1
|
Prem PN, Chellappan DR, Kurian GA. High-fat diet-induced mitochondrial dysfunction is associated with loss of protection from ischemic preconditioning in renal ischemia reperfusion. Pflugers Arch 2023; 475:637-653. [PMID: 36867229 DOI: 10.1007/s00424-023-02799-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
Consumption of high-fat diet (HFD) promotes mitochondrial dysfunction and the latter act as a critical factor in determining the severity of ischemia-reperfusion (IR) injury in different cell types. Ischemic preconditioning (IPC), a well-known protocol that render IR protection in kidney works via mitochondria. In the present study, we evaluated how HFD kidney with underlying mitochondrial changes respond to precondition protocol after IR induction. Wistar male rats were used in this study and were divided into two groups: SD (standard diet; n = 18) and HFD (high-fat diet; n = 18), which were further subdivided into sham, ischemia-reperfusion, and precondition groups at the end of the dietary regimen. Blood biochemistry, renal injury marker, creatinine clearance (CrCl), mitochondrial quality (fission, fusion, and phagy), mitochondrial function via ETC enzyme activities and respiration, and signalling pathway were analysed. Sixteen weeks of HFD administration to the rat deteriorated the renal mitochondrial health measured via 10% decline in mitochondrial respiration index ADP/O (in GM), reduced mitochondrial copy number (55%), biogenesis (56%), low bioenergetics potential (19% complex I + III and 15% complex II + III), increased oxidative stress, and reduced expression of mitochondrial fusion genes compared with SD rats. IR procedure in HFD rat kidney inflicted significant mitochondrial dysfunction and further deteriorated copy number along with impaired mitophagy and mitochondrial dynamics. IPC could effectively ameliorate the renal ischemia injury in normal rat but failed to provide similar kind of protection in HFD rat kidney. Even though the IR-associated mitochondrial dysfunction in both normal and HFD rats were similar, the magnitude of overall dysfunction and corresponding renal injury and compromised physiology was high in HFD rats. This observation was further confirmed via in vitro protein translation assay in isolated mitochondria from normal and HFD rat kidney that showed significantly reduction in the response ability of mitochondria in HFD. In conclusion, the deteriorated mitochondrial function and its quality along with low mitochondrial copy number and downregulation of mitochondrial dynamic gene exhibited by HFD rat kidney augments the sensitivity of renal tissue towards the IR injury which leads to the compromised protective ability by ischemic preconditioning.
Collapse
Affiliation(s)
- Priyanka N Prem
- School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| | - David Raj Chellappan
- School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| | - Gino A Kurian
- School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India. .,Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
2
|
Saralkar P, Mdzinarishvili A, Arsiwala TA, Lee YK, Sullivan PG, Pinti MV, Hollander JM, Kelley EE, Ren X, Hu H, Simpkins J, Brown C, Hazlehurst LE, Huber JD, Geldenhuys WJ. The Mitochondrial mitoNEET Ligand NL-1 Is Protective in a Murine Model of Transient Cerebral Ischemic Stroke. Pharm Res 2021; 38:803-817. [PMID: 33982226 PMCID: PMC8298128 DOI: 10.1007/s11095-021-03046-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Therapeutic strategies to treat ischemic stroke are limited due to the heterogeneity of cerebral ischemic injury and the mechanisms that contribute to the cell death. Since oxidative stress is one of the primary mechanisms that cause brain injury post-stroke, we hypothesized that therapeutic targets that modulate mitochondrial function could protect against reperfusion-injury after cerebral ischemia, with the focus here on a mitochondrial protein, mitoNEET, that modulates cellular bioenergetics. METHOD In this study, we evaluated the pharmacology of the mitoNEET ligand NL-1 in an in vivo therapeutic role for NL-1 in a C57Bl/6 murine model of ischemic stroke. RESULTS NL-1 decreased hydrogen peroxide production with an IC50 of 5.95 μM in neuronal cells (N2A). The in vivo activity of NL-1 was evaluated in a murine 1 h transient middle cerebral artery occlusion (t-MCAO) model of ischemic stroke. We found that mice treated with NL-1 (10 mg/kg, i.p.) at time of reperfusion and allowed to recover for 24 h showed a 43% reduction in infarct volume and 68% reduction in edema compared to sham-injured mice. Additionally, we found that when NL-1 was administered 15 min post-t-MCAO, the ischemia volume was reduced by 41%, and stroke-associated edema by 63%. CONCLUSION As support of our hypothesis, as expected, NL-1 failed to reduce stroke infarct in a permanent photothrombotic occlusion model of stroke. This report demonstrates the potential therapeutic benefits of using mitoNEET ligands like NL-1 as novel mitoceuticals for treating reperfusion-injury with cerebral stroke.
Collapse
Affiliation(s)
- Pushkar Saralkar
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 1 Medical Center Drive, Morgantown, West Virginia, 26506, USA
| | - Alexander Mdzinarishvili
- Department of Neurology, College of Medicine, University of Oklahoma HSC, Oklahoma City, Oklahoma, USA
| | - Tasneem A Arsiwala
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 1 Medical Center Drive, Morgantown, West Virginia, 26506, USA
| | - Yoon-Kwang Lee
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Patrick G Sullivan
- Department of Neuroscience, Spinal and Brain Injury Research Center, School of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Mark V Pinti
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University, Morgantown, West Virginia, USA
| | - John M Hollander
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University, Morgantown, West Virginia, USA
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Eric E Kelley
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia, USA
| | - Xuefang Ren
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Heng Hu
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - James Simpkins
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Candice Brown
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Lori E Hazlehurst
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 1 Medical Center Drive, Morgantown, West Virginia, 26506, USA
| | - Jason D Huber
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 1 Medical Center Drive, Morgantown, West Virginia, 26506, USA
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 1 Medical Center Drive, Morgantown, West Virginia, 26506, USA.
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, West Virginia, USA.
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University, Morgantown, West Virginia, USA.
| |
Collapse
|
3
|
Machine learning-based classification of mitochondrial morphology in primary neurons and brain. Sci Rep 2021; 11:5133. [PMID: 33664336 PMCID: PMC7933342 DOI: 10.1038/s41598-021-84528-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/17/2021] [Indexed: 01/31/2023] Open
Abstract
The mitochondrial network continually undergoes events of fission and fusion. Under physiologic conditions, the network is in equilibrium and is characterized by the presence of both elongated and punctate mitochondria. However, this balanced, homeostatic mitochondrial profile can change morphologic distribution in response to various stressors. Therefore, it is imperative to develop a method that robustly measures mitochondrial morphology with high accuracy. Here, we developed a semi-automated image analysis pipeline for the quantitation of mitochondrial morphology for both in vitro and in vivo applications. The image analysis pipeline was generated and validated utilizing images of primary cortical neurons from transgenic mice, allowing genetic ablation of key components of mitochondrial dynamics. This analysis pipeline was further extended to evaluate mitochondrial morphology in vivo through immunolabeling of brain sections as well as serial block-face scanning electron microscopy. These data demonstrate a highly specific and sensitive method that accurately classifies distinct physiological and pathological mitochondrial morphologies. Furthermore, this workflow employs the use of readily available, free open-source software designed for high throughput image processing, segmentation, and analysis that is customizable to various biological models.
Collapse
|
4
|
Meex RCR, Blaak EE. Mitochondrial Dysfunction is a Key Pathway that Links Saturated Fat Intake to the Development and Progression of NAFLD. Mol Nutr Food Res 2021; 65:e1900942. [PMID: 32574416 PMCID: PMC7816225 DOI: 10.1002/mnfr.201900942] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/25/2020] [Indexed: 12/16/2022]
Abstract
Non-Alcoholic fatty liver disease (NAFLD) is the most common form of liver disease and is characterized by fat accumulation in the liver. Hypercaloric diets generally increase hepatic fat accumulation, whereas hypocaloric diets decrease liver fat content. In addition, there is evidence to suggest that moderate amounts of unsaturated fatty acids seems to be protective for the development of a fatty liver, while consumption of saturated fatty acids (SFA) appears to predispose toward hepatic steatosis. Recent studies highlight a key role for mitochondrial dysfunction in the development and progression of NAFLD. It is proposed that changes in mitochondrial structure and function are key mechanisms by which SFA lead to the development and progression of NAFLD. In this review, it is described how SFA intake is associated with liver steatosis and decreases the efficiency of the respiratory transport chain. This results in the production of reactive oxygen species and damage to nearby structures, eventually leading to inflammation, apoptosis, and scarring of the liver. Furthermore, studies demonstrating that SFA intake affects the composition of mitochondrial membranes are presented, and this process accelerates the progression of NAFLD. It is likely that events are intertwined and reinforce each other, leading to a constant deterioration in health.
Collapse
Affiliation(s)
- Ruth C. R. Meex
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityUniversiteitssingel 50Maastricht6229 ERThe Netherlands
| | - Ellen E. Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityUniversiteitssingel 50Maastricht6229 ERThe Netherlands
| |
Collapse
|
5
|
Mitochondrial-Protective Effects of R-Phenibut after Experimental Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9364598. [PMID: 33274011 PMCID: PMC7700030 DOI: 10.1155/2020/9364598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/24/2020] [Accepted: 11/03/2020] [Indexed: 12/22/2022]
Abstract
Altered neuronal Ca2+ homeostasis and mitochondrial dysfunction play a central role in the pathogenesis of traumatic brain injury (TBI). R-Phenibut ((3R)-phenyl-4-aminobutyric acid) is an antagonist of the α2δ subunit of voltage-dependent calcium channels (VDCC) and an agonist of gamma-aminobutyric acid B (GABA-B) receptors. The aim of this study was to evaluate the potential therapeutic effects of R-phenibut following the lateral fluid percussion injury (latFPI) model of TBI in mice and the impact of R- and S-phenibut on mitochondrial functionality in vitro. By determining the bioavailability of R-phenibut in the mouse brain tissue and plasma, we found that R-phenibut (50 mg/kg) reached the brain tissue 15 min after intraperitoneal (i.p.) and peroral (p.o.) injections. The maximal concentration of R-phenibut in the brain tissues was 0.6 μg/g and 0.2 μg/g tissue after i.p. and p.o. administration, respectively. Male Swiss-Webster mice received i.p. injections of R-phenibut at doses of 10 or 50 mg/kg 2 h after TBI and then once daily for 7 days. R-Phenibut treatment at the dose of 50 mg/kg significantly ameliorated functional deficits after TBI on postinjury days 1, 4, and 7. Seven days after TBI, the number of Nissl-stained dark neurons (N-DNs) and interleukin-1beta (IL-1β) expression in the cerebral neocortex in the area of cortical impact were reduced. Moreover, the addition of R- and S-phenibut at a concentration of 0.5 μg/ml inhibited calcium-induced mitochondrial swelling in the brain homogenate and prevented anoxia-reoxygenation-induced increases in mitochondrial H2O2 production and the H2O2/O ratio. Taken together, these results suggest that R-phenibut could serve as a neuroprotective agent and promising drug candidate for treating TBI.
