mecp2-null mice by blocking GIRK channels in synaptic terminals and enhancing GABA release.
Collapse
Affiliation(s)
- Christopher M Johnson
- Department of Biology, Georgia State University, 100 Piedmont Avenue, Atlanta, GA, 30303, USA
| | - Ningren Cui
- Department of Biology, Georgia State University, 100 Piedmont Avenue, Atlanta, GA, 30303, USA
| | - Hao Xing
- Department of Biology, Georgia State University, 100 Piedmont Avenue, Atlanta, GA, 30303, USA
| | - Yang Wu
- Department of Biology, Georgia State University, 100 Piedmont Avenue, Atlanta, GA, 30303, USA
| | - Chun Jiang
- Department of Biology, Georgia State University, 100 Piedmont Avenue, Atlanta, GA, 30303, USA.
| |
Collapse
|
3
|
Costa A, Castro-Zaballa S, Lagos P, Chase MH, Torterolo P. Distribution of MCH-containing fibers in the feline brainstem: Relevance for REM sleep regulation. Peptides 2018; 104:50-61. [PMID: 29680268 DOI: 10.1016/j.peptides.2018.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/15/2018] [Accepted: 04/09/2018] [Indexed: 11/20/2022]
Abstract
Neurons that utilize melanin-concentrating hormone (MCH) as a neuromodulator are localized in the postero-lateral hypothalamus and incerto-hypothalamic area. These neurons project diffusely throughout the central nervous system and have been implicated in critical physiological processes, such as sleep. Unlike rodents, in the order carnivora as well as in humans, MCH exerts its biological functions through two receptors: MCHR-1 and MCHR-2. Hence, the cat is an optimal animal to model MCHergic functions in humans. In the present study, we examined the distribution of MCH-positive fibers in the brainstem of the cat. MCHergic axons with distinctive varicosities and boutons were heterogeneously distributed, exhibiting different densities in distinct regions of the brainstem. High density of MCHergic fibers was found in the dorsal raphe nucleus, the laterodorsal tegmental nucleus, the periaqueductal gray, the pendunculopontine tegmental nucleus, the locus coeruleus and the prepositus hypoglossi. Because these areas are involved in the control of REM sleep, the present anatomical data support the role of this neuropeptidergic system in the control of this behavioral state.
Collapse
Affiliation(s)
- Alicia Costa
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Uruguay
| | | | - Patricia Lagos
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Uruguay
| | - Michael H Chase
- WebSciences International and UCLA School of Medicine, Los Angeles, USA
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Uruguay.
| |
Collapse
|
4
|
Orzeł-Gryglewska J, Matulewicz P, Jurkowlaniec E. Brainstem system of hippocampal theta induction: The role of the ventral tegmental area. Synapse 2015; 69:553-75. [PMID: 26234671 DOI: 10.1002/syn.21843] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 07/03/2015] [Accepted: 07/22/2015] [Indexed: 12/13/2022]
Abstract
This article summarizes the results of studies concerning the influence of the ventral tegmental area (VTA) on the hippocampal theta rhythm. Temporary VTA inactivation resulted in transient loss of the hippocampal theta. Permanent destruction of the VTA caused a long-lasting depression of the power of the theta and it also had some influence on the frequency of the rhythm. Activation of glutamate (GLU) receptors or decrease of GABAergic tonus in the VTA led to enhancement of dopamine release and increased hippocampal theta power. High time and frequency cross-correlation was detected for the theta band between the VTA and hippocampus during paradoxical sleep and active waking. Thus, the VTA may belong to the broad network involved in theta rhythm regulation. This article also presents a model of brainstem-VTA-hippocampal interactions in the induction of the hippocampal theta rhythm. The projections from the VTA which enhance theta rhythm are incorporated into the main theta generation pathway, in which the septum acts as the central node. The neuronal activity that may be responsible for the ability of the VTA to regulate theta probably derives from the structures associated with rapid eye movement (sleep) (REM) sleep or with sensorimotor activity (i.e., mainly from the pedunculopontine and laterodorsal tegmental nuclei and also from the raphe).