Collapse
|
6
|
Ramírez-Pérez G, Sánchez-Chávez G, Salceda R. Mitochondrial bound hexokinase type I in normal and streptozotocin diabetic rat retina. Mitochondrion 2020; 52:212-217. [DOI: 10.1016/j.mito.2020.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/24/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022]
|
7
|
Yoo JY, Kim HB, Yoo SY, Yoo HI, Song DY, Baik TK, Lee JH, Woo RS. Neuregulin 1/ErbB4 signaling attenuates neuronal cell damage under oxygen-glucose deprivation in primary hippocampal neurons. Anat Cell Biol 2019; 52:462-468. [PMID: 31949986 PMCID: PMC6952697 DOI: 10.5115/acb.19.210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 12/25/2022] Open
Abstract
The hippocampus is one of the most important brain areas of cognition. This region is particularly sensitive to hypoxia and ischemia. Neuregulin-1 (NRG1) has been shown to be able to protect against focal cerebral ischemia. The aim of the present study was to investigate the neuroprotective effect of NRG1 in primary hippocampal neurons and its underlying mechanism. Our data showed oxygen-glucose deprivation (OGD)-induced cytotoxicity and overexpression of ErbB4 in primary hippocampal neurons. Moreover, pretreatment with NRG1 could inhibit OGD-induced overexpression of ErbB4. In addition, NRG1 significantly attenuated neuronal death induced by OGD. The neuroprotective effect of NRG1 was blocked in ischemic neurons after pretreatment with AG1478, an inhibitor of ErbB4, but not after pretreatment with AG879, an inhibitor of ErbB2. These results indicate an important role of ErbB4 in NRG1-mediated neuroprotection, suggesting that endogenous ErbB4 might serve as a valuable therapeutic target for treating global cerebral ischemia.
Collapse
Affiliation(s)
- Ji-Young Yoo
- Department of Anatomy and Neuroscience, Eulji University College of Medicine, Daejeon, Korea
| | - Han-Byeol Kim
- Department of Anatomy and Neuroscience, Eulji University College of Medicine, Daejeon, Korea
| | - Seung-Yeon Yoo
- Department of Anatomy and Neuroscience, Eulji University College of Medicine, Daejeon, Korea
| | - Hong-Il Yoo
- Department of Anatomy and Neuroscience, Eulji University College of Medicine, Daejeon, Korea
| | - Dae-Yong Song
- Department of Anatomy and Neuroscience, Eulji University College of Medicine, Daejeon, Korea
| | - Tai-Kyoung Baik
- Department of Anatomy and Neuroscience, Eulji University College of Medicine, Daejeon, Korea
| | - Jun-Ho Lee
- Department of Emergency Medical Technology, Daejeon University, Daejeon, Korea
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, Eulji University College of Medicine, Daejeon, Korea
| |
Collapse
|
8
|
Addressing the alterations in cerebral ischemia-reperfusion injury on the brain mitochondrial activity: A possible link to cognitive decline. Biochem Biophys Res Commun 2019; 518:100-106. [DOI: 10.1016/j.bbrc.2019.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/05/2019] [Indexed: 11/18/2022]
|
9
|
Camilleri A, Ghio S, Caruana M, Weckbecker D, Schmidt F, Kamp F, Leonov A, Ryazanov S, Griesinger C, Giese A, Cauchi RJ, Vassallo N. Tau-induced mitochondrial membrane perturbation is dependent upon cardiolipin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183064. [PMID: 31521630 DOI: 10.1016/j.bbamem.2019.183064] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/26/2019] [Accepted: 09/10/2019] [Indexed: 01/14/2023]
Abstract
Misfolding and aggregate formation by the tau protein has been closely related with neurotoxicity in a large group of human neurodegenerative disorders, which includes Alzheimer's disease. Here, we investigate the membrane-active properties of tau oligomers on mitochondrial membranes, using minimalist in vitro model systems. Thus, exposure of isolated mitochondria to oligomeric tau evoked a disruption of mitochondrial membrane integrity, as evidenced by a combination of organelle swelling, efflux of cytochrome c and loss of the mitochondrial membrane potential. Tau-induced mitochondrial dysfunction occurred independently of the mitochondrial permeability transition (mPT) pore complex. Notably, mitochondria were rescued by pre-incubation with 10-N-nonyl acridine orange (NAO), a molecule that specifically binds cardiolipin (CL), the signature phospholipid of mitochondrial membranes. Additionally, NAO prevented direct binding of tau oligomers to isolated mitochondria. At the same time, tau proteins exhibited high affinity to CL-enriched membranes, whilst permeabilisation of lipid vesicles also strongly correlated with CL content. Intriguingly, using single-channel electrophysiology, we could demonstrate the formation of non-selective ion-conducting tau nanopores exhibiting multilevel conductances in mito-mimetic bilayers. Taken together, the data presented here advances a scenario in which toxic cytosolic entities of tau protein would target mitochondrial organelles by associating with their CL-rich membrane domains, leading to membrane poration and compromised mitochondrial structural integrity.
Collapse
Affiliation(s)
- Angelique Camilleri
- Department of Physiology and Biochemistry, Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Stephanie Ghio
- Department of Physiology and Biochemistry, Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Mario Caruana
- Department of Physiology and Biochemistry, Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | | | - Felix Schmidt
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Frits Kamp
- Biomedical Center-BMC, Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Andrei Leonov
- MODAG GmbH, Wendelsheim, Germany; Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Sergey Ryazanov
- Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christian Griesinger
- Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Ruben J Cauchi
- Department of Physiology and Biochemistry, Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Neville Vassallo
- Department of Physiology and Biochemistry, Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta.
| |
Collapse
|
10
|
Quintana DD, Garcia JA, Sarkar SN, Jun S, Engler-Chiurazzi EB, Russell AE, Cavendish JZ, Simpkins JW. Hypoxia-reoxygenation of primary astrocytes results in a redistribution of mitochondrial size and mitophagy. Mitochondrion 2019; 47:244-255. [PMID: 30594729 PMCID: PMC6980114 DOI: 10.1016/j.mito.2018.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 08/07/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022]
Abstract
Astrocytes serve to maintain proper neuronal function and support neuronal viability, but remain largely understudied in research of cerebral ischemia. Astrocytic mitochondria are core participants in the metabolic activity of astrocytes. The objective of this study is to assess astrocyte mitochondrial competence during hypoxia and post-hypoxia reoxygenation and to determine cellular adaptive and pathological changes in the mitochondrial network. We hypothesize that during metabolic distress in astrocytes; mitochondrial networks undergo a shift in fission-fusion dynamics that results in a change in the morphometric state of the entire mitochondrial network. This mitochondrial network shift may be protective during metabolic distress by priming mitochondrial size and facilitating mitophagy. We demonstrated that hypoxia and post-hypoxia reoxygenation of rat primary astrocytes results in a redistribution of mitochondria to smaller sizes evoked by increased mitochondrial fission. Excessive mitochondrial fission corresponded to Drp-1 dephosphorylation at Ser 637, which preceded mitophagy of relatively small mitochondria. Reoxygenation of astrocytes marked the initiation of elevated mitophagic activity primarily reserved to the perinuclear region where a large number of the smallest mitochondria occurred. Although, during hypoxia astrocytic ATP content was severely reduced, after reoxygenation ATP content returned to near normoxic values and these changes mirrored mitochondrial superoxide production. Concomitant with these changes in astrocytic mitochondria, the number of astrocytic extensions declined only after 10-hours post-hypoxic reoxygenation. Overall, we posit a drastic mitochondrial network change that is triggered by a metabolic crisis during hypoxia; these changes are followed by mitochondrial degradation and retraction of astrocytic extensions during reoxygenation.
Collapse
Affiliation(s)
- Dominic D Quintana
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, United States
| | - Jorge A Garcia
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, United States
| | - Saumyendra N Sarkar
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, United States
| | - Sujung Jun
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, United States
| | - Elizabeth B Engler-Chiurazzi
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, United States
| | - Ashley E Russell
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, United States
| | - John Z Cavendish
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, United States
| | - James W Simpkins
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
11
|
Ravindran S, Kurian GA. Eventual analysis of global cerebral ischemia-reperfusion injury in rat brain: a paradigm of a shift in stress and its influence on cognitive functions. Cell Stress Chaperones 2019; 24:581-594. [PMID: 31025239 PMCID: PMC6527675 DOI: 10.1007/s12192-019-00990-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/18/2019] [Accepted: 03/24/2019] [Indexed: 12/31/2022] Open
Abstract
Cognitive issues in stroke arise as a result of reperfusion of a clogged artery, which is reported to exacerbate the injury in the brain leading to oxidative stress. Through the present work, we try to understand the regional variations across brain regions mainly cortex and striatum associated with the progression of ischemia-reperfusion injury (IRI). In a rat model of IRI, the influence of varying ischemia and reperfusion times on the biochemical phases across the brain regions were monitored. IRI resulted in the blood-brain barrier disruption and developed mild areas of risk. The brain's tolerance towards IRI indicated a progressive trend in the injury and apoptosis from ischemia to reperfusion that was supported by the activities of plasma lactate dehydrogenase and tissue caspase-3. Cognitive impairment in these rats was an implication of cellular oxidative stress (higher lipid peroxidation and lower antioxidant enzyme activity) that persisted by 24-h reperfusion. The oxidative stress was prominent in the cortex than the striatum and was supported by the lower ATP level. Upregulated Mn-SOD expression leading to a preserved mitochondria in the striatum could be attributed to the regional protection. Overall, a progression of IRI was observed from striatum to cortex leading to 5-day cognitive decline.
Collapse
Affiliation(s)
- Sriram Ravindran
- Vascular Biology Laboratory, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401 India
| | - Gino A. Kurian
- Vascular Biology Laboratory, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401 India
| |
Collapse
|
12
|
Preconditioning the rat heart with sodium thiosulfate preserved the mitochondria in response to ischemia-reperfusion injury. J Bioenerg Biomembr 2019; 51:189-201. [PMID: 30929125 DOI: 10.1007/s10863-019-09794-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 03/13/2019] [Indexed: 12/25/2022]
Abstract
Sodium thiosulfate preconditioning (SIPC) was recently reported to be cardioprotective due to its ability to inhibit caspase-3 activation, chelate calcium ions and scavenge free radicals. However, the rationale behind its ability to improve the contractility of isolated rat heart challenged with ischemia-reperfusion injury (IR) is not well understood. As mitochondrial preservation is implicated in cardioprotection against IR, the present study was conceived to identify whether the cardioprotective effects of SIPC is associated with mitochondrial preservation. Using the isolated Langendorff rat heart model, 1 mM sodium thiosulfate (STS) was used to precondition the rat heart before IR and was used to study its effect on cardiac mitochondria. The IR heart experienced a ventricular contractile dysfunction that was improved by SIPC. Upon assessing in-gel the ATP synthetic capacity of mitochondria from IR heart, there was a significant decline, while in SIPC it was well preserved close to sham. As a sustained flow of electrons through the ETC and well-integrated mitochondria are the prerequisites for ATP synthesis, SIPC improved the activities of ETC complex enzymes (I-IV), which was reflected from the preserved ultrastructure of the mitochondria as analyzed from electron-microscopy in the treated rat hearts. This observation was coherent with the elevated expression of PGC1α (20%), a critical regulator of ATP production, which increased the mitochondrial copy number as well in the STS treated heart compared to IR. In conclusion, mitochondria might be a critical target for SIPC mediated cardioprotection against IR.
Collapse
|
13
|
Ma L, Bi KD, Fan YM, Jiang ZY, Zhang XY, Zhang JW, Zhao J, Jiang FL, Dong JX. In vitro modulation of mercury-induced rat liver mitochondria dysfunction. Toxicol Res (Camb) 2018; 7:1135-1143. [PMID: 30510683 PMCID: PMC6220722 DOI: 10.1039/c8tx00060c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/09/2018] [Indexed: 01/09/2023] Open
Abstract
Mercury (Hg) is a toxic environmental pollutant that exerts its cytotoxic effects as cations by targeting mitochondria. In our work, we determined different mitochondrial toxicity factors using specific substrates and inhibitors following the addition of Hg2+ to the mitochondria isolated from Wistar rat liver in vitro. We found that Hg2+ induced marked changes in the mitochondrial ultrastructure accompanied by mitochondrial swelling, mitochondrial membrane potential collapse, mitochondrial membrane fluidity increase and Cytochrome c release. Additionally, the effects of Hg2+ on heat production of mitochondria were investigated using microcalorimetry; simultaneously, the effects on mitochondrial respiration were determined by Clark oxygen-electric methods. Microcalorimetry could provide detailed kinetic and thermodynamic information which demonstrated that Hg2+ had some biotoxicity effect on mitochondria. The inhibition of energy metabolic activities suggested that high concentrations of Hg2+ could induce mitochondrial ATP depletion under MPT and mitochondrial respiration inhibition. These results help us learn more about the toxicity of Hg2+ at the subcellular level.
Collapse
Affiliation(s)
- Long Ma
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences , Guangxi Normal University , Guilin 541004 , P. R. China
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Kai-Dong Bi
- Wuhan Britain-China School , Wuhan 430015 , P. R. China
| | - Yu-Meng Fan
- Wuhan Britain-China School , Wuhan 430015 , P. R. China
| | - Zi-Yi Jiang
- Wuhan Britain-China School , Wuhan 430015 , P. R. China
| | - Xiao-Yi Zhang
- Wuhan Britain-China School , Wuhan 430015 , P. R. China
| | | | - Jie Zhao
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Feng-Lei Jiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Jia-Xin Dong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences , Guangxi Normal University , Guilin 541004 , P. R. China
| |
Collapse
|
14
|
Effect of Sodium Thiosulfate Postconditioning on Ischemia-Reperfusion Injury Induced Mitochondrial Dysfunction in Rat Heart. J Cardiovasc Transl Res 2018; 11:246-258. [PMID: 29721767 DOI: 10.1007/s12265-018-9808-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/23/2018] [Indexed: 12/21/2022]
Abstract
The recent research on the therapeutic applications of sodium thiosulfate (STS) has gained importance in the treatment of cardiovascular diseases. Progressively through the present work, we have demonstrated that postconditioning of isolated rat heart subjected to ischemia-reperfusion injury using STS had preserved the mitochondrial structure, function, and number. Heart comprising of two mitochondrial subpopulations interfibrillar (IFM-involved in contractile function) and subsarcolemmal (SSM-involved in metabolic function), STS postconditioning imparted a state of hypometabolism to SSM, thereby reducing the metabolic demand of the reperfused heart. The IFM, on the other hand, provided the energy required to maintain contraction. Moreover, the hypometabolic state induced in SSM can lower the free radical release in addition to STS innate ability to act as an antioxidant and radical scavenger, all of which collectively provided cardioprotection. Therefore, drugs targeting IFM specifically or those reducing the energy demand for SSM can be suitable targets for myocardial ischemia-reperfusion injury.
Collapse
|
15
|
Ma L, Liu JY, Dong JX, Xiao Q, Zhao J, Jiang FL. Toxicity of Pb 2+ on rat liver mitochondria induced by oxidative stress and mitochondrial permeability transition. Toxicol Res (Camb) 2017; 6:822-830. [PMID: 30090545 PMCID: PMC6062357 DOI: 10.1039/c7tx00204a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 09/24/2017] [Indexed: 12/26/2022] Open
Abstract
Pb2+ exposure in humans occurs mainly through air inhalation, food and water uptake which has been shown to be generally associated with numerous body functions such as the central and peripheral nervous systems, the red blood cells, the kidneys and the liver. It has been reported that the liver is the storage site and an important primary target in Pb2+ toxicity, and the hepatotoxicity of Pb2+ could be resulted from the impairment of the liver mitochondria. In this study, several mitochondrial dysfunctions following the addition of Pb2+ (10-160 μM) were investigated. We found that Pb2+ inhibited the enzyme activities of mitochondrial respiratory complexes and complex III was the major source of Pb2+-induced significant reactive oxygen species (ROS) formation. As a consequence, our results showed that Pb2+ induced significant progress in mitochondrial lipid peroxidation, adenosine triphosphate (ATP) consumption and glutathione (GSH) oxidation. On the other hand, Pb2+ induced marked changes in mitochondrial permeability transition (MPT) accompanied by mitochondrial swelling, mitochondrial membrane potential collapse, mitochondrial membrane fluidity decrease and cytochrome c (Cyt c) release. Additionally, several mitochondrial MPT inhibitors and chelators were utilized to determine the possible interaction sites of Pb2+ on mitochondria. In general, our data supported that the Pb2+-induced liver toxicity was a result of the disruptive effect on the mitochondrial respiratory complexes. This disruptive effect caused oxidative stress and MPT, which led to mitochondrial dysfunctions and even cell death signalling via mitochondrial permeability transition pore (MPTP) opening and Cyt c release.
Collapse
Affiliation(s)
- Long Ma
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China . ; ; Tel: +86-27-68756667
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences , Guangxi Normal University , Guilin 541004 , P. R. China
| | - Jun-Yi Liu
- The Bryn Mawr School , Baltimore , MD 21210 , USA
| | - Jia-Xin Dong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences , Guangxi Normal University , Guilin 541004 , P. R. China
| | - Qi Xiao
- College of Chemistry and Material Science , Guangxi Teachers Education University , Nanning 530001 , P. R. China
| | - Jie Zhao
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China . ; ; Tel: +86-27-68756667
| | - Feng-Lei Jiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China . ; ; Tel: +86-27-68756667
| |
Collapse
|
16
|
Fatty acid amide hydrolase inhibitor URB597 may protect against kainic acid-induced damage to hippocampal neurons: Dependence on the degree of injury. Epilepsy Res 2017; 137:84-94. [PMID: 28963903 DOI: 10.1016/j.eplepsyres.2017.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/22/2017] [Accepted: 09/21/2017] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Status epilepticus (SE) provokes changes, which lead to neuronal alterations. Endocannabinoids (eCBs) can affect the neuronal survival during excitotoxicity and brain damage. Using a kainic acid (KA)-induced experimental SE model, we investigated whether cellular changes entail damage to endoplasmic reticulum (ER), mitochondria, and nuclei in hippocampal cells (CA1 field), and whether these alterations can be diminished by treatment with URB597, an inhibitor of eCB enzymatic degradation. MATERIAL AND METHODS SE was induced in Wistar rats by the microinjection of KA into the lateral ventricle. URB597 or a vehicle (10% DMSO) were injected in the same way into the brain of animals 24h after the KA infusion and then daily for the next nine days. The behavior of animals was controlled visually and recorded with a video system. The intensity of SE significantly varied in different animals. Convulsive (stages 3-5 according to the Racine scale) and nonconvulsive seizures (mainly stages 1, 2 and rarely 3, 4) were recognized. RESULTS Two weeks after SE, a significant loss of hippocampal cells occurred in animals with KA injections. In survived cells, ultrastructural alterations in ER, mitochondria, and nuclei of hippocampal neurons were observed. The degree of cell injury depended on the severity of SE. Alterations evoked by moderate seizures were prevented or diminished by URB597, but strong seizures induced mostly irreversible damage. CONCLUSIONS The beneficial impact of the FAAH inhibitor URB597 can give impetus to the development of novel neuroprotective strategies.