Collapse
Affiliation(s)
| | - Paweł Matulewicz
- Department of Animal and Human Physiology, University of Gdańsk, Gdańsk, 80-308, Poland
| | - Edyta Jurkowlaniec
- Department of Animal and Human Physiology, University of Gdańsk, Gdańsk, 80-308, Poland
| |
Collapse
|
5
|
Sakuma Y. Estradiol-sensitive projection neurons in the female rat preoptic area. Front Neurosci 2015; 9:67. [PMID: 25852453 PMCID: PMC4371655 DOI: 10.3389/fnins.2015.00067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/16/2015] [Indexed: 02/04/2023] Open
Abstract
Electrical stimulation of the preoptic area (POA) interrupts the lordosis reflex, a combined contraction of back muscles, in response to male mounts and the major receptive component of sexual behavior in female rat in estrus, without interfering with the proceptive component of this behavior or solicitation. Axon-sparing POA lesions with an excitotoxin, on the other hand, enhance lordosis and diminish proceptivity. The POA effect on the reflex is mediated by its estrogen-sensitive projection to the ventral tegmental area (VTA) as shown by the behavioral effect of VTA stimulation as well as by the demonstration of an increased threshold for antidromic activation of POA neurons from the VTA in ovariectomized females treated with estradiol benzoate (EB). EB administration increases the antidromic activation threshold in ovariectomized females and neonatally castrated males, but not in neonatally androgenized females; the EB effect is limited to those that show lordosis in the presence of EB. EB causes behavioral disinhibition of lordosis through an inhibition of POA neurons with axons to the VTA, which eventually innervate medullospinal neurons innervating spinal motoneurons of the back muscle. The EB-induced change in the threshold or the axonal excitability may be a result of EB-dependent induction of BK channels. Recordings from freely moving female rats engaging in sexual interactions revealed separate subpopulations of POA neurons for the receptive and proceptive behaviors. Those POA neurons engaging in the control of proceptivity are EB-sensitive and project to the midbrain locomotor region (MLR). EB thus enhances lordosis by reducing excitatory neural impulses from the POA to the VTA. An augmentation of the POA effect to the MLR may culminate in an increased locomotion that embodies behavioral estrus in the female rat.
Collapse
Affiliation(s)
- Yasuo Sakuma
- Laboratory of Physiology, University of Tokyo Health Sciences Tokyo, Japan
| |
Collapse
|
6
|
Aizawa H, Cui W, Tanaka K, Okamoto H. Hyperactivation of the habenula as a link between depression and sleep disturbance. Front Hum Neurosci 2013; 7:826. [PMID: 24339810 PMCID: PMC3857532 DOI: 10.3389/fnhum.2013.00826] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/16/2013] [Indexed: 12/13/2022] Open
Abstract
Depression occurs frequently with sleep disturbance such as insomnia. Sleep in depression is associated with disinhibition of the rapid eye movement (REM) sleep. Despite the coincidence of the depression and sleep disturbance, neural substrate for depressive behaviors and sleep regulation remains unknown. Habenula is an epithalamic structure regulating the activities of monoaminergic neurons in the brain stem. Since the imaging studies showed blood flow increase in the habenula of depressive patients, hyperactivation of the habenula has been implicated in the pathophysiology of the depression. Recent electrophysiological studies reported a novel role of the habenular structure in regulation of REM sleep. In this article, we propose possible cellular mechanisms which could elicit the hyperactivation of the habenular neurons and a hypothesis that dysfunction in the habenular circuit causes the behavioral and sleep disturbance in depression. Analysis of the animals with hyperactivated habenula would open the door to understand roles of the habenula in the heterogeneous symptoms such as reduced motor behavior and altered REM sleep in depression.