Collapse
|
17
|
Ammonia-induced mitochondrial dysfunction and energy metabolism disturbances in isolated brain and liver mitochondria, and the effect of taurine administration: relevance to hepatic encephalopathy treatment. Clin Exp Hepatol 2017; 3:141-151. [PMID: 29062904 PMCID: PMC5649485 DOI: 10.5114/ceh.2017.68833] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/06/2017] [Indexed: 01/29/2023] Open
Abstract
INTRODUCTION Ammonia-induced oxidative stress, mitochondrial dysfunction, and energy crisis are known as some the major mechanisms of brain injury in hepatic encephalopathy (HE). Hyperammonemia also affects the liver and hepatocytes. Therefore, targeting mitochondria seems to be a therapeutic point of intervention in the treatment of HE. Taurine is an abundant amino acid in the human body. Several biological functions including the mitochondrial protective properties are attributed to this amino acid. The aim of this study is to evaluate the effect of taurine administration on ammonia-induced mitochondrial dysfunction. MATERIAL AND METHODS Isolated mice liver and brain mitochondria were exposed to different concentrations of ammonia (1, 5, 10, and 20 mM) and taurine (1, 5, and 10 mM), and several mitochondrial indices were assessed. RESULTS It was found that ammonia inhibited mitochondrial dehydrogenases activity caused collapse of mitochondrial membrane potential (MMP), induced mitochondrial swelling (MPP), and increased reactive oxygen species (ROS) in isolated liver and brain mitochondria. Furthermore, a significant amount of lipid peroxidation (LPO), along with glutathione (GSH) and ATP depletion, was detected in ammonia exposed mitochondria. Taurine administration (5 and 10 mM) mitigated ammonia-induced mitochondrial dysfunction. CONCLUSIONS The current investigation demonstrates that taurine is instrumental in preserving brain and liver mitochondrial function in a hyperammonemic environment. The data suggest taurine as a potential protective agent with a therapeutic capability against hepatic encephalopathy and hyperammonemia.
Collapse
|
18
|
Ma L, Dong JX, Wu C, Li XY, Chen J, Zhang H, Liu Y. Spectroscopic, Polarographic, and Microcalorimetric Studies on Mitochondrial Dysfunction Induced by Ethanol. J Membr Biol 2017; 250:195-204. [PMID: 28224174 DOI: 10.1007/s00232-017-9947-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/25/2017] [Indexed: 01/16/2023]
Abstract
Liver mitochondria are involved in several important life processes; mitochondrial dysfunction and disorders are implicated in several human diseases. Alcohol permeates all tissues of the body and exerts some intrinsic hepatotoxicity. In this work, our results demonstrated that ethanol caused a series of mitochondria permeability transition pore (MPTP) opening factors such as mitochondrial swelling, increased permeability of H+ and K+, collapsed membrane potential, and increased membrane fluidity. Furthermore, mitochondrial ultrastructure alternation observed clearly by transmission electron microscopy and the release of Cytochrome c could explain the MPTP opening from another aspect. Moreover, ethanol damaged the mitochondrial respiration system and induced disturbance of mitochondrial energy metabolism which was monitored by polarographic and microcalorimetric methods, respectively. Considered together, these damages may promote both apoptotic and necrotic cell death and contribute to the onset or progression alcohol-induced liver diseases.
Collapse
Affiliation(s)
- Long Ma
- StateKey Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China.,State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Jia-Xin Dong
- StateKey Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China.
| | - Can Wu
- StateKey Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Xue-Yi Li
- StateKey Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Jing Chen
- College of Life Science, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Hong Zhang
- College of Life Science, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Yi Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
19
|
Lai L, Li YP, Mei P, Chen W, Jiang FL, Liu Y. Size Effects on the Interaction of QDs with the Mitochondrial Membrane In Vitro. J Membr Biol 2016; 249:757-767. [PMID: 27510720 DOI: 10.1007/s00232-016-9920-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/01/2016] [Indexed: 01/18/2023]
Abstract
The mitochondrial toxicity induced by GSH-CdTe Quantum dots (QDs) of different sizes was investigated. The decreases in absorbance and transmission electron microscopy images show that QDs induce the swelling of mitochondria. Results of flow cytometry indicate that QDs cause a reduction of mitochondrial membrane potential (MMP). A remarkable increase in fluidity of protein regions of mitochondrial membrane is observed, whereas the lipid regions are not obviously affected. Cyclosporin A (CsA) effectively prevents the QD-induced mitochondrial swelling. On the basis of these results, it is proposed that QDs induce mitochondrial permeability transition (MPT). Moreover, with increasing QDs size, a pronounced MPT is observed. The difference between the membrane fluidity induced by QDs and Cadmium ion and the ineffective protective effects of EDTA suggests that the mitochondrial toxicity of QDs cannot be only attributed to the release of metal ion. The protective effects of HSA indicate that the interaction of QDs with pore-forming protein gives rise to the increase in membrane fluidity. This hypothesis is demonstrated by the interaction of QDs with model membranes and proteins using differential scanning calorimetry and isothermal titration microcalorimetry. In conclusion, as the size of QDs increases, the binding affinity of QDs with membrane protein increases, and therefore causes a pronounced mitochondrial damage.
Collapse
Affiliation(s)
- Lu Lai
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, People's Republic of China.
| | - Ya-Ping Li
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, People's Republic of China
| | - Ping Mei
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, People's Republic of China
| | - Wu Chen
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, People's Republic of China
| | - Feng-Lei Jiang
- State Key Laboratory of Virology and Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecule Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yi Liu
- State Key Laboratory of Virology and Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecule Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
20
|
Nanegrungsunk D, Apaijai N, Yarana C, Sripetchwandee J, Limpastan K, Watcharasaksilp W, Vaniyapong T, Chattipakorn N, Chattipakorn SC. Bevacizumab is superior to Temozolomide in causing mitochondrial dysfunction in human brain tumors. Neurol Res 2016; 38:285-93. [PMID: 27078710 DOI: 10.1080/01616412.2015.1114233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Current chemotherapy treatments available for treating high-grade brain tumors, Temozolomide (TMZ) or Bevacizumab (BEV), not only have specific anti-tumor mechanisms, but also have an effect on mitochondria. However, effects of both drugs on mitochondria isolated from human brain tumors have not been thoroughly investigated. This study determined the direct effects of TMZ and BEV as well as the neurotoxic condition (calcium overload), on the function of mitochondria and compared these effects on mitochondria isolated from low- and high-grade human brain tumors. METHODS Mitochondria were isolated from either low- or high-grade human primary brain tumors. Calcium overload conditions (100 or 200 μM), TMZ (300 μM), and BEV (2 mg/mL) were applied to isolated mitochondria from low- and high-grade brain tumors. Following the treatment, mitochondrial function, including reactive oxygen species production, membrane potential changes, and swelling, were determined. The mitochondrial morphology was also examined. RESULTS In calcium overload conditions, mitochondrial dysfunction was only found to have occurred in low-grade tumors. In TMZ and BEV treatment, BEV, rather than TMZ, caused greater membrane depolarization and mitochondrial swelling in both grades of brain tumors. CONCLUSIONS TMZ and BEV can directly cause the dysfunction of mitochondria isolated from human brain tumors. However, BEV has a greater ability to disturb mitochondrial function in mitochondria isolated from human brain tumors than either TMZ or calcium overload conditions.
Collapse
Affiliation(s)
- Danop Nanegrungsunk
- a Department of Anesthesiology, Faculty of Medicine , Chiang Mai University , Chiang Mai , Thailand.,b Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine , Chiang Mai University , Chiang Mai , Thailand
| | - Nattayaporn Apaijai
- b Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine , Chiang Mai University , Chiang Mai , Thailand
| | - Chontida Yarana
- b Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine , Chiang Mai University , Chiang Mai , Thailand
| | - Jirapas Sripetchwandee
- b Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine , Chiang Mai University , Chiang Mai , Thailand
| | - Kriengsak Limpastan
- c Neurosurgery Division, Department of Surgery, Faculty of Medicine , Chiang Mai University , Chiang Mai , Thailand
| | - Wanarak Watcharasaksilp
- c Neurosurgery Division, Department of Surgery, Faculty of Medicine , Chiang Mai University , Chiang Mai , Thailand
| | - Tanat Vaniyapong
- c Neurosurgery Division, Department of Surgery, Faculty of Medicine , Chiang Mai University , Chiang Mai , Thailand
| | - Nipon Chattipakorn
- b Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine , Chiang Mai University , Chiang Mai , Thailand
| | - Siriporn C Chattipakorn
- b Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine , Chiang Mai University , Chiang Mai , Thailand.,d Department of Oral Biology and Diagnostic Science, Faculty of Dentistry , Chiang Mai University , Chiang Mai , Thailand
| |
Collapse
|
21
|
Urresti J, Ruiz-Meana M, Coccia E, Arévalo JC, Castellano J, Fernández-Sanz C, Galenkamp KMO, Planells-Ferrer L, Moubarak RS, Llecha-Cano N, Reix S, García-Dorado D, Barneda-Zahonero B, Comella JX. Lifeguard Inhibits Fas Ligand-mediated Endoplasmic Reticulum-Calcium Release Mandatory for Apoptosis in Type II Apoptotic Cells. J Biol Chem 2015; 291:1221-34. [PMID: 26582200 DOI: 10.1074/jbc.m115.677682] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 12/29/2022] Open
Abstract
Death receptors are members of the tumor necrosis factor receptor superfamily involved in the extrinsic apoptotic pathway. Lifeguard (LFG) is a death receptor antagonist mainly expressed in the nervous system that specifically blocks Fas ligand (FasL)-induced apoptosis. To investigate its mechanism of action, we studied its subcellular localization and its interaction with members of the Bcl-2 family proteins. We performed an analysis of LFG subcellular localization in murine cortical neurons and found that LFG localizes mainly to the ER and Golgi. We confirmed these results with subcellular fractionation experiments. Moreover, we show by co-immunoprecipitation experiments that LFG interacts with Bcl-XL and Bcl-2, but not with Bax or Bak, and this interaction likely occurs in the endoplasmic reticulum. We further investigated the relationship between LFG and Bcl-XL in the inhibition of apoptosis and found that LFG protects only type II apoptotic cells from FasL-induced death in a Bcl-XL dependent manner. The observation that LFG itself is not located in mitochondria raises the question as to whether LFG in the ER participates in FasL-induced death. Indeed, we investigated the degree of calcium mobilization after FasL stimulation and found that LFG inhibits calcium release from the ER, a process that correlates with LFG blockage of cytochrome c release to the cytosol and caspase activation. On the basis of our observations, we propose that there is a required step in the induction of type II apoptotic cell death that involves calcium mobilization from the ER and that this step is modulated by LFG.
Collapse
Affiliation(s)
- Jorge Urresti
- From the Cell Signaling and Apoptosis Group and the Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marisol Ruiz-Meana
- Laboratory of Experimental Cardiology, Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron, 08035 Barcelona, Spain
| | | | - Juan Carlos Arévalo
- the Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca 37007, Spain, and the Institute of Biomedical Research of Salamanca, Salamanca 37007, Spain
| | - José Castellano
- Laboratory of Experimental Cardiology, Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron, 08035 Barcelona, Spain
| | - Celia Fernández-Sanz
- Laboratory of Experimental Cardiology, Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron, 08035 Barcelona, Spain
| | | | - Laura Planells-Ferrer
- From the Cell Signaling and Apoptosis Group and the Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | | - David García-Dorado
- Laboratory of Experimental Cardiology, Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron, 08035 Barcelona, Spain
| | - Bruna Barneda-Zahonero
- From the Cell Signaling and Apoptosis Group and the Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain,
| | - Joan X Comella
- From the Cell Signaling and Apoptosis Group and the Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain,
| |
Collapse
|
22
|
Yu N, Wang S, Wang P, Li Y, Li S, Wang L, Chen H, Wang Y. The calcium uniporter regulates the permeability transition pore in isolated cortical mitochondria. Neural Regen Res 2015; 7:109-13. [PMID: 25767484 PMCID: PMC4354124 DOI: 10.3969/j.issn.1673-5374.2012.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/20/2011] [Indexed: 01/28/2023] Open
Abstract
To investigate the influence of the mitochondrial calcium uniporter on the mitochondrial permeability transition pore, the present study observed mitochondrial morphology in cortical neurons isolated from adult rats using transmission electron microscopy, and confirmed the morphology and activity of isolated mitochondria by detecting succinic dehydrogenase and monoamine oxidase, two mitochondrial enzymes. Isolated mitochondria were treated with either ruthenium red, an inhibitor of the uniporter, spermine, an activator of the uniporter, or in combination with cyclosporin A, an inhibitor of the mitochondrial permeability transition pore. Results showed that ruthenium red inhibited CaCl2-induced mitochondrial permeability transition pore opening, spermine enhanced opening, and cyclosporin A attenuated the effects of spermine. Results demonstrated that the mitochondrial calcium uniporter plays a role in regulating the mitochondrial permeability transition pore in mitochondria isolated from the rat brain cortex.
Collapse
Affiliation(s)
- Ning Yu
- Department of Anesthesiology, Affiliated Hospital of Qingdao University Medical College, Qingdao 266003, Shandong Province, China
| | - Shilei Wang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University Medical College, Qingdao 266003, Shandong Province, China
| | - Peng Wang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University Medical College, Qingdao 266003, Shandong Province, China
| | - Yu Li
- Department of Anesthesiology, Affiliated Hospital of Qingdao University Medical College, Qingdao 266003, Shandong Province, China
| | - Shuhong Li
- Department of Anesthesiology, Affiliated Hospital of Qingdao University Medical College, Qingdao 266003, Shandong Province, China
| | - Li Wang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University Medical College, Qingdao 266003, Shandong Province, China
| | - Hongbing Chen
- Cerebrovascular Disease Institute, Qingdao University Medical College, Qingdao 266003, Shandong Province, China
| | - Yanting Wang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University Medical College, Qingdao 266003, Shandong Province, China
| |
Collapse
|
23
|
Lai L, Jin JC, Xu ZQ, Ge YS, Jiang FL, Liu Y. Spectroscopic and Microscopic Studies on the Mechanism of Mitochondrial Toxicity Induced by CdTe QDs Modified with Different Ligands. J Membr Biol 2015; 248:727-40. [DOI: 10.1007/s00232-015-9785-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 02/24/2015] [Indexed: 12/23/2022]
|
24
|
Bai J, Lyden PD. Revisiting Cerebral Postischemic Reperfusion Injury: New Insights in Understanding Reperfusion Failure, Hemorrhage, and Edema. Int J Stroke 2015; 10:143-52. [DOI: 10.1111/ijs.12434] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/14/2014] [Indexed: 01/11/2023]
Abstract
Cerebral postischemic reperfusion injury is defined as deterioration of ischemic brain tissue that parallels and antagonizes the benefits of restoring cerebral circulation after therapeutic thrombolysis for acute ischemic stroke. To understand the paradox of injury caused by treatment, we first emphasize the phenomenon in which recanalization of an occluded artery does not lead to tissue reperfusion. Additionally, no-reflow after recanalization may be due to injury of the neurovascular unit, distal microthrombosis, or both, and certainly worsens outcome. We examine the mechanism of molecular and sub-cellular damage in the neurovascular unit, notably oxidative stress, mitochondrial dysfunction, and apoptosis. At the level of the neurovascular unit, which mediates crosstalk between the damaged brain and systemic responses in blood, we summarize emerging evidence demonstrating that individual cell components play unique and cumulative roles that lead to damage of the blood–brain barrier and neurons. Furthermore, we review the latest developments in establishing a link between the immune system and microvascular dysfunction during ischemic reperfusion. Progress in assessing reperfusion injury has also been made, and we review imaging studies using various magnetic resonance imaging modalities. Lastly, we explore potential treatment approaches, including ischemic preconditioning, postconditioning, pharmacologic agents, and hypothermia.
Collapse
Affiliation(s)
- Jilin Bai
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Patrick D. Lyden
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
25
|
Abstract
Mechanosensory hair cells are vulnerable to environmental insult, resulting in hearing and balance disorders. We demonstrate that directional compartmental flow of intracellular Ca(2+) underlies death in zebrafish lateral line hair cells after exposure to aminoglycoside antibiotics, a well characterized hair cell toxin. Ca(2+) is mobilized from the ER and transferred to mitochondria via IP3 channels with little cytoplasmic leakage. Pharmacological agents that shunt ER-derived Ca(2+) directly to cytoplasm mitigate toxicity, indicating that high cytoplasmic Ca(2+) levels alone are not cytotoxic. Inhibition of the mitochondrial transition pore sensitizes hair cells to the toxic effects of aminoglycosides, contrasting with current models of excitotoxicity. Hair cells display efficient ER-mitochondrial Ca(2+) flow, suggesting that tight coupling of these organelles drives mitochondrial activity under physiological conditions at the cost of increased susceptibility to toxins.
Collapse
|
26
|
Lin HC, Narasimhan P, Liu SY, Chan PH, Lai IR. Postconditioning mitigates cell death following oxygen and glucose deprivation in PC12 cells and forebrain reperfusion injury in rats. J Neurosci Res 2014; 93:140-8. [PMID: 25082329 DOI: 10.1002/jnr.23460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/10/2014] [Accepted: 07/05/2014] [Indexed: 11/09/2022]
Abstract
Postconditioning mitigates ischemia-induced cellular damage via a modified reperfusion procedure. Mitochondrial permeability transition (MPT) is an important pathophysiological change in reperfusion injury. This study explores the role of MPT modulation underlying hypoxic postconditioning (HPoC) in PC12 cells and studies the neuroprotective effects of ischemic postconditioning (IPoC) on rats. Oxygen-glucose deprivation (OGD) was performed for 10 hr on PC12 cells. HPoC was induced by three cycles of 10-min reoxygenation/10-min rehypoxia after OGD. The MPT inhibitor N-methyl-4-isoleucine cyclosporine (NIM811) and the MPT inducer carboxyatractyloside (CATR) were administered to selective groups before OGD. Cellular death was evaluated by flow cytometry and Western blot analysis. JC-1 fluorescence signal was used to estimate the mitochondrial membrane potential (△Ψm ). Transient global cerebral ischemia (tGCI) was induced via the two-vessel occlusion and hypotension method in male Sprague Dawley rats. IPoC was induced by three cycles of 10-sec reperfusion/10-sec reocclusion after index ischemia. HPoC and NIM811 administration attenuated cell death, cytochrome c release, and caspase-3 activity and maintained △Ψm of PC12 cells after OGD. The addition of CATR negated the protection conferred by HPoC. IPoC reduced neuronal degeneration and cytochrome c release and cleaved caspase-9 expression of hippocampal CA1 neurons in rats after tGCI. HPoC protected PC12 cells against OGD by modulating the MPT. IPoC attenuated degeneration of hippocampal neurons after cerebral ischemia.