Collapse
Affiliation(s)
- Hidenori Aizawa
- Department of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
7
|
GABAergic processes within the median preoptic nucleus promote NREM sleep. Behav Brain Res 2012; 232:60-5. [DOI: 10.1016/j.bbr.2012.03.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/12/2012] [Accepted: 03/16/2012] [Indexed: 01/04/2023]
|
8
|
Orzeł-Gryglewska J, Kuśmierczak M, Majkutewicz I, Jurkowlaniec E. Induction of hippocampal theta rhythm by electrical stimulation of the ventral tegmental area and its loss after septum inactivation. Brain Res 2012; 1436:51-67. [DOI: 10.1016/j.brainres.2011.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/29/2011] [Accepted: 12/01/2011] [Indexed: 01/28/2023]
|
9
|
Torterolo P, Sampogna S, Chase MH. A restricted parabrachial pontine region is active during non-rapid eye movement sleep. Neuroscience 2011; 190:184-93. [PMID: 21704676 DOI: 10.1016/j.neuroscience.2011.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 05/10/2011] [Accepted: 06/08/2011] [Indexed: 01/09/2023]
Abstract
The principal site that generates both rapid eye movement (REM) sleep and wakefulness is located in the mesopontine reticular formation, whereas non-rapid eye movement (NREM) sleep is primarily dependent upon the functioning of neurons that are located in the preoptic region of the hypothalamus. In the present study, we were interested in determining whether the occurrence of NREM might also depend on the activity of mesopontine structures, as has been shown for wakefulness and REM sleep. Adult cats were maintained in one of the following states: quiet wakefulness (QW), alert wakefulness (AW), NREM, or REM sleep induced by microinjections of carbachol into the nucleus pontis oralis (REM-carbachol). Subsequently, they were euthanized and single-labeling immunohistochemical studies were undertaken to determine state-dependent patterns of neuronal activity in the brainstem based upon the expression of the protein Fos. In addition, double-labeling immunohistochemical studies were carried out to detect neurons that expressed Fos as well as choline acetyltransferase, tyrosine hydroxylase, or GABA. During NREM, only a few Fos-immunoreactive cells were present in different regions of the brainstem; however, a discrete cluster of Fos+ neurons was observed in the caudolateral parabrachial region (CLPB). The number of Fos+ neurons in the CLPB during NREM was significantly greater (67.9±10.9, P<0.0001) compared with QW (8.0±6.7), AW (5.2±4.2), or REM-carbachol (8.0±4.7). In addition, there was a positive correlation (R=0.93) between the time the animals spent in NREM and the number of Fos+ neurons in the CLPB. Fos-immunoreactive neurons in the CLPB were neither cholinergic nor catecholaminergic; however, about 50% of these neurons were GABAergic. We conclude that a group of GABAergic and unidentified neurons in the CLPB are active during NREM and likely involved in the control of this behavioral state. These data open new avenues for the study of NREM, as well as for the explorations of interactions between these neurons that are activated during NREM and cells of the adjacent pontine tegmentum that are involved in the generation of REM sleep.
Collapse
Affiliation(s)
- P Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, General Flores 2125, 11800 Montevideo-Uruguay.
| | | | | |
Collapse
|
10
|
Orzeł-Gryglewska J, Kuśmierczak M, Jurkowlaniec E. Involvement of GABAergic transmission in the midbrain ventral tegmental area in the regulation of hippocampal theta rhythm. Brain Res Bull 2010; 83:310-20. [DOI: 10.1016/j.brainresbull.2010.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 08/30/2010] [Accepted: 09/01/2010] [Indexed: 11/15/2022]
|
11
|
Torterolo P, Benedetto L, Lagos P, Sampogna S, Chase MH. State-dependent pattern of Fos protein expression in regionally-specific sites within the preoptic area of the cat. Brain Res 2009; 1267:44-56. [DOI: 10.1016/j.brainres.2009.02.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 11/26/2022]
|
12
|
Morgane PJ, Mokler DJ. The limbic brain: Continuing resolution. Neurosci Biobehav Rev 2006; 30:119-25. [PMID: 16115685 DOI: 10.1016/j.neubiorev.2005.04.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 04/19/2005] [Accepted: 04/19/2005] [Indexed: 11/21/2022]
Abstract
This paper presents an overview of the limbic brain and its distributed sub-systems. The extent of the limbic system has expanded in recent years. Among the brain areas that we now argue should be included in the extended limbic system are the medial prefrontal cortex, the insular cortex as well as the lower brainstem and spinal cord. In addition the limbic forebrain and limbic midbrain may be divided into medial and lateral divisions both anatomically and physiologically. This serves as an introduction to the papers that follow.