Collapse
Affiliation(s)
- Han-Chen Lin
- Department of Anatomy and Cell Biology, Medical College, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
27
|
Gao J, Yao H, Pan XD, Xie AM, Zhang L, Song JH, Ma AJ, Liu ZC. Alteration of mitochondrial function and ultrastructure in the hippocampus of pilocarpine-treated rat. Epilepsy Res 2014; 108:162-70. [DOI: 10.1016/j.eplepsyres.2013.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 09/17/2013] [Accepted: 11/21/2013] [Indexed: 11/26/2022]
|
28
|
Sripetchwandee J, KenKnight SB, Sanit J, Chattipakorn S, Chattipakorn N. Blockade of mitochondrial calcium uniporter prevents cardiac mitochondrial dysfunction caused by iron overload. Acta Physiol (Oxf) 2014; 210:330-41. [PMID: 24034353 DOI: 10.1111/apha.12162] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/15/2013] [Accepted: 08/29/2013] [Indexed: 12/24/2022]
Abstract
AIM Iron overload in the heart can lead to iron-overload cardiomyopathy and cardiac arrhythmia. In the past decades, growing evidence has suggested that cardiac mitochondrial dysfunction is associated with the development of cardiac dysfunction and lethal arrhythmias. Despite these facts, the effect of iron overload on cardiac mitochondrial function is still unclear. In this study, we determined the effects of iron overload on the cardiac mitochondrial function and the routes of cardiac mitochondrial iron uptake. We tested the hypothesis that iron overload can lead to cardiac mitochondrial dysfunction and that mitochondrial calcium uniporter (MCU) plays a major role for cardiac mitochondrial iron uptake under iron-overload condition. Cardiac mitochondrial function was assessed via the determination of mitochondrial swelling, mitochondrial reactive oxygen species (ROS) production and mitochondrial membrane potential changes. METHODS Isolated cardiac mitochondria from male Wistar rats were used in this study. To determine the routes for cardiac mitochondrial iron uptake, isolated mitochondria were exposed to MCU blocker (Ru360), mitochondrial permeability transition pore (mPTP) blocker (cyclosporin A) and an iron chelator (deferoxamine). RESULTS We found that (i) iron overload caused cardiac mitochondrial dysfunction, indicated by increased ROS production, mitochondrial membrane depolarization and mitochondrial swelling; and (ii) only MCU blocker completely protected cardiac mitochondrial dysfunction caused by iron overload. CONCLUSIONS These findings strongly suggest that MCU could be the major route for iron uptake into cardiac mitochondria. The inhibition of MCU could be the novel pharmacological intervention for preventing iron-overload cardiomyopathy.
Collapse
Affiliation(s)
- J. Sripetchwandee
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
| | - S. B. KenKnight
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
| | - J. Sanit
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
| | - S. Chattipakorn
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| | - N. Chattipakorn
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Biomedical Engineering Center; Chiang Mai University; Chiang Mai Thailand
| |
Collapse
|
29
|
Teng H, Wu B, Zhao K, Yang G, Wu L, Wang R. Oxygen-sensitive mitochondrial accumulation of cystathionine β-synthase mediated by Lon protease. Proc Natl Acad Sci U S A 2013; 110:12679-84. [PMID: 23858469 PMCID: PMC3732959 DOI: 10.1073/pnas.1308487110] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxygen-sensitive accumulation and degradation, two opposite but intrinsically linked events, of heme proteins in mitochondria affect mitochondrial functions, including bioenergetics and oxygen-sensing processes. Cystathionine β-synthase (CBS) contains a prosthetic heme group and catalyzes the production of hydrogen sulfide in mammalian cells. Here we show that CBS proteins were present in liver mitochondria at a low level under normoxia conditions. Ischemia/hypoxia increased the accumulation of CBS proteins in mitochondria. The normalization of oxygen partial pressure accelerated the degradation of CBS proteins. Lon protease, a major degradation enzyme in mitochondrial matrix, recognized and degraded mitochondrial CBS by specifically targeting at the oxygenated heme group of CBS proteins. The accumulation of CBS in mitochondria increased hydrogen sulfide production, which prevented Ca(2+)-mediated cytochrome c release from mitochondria and decreased reactive oxygen species generation. Mitochondrial accumulation of heme oxygenase-1, another heme protein, was also regulated by oxygen level and Lon protease in the same mechanism as for CBS. Our findings provide a fundamental and general mechanism for oxygen-sensitive regulation of mitochondrial functions by linking oxygenation level to the accumulation/degradation of mitochondrial heme proteins.
Collapse
Affiliation(s)
- Huajian Teng
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada P7B 5E1
| | - Bo Wu
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada P7B 5E1
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, China
| | - Kexin Zhao
- School of Kinesiology, Lakehead University, Thunder Bay, ON, Canada P7B 5E1
| | - Guangdong Yang
- School of Kinesiology, Lakehead University, Thunder Bay, ON, Canada P7B 5E1
| | - Lingyun Wu
- Department of Health Sciences, Lakehead University, Thunder Bay, ON, Canada P7B 5E1; and
- Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada P7A 7T1
| | - Rui Wang
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada P7B 5E1
| |
Collapse
|
30
|
Barros Silva R, Santos NAG, Martins NM, Ferreira DAS, Barbosa F, Oliveira Souza VC, Kinoshita A, Baffa O, Del-Bel E, Santos AC. Caffeic acid phenethyl ester protects against the dopaminergic neuronal loss induced by 6-hydroxydopamine in rats. Neuroscience 2013; 233:86-94. [PMID: 23291456 DOI: 10.1016/j.neuroscience.2012.12.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/20/2012] [Accepted: 12/22/2012] [Indexed: 01/13/2023]
Abstract
Caffeic acid phenethyl ester (CAPE) is a botanical compound abundant in honeybees' propolis. It has anti-inflammatory, antiviral, antioxidant, immunomodulatory and antitumor properties. Its beneficial effects against neurodegenerative diseases, including Parkinson's disease, have also been suggested and some mechanisms have been proposed. Mitochondrial damage and oxidative stress are critical events in neurodegeneration. Release of cytochrome c from mitochondria to cytosol and the downstream activation of caspase-3 have been suggested as targets of the protective mechanism of CAPE. Most of the studies addressing the protective effect of CAPE have been performed in cell culture. This is the first study to demonstrate the protective effect of CAPE against the dopaminergic neuronal loss induced by 6-hydroxydopamine (6-OHDA) in rats. It also demonstrates, for the first time, the inhibitory effect of CAPE on mitochondrial permeability transition (MPT), a mediator of neuronal death that triggers cytochrome c release and caspase-3 activation. Scavenging of reactive oxygen species (ROS) and metal chelation was demonstrated in the brain-affected areas of the rats treated with 6-OHDA and CAPE. Additionally, we demonstrated that CAPE does not affect brain mitochondrial function. Based on these findings and on its ability to cross the blood-brain barrier, CAPE is a promising compound to treat Parkinson's and other neurodegenerative diseases.
Collapse
Affiliation(s)
- R Barros Silva
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Avenida do Café s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhuravliova E, Barbakadze T, Jojua N, Zaalishvili E, Shanshiashvili L, Natsvlishvili N, Kalandadze I, Narmania N, Chogovadze I, Mikeladze D. Synaptic and non-synaptic mitochondria in hippocampus of adult rats differ in their sensitivity to hypothyroidism. Cell Mol Neurobiol 2012; 32:1311-21. [PMID: 22706894 DOI: 10.1007/s10571-012-9857-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/31/2012] [Indexed: 11/28/2022]
Abstract
Hypothyroidism in humans provokes various neuropsychiatric disorders, movement, and cognitive abnormalities that may greatly depend on the mitochondrial energy metabolism. Brain cells contain at least two major populations of mitochondria that include the non-synaptic mitochondria, which originate from neuronal and glial cell bodies (CM), and the synaptic (SM) mitochondria, which primarily originate from the nerve terminals. Several parameters of oxidative stress and other parameters in SM and CM fractions of hippocampus of adult rats were compared among euthyroid (control), hypothyroid (methimazol-treated), and thyroxine (T4)-treated hypothyroid states. nNOS translocation to CM was observed with concomitant increase of mtNOS's activity in hypothyroid rats. In parallel, oxidation of cytochrome c oxidase and production of peroxides with substrates of complex I (glutamate + malate) were enhanced in CM, whereas the activity of aconitase and mitochondrial membrane potential (ΔΨm) were decreased. Furthermore, the elevation of mitochondrial hexokinase activity in CM was also found. No differences in these parameters between control and hypothyroid animals were observed in SM. However, in contrast to CM, hypothyroidism increases the level of pro-apoptotic K-Ras and Bad in SM. Our results suggest that hypothyroidism induces moderate and reversible oxidative/nitrosative stress in hippocampal CM, leading to the compensatory elevation of hexokinase activity and aerobic glycolysis. Such adaptive activation in glycolytic metabolism does not occur in SM, suggesting that synaptic mitochondria differ in their sensitivity to the energetic disturbance in hypothyroid conditions.
Collapse
Affiliation(s)
- E Zhuravliova
- I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Li J, Ma X, Yu W, Lou Z, Mu D, Wang Y, Shen B, Qi S. Reperfusion promotes mitochondrial dysfunction following focal cerebral ischemia in rats. PLoS One 2012; 7:e46498. [PMID: 23029539 PMCID: PMC3460895 DOI: 10.1371/journal.pone.0046498] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 08/14/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Mitochondrial dysfunction has been implicated in the cell death observed after cerebral ischemia, and several mechanisms for this dysfunction have been proposed. Reperfusion after transient cerebral ischemia may cause continued and even more severe damage to the brain. Many lines of evidence have shown that mitochondria suffer severe damage in response to ischemic injury. The purpose of this study was to observe the features of mitochondrial dysfunction in isolated mitochondria during the reperfusion period following focal cerebral ischemia. METHODS Male Wistar rats were subjected to focal cerebral ischemia. Mitochondria were isolated using Percoll density gradient centrifugation. The isolated mitochondria were fixed for electron microscopic examination; calcium-induced mitochondrial swelling was quantified using spectrophotometry. Cyclophilin D was detected by Western blotting. Fluorescent probes were used to selectively stain mitochondria to measure their membrane potential and to measure reactive oxidative species production using flow cytometric analysis. RESULTS Signs of damage were observed in the mitochondrial morphology after exposure to reperfusion. The mitochondrial swelling induced by Ca(2+) increased gradually with the increasing calcium concentration, and this tendency was exacerbated as the reperfusion time was extended. Cyclophilin D protein expression peaked after 24 hours of reperfusion. The mitochondrial membrane potential was decreased significantly during the reperfusion period, with the greatest decrease observed after 24 hours of reperfusion. The surge in mitochondrial reactive oxidative species occurred after 2 hours of reperfusion and was maintained at a high level during the reperfusion period. CONCLUSIONS Reperfusion following focal cerebral ischemia induced significant mitochondrial morphological damage and Ca(2+)-induced mitochondrial swelling. The mechanism of this swelling may be mediated by the upregulation of the Cyclophilin D protein, the destruction of the mitochondrial membrane potential and the generation of excessive reactive oxidative species.
Collapse
Affiliation(s)
- Jun Li
- Department of Anesthesiology, the Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xuesong Ma
- Department of Anesthesiology, the Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wei Yu
- Department of Anesthesiology, the Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhangqun Lou
- Department of Anesthesiology, the Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Dunlan Mu
- Department of Anesthesiology, the Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ying Wang
- Department of Anesthesiology, the Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Baozhong Shen
- Molecular Imaging Key Laboratory of General Universities and Colleges of Heilongjiang Province, Harbin, China
| | - Sihua Qi
- Department of Anesthesiology, the Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
33
|
Calcium-induced Cardiac Mitochondrial Dysfunction Is Predominantly Mediated by Cyclosporine A-dependent Mitochondrial Permeability Transition Pore. Arch Med Res 2012; 43:333-8. [DOI: 10.1016/j.arcmed.2012.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 06/06/2012] [Indexed: 12/17/2022]
|
34
|
Zhao Y, Jin X, Wang J, Tan L, Li S, Luo A. Isoflurane enhances the expression of cytochrome C by facilitation of NMDA receptor in developing rat hippocampal neurons in vitro. ACTA ACUST UNITED AC 2011; 31:779-783. [PMID: 22173498 DOI: 10.1007/s11596-011-0676-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Indexed: 11/25/2022]
|
35
|
Radenovic L, Korenic A, Maleeva G, Osadchenko I, Kovalenko T, Skibo G. Comparative ultrastructural analysis of mitochondria in the CA1 and CA3 hippocampal pyramidal cells following global ischemia in Mongolian gerbils. Anat Rec (Hoboken) 2011; 294:1057-65. [PMID: 21538930 DOI: 10.1002/ar.21390] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/14/2011] [Accepted: 03/07/2011] [Indexed: 11/12/2022]
Abstract
Post-ischemic injury of the hippocampus unrolls at different levels and has both functional and structural implications. The deficiency in neuron energy metabolism is an initiating factor. We performed transmission electron microscopic (TEM) comparative analysis of mitochondria in excitatory spine synapses in CA1 stratum radiatum and CA3 hippocampal areas after 5 min of global cerebral ischemia in Mongolian gerbils, 4 and 7 days after reperfusion. Electron microscopy and unbiased morphometric methods were used to evaluate synaptic plasticity, and the number and size of mitochondria in synaptic terminals. We compared the morphological organization of mitochondria in presynaptic terminals between CA1 and CA3 areas in control and post-ischemic condition according to the following morphometric parameters: mitochondrial volume fraction, mitochondrial frequency in CA1 and CA3 terminals, mean number of mitochondria per presynaptic terminal, frequency of damaged mitochondria in terminals, and density of presynaptic terminals. Our ultrastructural study revealed statistically significant differences in morphometric parameters between CA1 and CA3 areas in control conditions, as well as in post-ischemic conditions. Also, we found temporal differences in measured parameters obtained 4 and 7 days after reperfusion. This study showed significant morphological differences in the organization of mitochondria in excitatory spine synapses between CA1 and CA3 areas, which corresponded with already known differences in functionality and sensitivity to the ischemic insult. Our conclusion is that revealed post-ischemic changes in mitochondrial distribution in presynaptic CA1 and CA3 terminals could be an indicator of hippocampal metabolic dysfunction and synaptic plasticity.
Collapse
Affiliation(s)
- Lidija Radenovic
- Faculty of Biology, Center for Laser Microscopy, Institute for Physiology and Biochemistry, University of Belgrade, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
The developing brain is particularly vulnerable to reactive oxygen and reactive nitrogen species-mediated damage because of its high concentrations of unsaturated fatty acids, high rate of oxygen consumption, low concentrations of antioxidants, high content of metals catalyzing free radical formation, and large proportion of sensitive immature cells. In this review, we outline the dynamic changes of energy resources, metabolic requirements, and endogenous free radical scavenging systems during physiologic brain development. We further discuss the involvement of oxidative stress in the pathogenesis of neuronal death after exposure of the infant brain to hyperoxia, hypoxia/ischemia, sedative drugs, ethanol, and mechanical trauma. Several approaches have been developed to combat oxidative stress, but neuroprotective treatment strategies are limited in the clinical setting.
Collapse
Affiliation(s)
- Chrysanthy Ikonomidou
- Department of Neurology, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA.
| | | |
Collapse
|
37
|
The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: From respiration to apoptosis. Mitochondrion 2011; 11:369-81. [PMID: 21296189 DOI: 10.1016/j.mito.2011.01.010] [Citation(s) in RCA: 388] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/26/2011] [Accepted: 01/28/2011] [Indexed: 02/06/2023]
Abstract
Cytochrome c (Cytc) is essential in mitochondrial electron transport and intrinsic type II apoptosis. Mammalian Cytc also scavenges reactive oxygen species (ROS) under healthy conditions, produces ROS with the co-factor p66(Shc), and oxidizes cardiolipin during apoptosis. The recent finding that Cytc is phosphorylated in vivo underpins a model for the pivotal role of Cytc regulation in making life and death decisions. An apoptotic sequence of events is proposed involving changes in Cytc phosphorylation, increased ROS via increased mitochondrial membrane potentials or the p66(Shc) pathway, and oxidation of cardiolipin by Cytc followed by its release from the mitochondria. Cytc regulation in respiration and cell death is discussed in a human disease context including neurodegenerative and cardiovascular diseases, cancer, and sepsis.
Collapse
|
38
|
Hokari M, Kuroda S, Iwasaki Y. Pretreatment with the ciclosporin derivative NIM811 reduces delayed neuronal death in the hippocampus after transient forebrain ischaemia. J Pharm Pharmacol 2011; 62:485-90. [PMID: 20604838 DOI: 10.1211/jpp.62.04.0011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES There have been several previous studies showing that ciclosporin, a ligand for cyclophilin D (CypD), reduces mitochondrial permeability transition (mPT) and ameliorates delayed neuronal death. NIM811 is a non-immunosuppressive ciclosporin derivative that also inhibits mPT, but has significantly less cytotoxicity than ciclosporin. Actually, in animal experiments, several investigators have reported that NIM811 ameliorates central nervous system disorders, such as traumatic brain injury, transient focal cerebral ischaemia and spinal cord injury. Therefore, we evaluated whether the ciclosporin derivative, NIM811 reduces mPT and ameliorates delayed neuronal death in the hippocampal CA1 sectors in mice when subjected to transient forebrain ischaemia. METHODS Male C57BL/6 mice were treated with 50 mg/kg ciclosporin, 10, 50 or 100 mg/kg NIM811 or phosphate-buffered saline. At 30 min post-injection, all mice were subjected to 20 min bilateral common carotid artery occlusion (BCCAO). To estimate delayed neuronal death, the sections were prepared for HE staining and terminal deoxynucleotidyl transferase-mediated dUTP end-labelling (TUNEL) staining at 72 h after 20 min BCCAO. Furthermore, using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine iodide (JC-1) staining technique, we evaluated whether NIM811 (1, 10, 100 or 1000 microm) inhibited mPT in the neurons exposed to 100 microm glutamate. RESULTS Both delayed neuronal injury and apoptosis in the hippocampal CA1 sectors were significantly ameliorated at 72 h after transient forebrain ischaemia in the mice treated with 100 mg/kg NIM811 or 50 mg/kg ciclosporin. The treatments with 100 microm and 1,000 microm NIM811 significantly inhibited the reduction of mitochondrial membrane potential in the neurons exposed to 100 microm glutamate. CONCLUSIONS These findings strongly suggest that NIM811 inhibits mPT and ameliorates delayed neuronal death in mice subjected to transient forebrain ischaemia.
Collapse
Affiliation(s)
- Masaaki Hokari
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | |
Collapse
|
39
|
Naga KK, Geddes JW. Dimebon inhibits calcium-induced swelling of rat brain mitochondria but does not alter calcium retention or cytochrome C release. Neuromolecular Med 2010; 13:31-6. [PMID: 20625939 DOI: 10.1007/s12017-010-8130-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 06/26/2010] [Indexed: 01/21/2023]
Abstract
Dimebon was originally introduced as an antihistamine and subsequently investigated as a possible therapeutic for a variety of disorders, including Alzheimer's disease. One putative mechanism underlying the neuroprotective properties of Dimebon is inhibition of mitochondrial permeability transition, based on the observation that Dimebon inhibited the swelling of rat liver mitochondria induced by calcium and other agents that induce permeability transition. Because liver and brain mitochondria differ substantially in their properties and response to conditions associated with opening of the permeability transition pore, we sought to determine whether Dimebon inhibited permeability transition in brain mitochondria. Dimebon reduced calcium-induced mitochondrial swelling but did not enhance the calcium retention capacity or impair calcium-induced cytochrome C release from non-synaptic mitochondria isolated from rat brain cerebral cortex. These findings indicate that Dimebon does not inhibit mitochondrial permeability transition, induced by excessive calcium uptake, in brain mitochondria.
Collapse
Affiliation(s)
- Kranthi Kumari Naga
- Spinal Cord and Brain Injury Research Center, Department of Anatomy and Neurobiology, University of Kentucky, 741. S. Limestone Street, Lexington, KY 40536-0509, USA
| | | |
Collapse
|
40
|
Jiang WL, Zhang SP, Zhu HB, Tian JW. Cornin ameliorates cerebral infarction in rats by antioxidant action and stabilization of mitochondrial function. Phytother Res 2010; 24:547-52. [PMID: 20041427 DOI: 10.1002/ptr.2978] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study was conducted to investigate the efficacy of cornin, an iridoid glycoside, in an experimental cerebral ischemia induced by middle cerebral artery occlusion (MCAO) and reperfusion (I/R), and to elucidate the potential mechanism. Adult male Sprague-Dawley rats were subjected to MCAO for 1 h, then reperfusion for 23 h. Behavioral tests were used to evaluate the damage to central nervous system. The cerebral infarct volume and histopathological damage were assessed to evaluate the brain pathophysiological changes. Spectrophotometric assay methods were used to determine the activities of superoxide dismutase (SOD) and glutathione-peroxidase (GPx). Contents of malondialdehyde (MDA), the generation of reactive oxygen species (ROS) as well as respiratory control ratio and respiratory enzymes of the brain mitochondria were also determined. The results showed that cornin significantly decreased neurological deficit scores, and reduced cerebral infarct volume and degenerative neurons. Meanwhile, cornin significantly increased the brain ATP content, improved mitochondrial energy metabolism, inhibited the elevation of MDA content and ROS generation, and attenuated the decrease of SOD and GPx activities in brain mitochondria. These findings indicate that cornin has protective potential against cerebral ischemia injury and its protective effects may be due to amelioration of cerebral mitochondrial function and its antioxidant property.