Collapse
Affiliation(s)
- Peter J Morgane
- Center for Behavioral Development and Mental Retardation, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
13
|
Vazquez J, Baghdoyan HA. GABAA receptors inhibit acetylcholine release in cat pontine reticular formation: implications for REM sleep regulation. J Neurophysiol 2004; 92:2198-206. [PMID: 15212422 DOI: 10.1152/jn.00099.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study used in vivo microdialysis in cat (n=12) to test the hypothesis that gamma aminobutyric acid A (GABAA) receptors in the pontine reticular formation (PRF) inhibit acetylcholine (ACh) release. Animals were anesthetized with halothane to hold arousal state constant. Six concentrations of the GABAA receptor antagonist bicuculline (0.03, 0.1, 0.3, 1, 3, and 10 mM) were delivered to a dialysis probe in the PRF, and endogenously released ACh was collected simultaneously. Bicuculline caused a concentration dependent increase in ACh release (maximal increase=345%; EC50=1.3 mM; r2=0.997). Co-administration of the GABAA receptor agonist muscimol prevented the bicuculline-induced increase in ACh release. In a second series of experiments, the effects of bicuculline (0.1, 0.3, 1, and 3 mM) on ACh release were examined without the use of general anesthesia. States of wakefulness, rapid-eye-movement (REM) sleep, and non-REM sleep were identified polygraphically before and during dialysis delivery of bicuculline. Higher concentrations of bicuculline (1 and 3 mM) significantly increased ACh release during wakefulness (36%), completely suppressed non-REM sleep, and increased ACh release during REM sleep (143%). The finding that ACh release in the PRF is modulated by GABAA receptors is consistent with the interpretation that inhibition of GABAergic transmission in the PRF contributes to the generation of REM sleep, in part, by increasing pontine ACh release.
Collapse
Affiliation(s)
- Jacqueline Vazquez
- Dept. of Anesthesiology, The University of Michigan, 7433 Medical Sciences Bldg. I, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-0615, USA
| | | |
Collapse
|
14
|
Steiniger B, Kretschmer BD. Glutamate and GABA modulate dopamine in the pedunculopontine tegmental nucleus. Exp Brain Res 2003; 149:422-30. [PMID: 12677322 DOI: 10.1007/s00221-003-1382-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2002] [Accepted: 12/23/2002] [Indexed: 12/18/2022]
Abstract
The pedunculopontine tegmental nucleus (PPTg) has an important anatomical position connecting basal ganglia and limbic systems with motor execution structures in the pons and spinal cord. It receives glutamatergic and GABAergic input and has additional reciprocal connections with mesencephalic dopaminergic neurons, suggesting that the PPTg plays a key role in frontostriatal information processing. In vivo microdialysis in freely moving rats, in combination with behavioral analysis, was used in this study to investigate whether the dopaminergic input can be modulated at the level of the PPTg via N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) or GABA(B) receptors. Stimulation of the GABA(B) receptor decreased dopamine release in the PPTg while that of the AMPA and NMDA receptors increased it. A time-related comparison of the effects of NMDA (0.75 and 1 mM) and AMPA (50 and 25 microM) revealed a more long-lasting effect after AMPA stimulation than after NMDA. However, only the infusion of the GABA(B) receptor agonist baclofen (100 and 200 microM) stimulated stereotyped behavior (e.g. sniffing, digging or head movements) and contralateral circling. This study clearly demonstrates that GABAergic as well as glutamatergic terminals in the PPTg are critically involved in the modulation of the dopamine system. Moreover, a decrease in PPTg dopamine via GABA(B) receptor stimulation seems to be behaviorally relevant.
Collapse
Affiliation(s)
- Björn Steiniger
- Department of Neuropharmacology, University of Tübingen, Mohlstr 54/1, 72074 Tübingen, Germany.
| | | |
Collapse
|