Collapse
Affiliation(s)
- Wang-Lin Jiang
- Pharmacy Department, Binzhou Medical University, Yantai 264003, PR China
| | | | | | | | | |
Collapse
|
41
|
Martins NM, Ferreira DAS, Carvalho Rodrigues MA, Cintra ACO, Santos NAG, Sampaio SV, Santos AC. Low-molecular-mass peptides from the venom of the Amazonian viper Bothrops atrox protect against brain mitochondrial swelling in rat: potential for neuroprotection. Toxicon 2010; 56:86-92. [PMID: 20338188 DOI: 10.1016/j.toxicon.2010.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 03/12/2010] [Accepted: 03/17/2010] [Indexed: 12/25/2022]
Abstract
The neurodegenerative diseases are important causes of morbidity and mortality in Western countries. Common mechanisms of toxicity involving mitochondrial damage have been suggested; however, a definitive treatment has not yet been found. Therefore, there has been great interest in the development of mitochondria-targeted protective compounds for the treatment of neuropathies. Animal toxins represent a promising source of new molecules with neuroprotective activity and potential to originate new drugs. We present here the effects of a low-molecular-mass peptides fraction (Ba-V) from Bothrops atrox snake venom, on rat brain mitochondrial function. Ba-V did not induce the mitochondrial swelling and moreover, was as effective as cyclosporin A (CsA) to inhibit the calcium/phosphate-induced swelling, which indicates its potential to prevent the mitochondrial permeability transition (MPT). The membrane electrochemical potential, the oxygen consumption during states-3 and -4 respirations as well as the respiratory control ratio (RCR) were not affected by Ba-V. Additionally, Ba-V did not induce reactive oxygen species (ROS) generation. Interestingly, Ba-V did not protect against the generation of ROS induced by t-BOH, which suggests a protection mechanism other than ROS scavenging. Given the important role of the mitochondrial damage and, more specifically, of MPT, in the development of neuropathies, Ba-V might be useful in the future strategies for the treatment of these diseases.
Collapse
Affiliation(s)
- N M Martins
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Av. do Café s/n, 14040-903 Ribeirão Preto SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
42
|
Hokari M, Kuroda S, Kinugawa S, Ide T, Tsutsui H, Iwasaki Y. Overexpression of mitochondrial transcription factor A (TFAM) ameliorates delayed neuronal death due to transient forebrain ischemia in mice. Neuropathology 2010; 30:401-7. [DOI: 10.1111/j.1440-1789.2009.01086.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Azelnidipine decreases sympathetic nerve activity via antioxidant effect in the rostral ventrolateral medulla of stroke-prone spontaneously hypertensive rats. J Cardiovasc Pharmacol 2009; 52:555-60. [PMID: 19057394 DOI: 10.1097/fjc.0b013e318192690e] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The long-acting dihydropyridine calcium channel blocker, azelnidipine, is suggested to inhibit sympathetic nerve activity. We previously demonstrated that oxidative stress in the rostral ventrolateral medulla (RVLM) activates sympathetic nerve activity. The aim of the present study was to determine whether oral administration of azelnidipine inhibits sympathetic nerve activity and if so to determine whether the effect is mediated by antioxidant effect in the RVLM. Azelnidipine, hydralazine, or vehicle was orally administered for 28 days to stroke-prone spontaneously hypertensive rats. Reductions in systolic blood pressure were similar in azelnidipine and hydralazine groups. Heart rate was significantly higher in the hydralazine group than in the control, but not altered in the azelnidipine group. Urinary norepinephrine excretion as an indicator of sympathetic nerve activity was significantly lower in the azelnidipine group, whereas it was significantly higher in the hydralazine group than in the control. Levels of thiobarbituric acid-reactive substances and nicotinamide adenine dinucleotide phosphate oxidase activity were significantly lower in the azelnidipine group than in control. Superoxide dismutase activity was significantly increased in the azelnidipine group more than in the control. These results suggest that azelnidipine decreases an indicator of sympathetic nerve activity by antioxidant effect mediated through inhibition of nicotinamide adenine dinucleotide phosphate oxidase activity and activation of superoxide dismutase in the RVLM of stroke-prone spontaneously hypertensive rats.
Collapse
|
44
|
Wei X, Ma Z, Fontanilla CV, Zhao L, Xu ZC, Taggliabraci V, Johnstone BH, Dodel RC, Farlow MR, Du Y. Caffeic acid phenethyl ester prevents cerebellar granule neurons (CGNs) against glutamate-induced neurotoxicity. Neuroscience 2008; 155:1098-105. [PMID: 18657598 DOI: 10.1016/j.neuroscience.2008.06.056] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 05/27/2008] [Accepted: 06/03/2008] [Indexed: 11/24/2022]
Abstract
Caffeic acid phenethyl ester (CAPE) is an active component of propolis obtained from honeybee hives and is found to have the following properties: anti-mitogenic, anti-carcinogenic, anti-inflammatory, immunomodulatory, and antioxidant. Recent reports suggest that CAPE also has a neuronal protective property against ischemic injury. Since excitotoxicity may play an important role in ischemia, in this study, we investigated whether CAPE could directly protect neurons against excitotoxic insult. We treated cultured rat cerebellar granule neurons (CGNs) with excitotoxic concentrations of glutamate in the presence or absence of CAPE and found that CAPE markedly protected neurons against glutamate-induced neuronal death in a concentration-dependent fashion. Glutamate-induced CGNs death is associated with time-dependent activation of caspase-3 and phosphorylation of p38, both events of which can be blocked by CAPE. Treating CGNs with specific inhibitors of these two enzymes together exerts a synergistic neuroprotective effect, similar to the neuroprotective effect of CAPE exposure. These results suggest that CAPE is able to block glutamate-induced excitotoxicity by inhibiting phosphorylation of p38 and caspase-3 activation. This finding may further help understanding of the mechanism of glutamate-induced neuronal death and CAPE-induced neuroprotection against excitotoxicity.
Collapse
Affiliation(s)
- X Wei
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ca2+ Buffering Capacity of Mitochondria After Oxygen-Glucose Deprivation in Hippocampal Neurons. Neurochem Res 2008; 34:221-6. [DOI: 10.1007/s11064-008-9753-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 05/14/2008] [Indexed: 10/22/2022]
|
46
|
Abstract
More than half of the initially-formed neurons are deleted in certain brain regions during normal development. This process, whereby cells are discretely removed without interfering with the further development of remaining cells, is called programmed cell death (PCD). The term apoptosis is used to describe certain morphological manifestations of PCD. Many of the effectors of this developmental cell death program are highly expressed in the developing brain, making it more susceptible to accidental activation of the death machinery, e.g. following hypoxia-ischemia or irradiation. Recent evidence suggests, however, that activation and regulation of cell death mechanisms under pathological conditions do not exactly mirror physiological, developmentally regulated PCD. It may be argued that the conditions after e.g. ischemia are not even compatible with the execution of PCD as we know it. Under pathological conditions cells are exposed to various stressors, including energy failure, oxidative stress and unbalanced ion fluxes. This results in parallel triggering and potential overshooting of several different cell death pathways, which then interact with one another and result in complex patterns of biochemical manifestations and cellular morphological features. These types of cell death are here called "pathological apoptosis," where classical hallmarks of PCD, like pyknosis, nuclear condensation and caspase-3 activation, are combined with non-PCD features of cell death. Here we review our current knowledge of the mechanisms involved, with special focus on the potential for therapeutic intervention tailored to the needs of the developing brain.
Collapse
Affiliation(s)
- Klas Blomgren
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Göteborg University, SE 405 30 Göteborg, Sweden.
| | | | | |
Collapse
|
47
|
Lukic-Panin V, Kamiya T, Zhang H, Hayashi T, Tsuchiya A, Sehara Y, Deguchi K, Yamashita T, Abe K. Prevention of neuronal damage by calcium channel blockers with antioxidative effects after transient focal ischemia in rats. Brain Res 2007; 1176:143-50. [PMID: 17904110 DOI: 10.1016/j.brainres.2007.07.038] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 07/11/2007] [Accepted: 07/11/2007] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cerebral ischemia is a major leading cause of death and at the first place cause of disability all over the world. There are a lot of drugs that are in experimental stage for treatment of stroke. Among them are calcium channel blockers (CCBs) that have, in animal models, different effectiveness in healing of ischemic damage in brain. Mechanism of CCBs' action in cerebral ischemia is still unclear, but antioxidative property is supposed to be implicated. In the present study, we investigated antioxidative and neuroprotective properties of two CCBs, azelnidipine and amlodipine. METHODS Male Wistar Kyoto rats were subjected to 90 min of transient middle cerebral artery occlusion (MCAO) by a nylon thread. Animals were divided into 3 groups, vehicle, azelnidipine and amlodipine group. In the azelnidipine and amlodipine groups, rats were treated with azelnidipine (1 mg/kg) and amlodipine (1 mg/kg) by gastric gavage for 2 weeks before MCAO. Vehicle group was treated by solution of methyl cellulose for 2 weeks. Rats were killed 24 h after MCAO. Physiological parameters (mean arterial pressure, heart rate, body weight), infarct volume, brain edema index, cerebral blood flow (CBF), oxidative stress markers which are HEL, 4-HNE, AGE and 8-OHdG, and evidence of apoptosis by TUNEL, were investigated. RESULTS There were no significant differences among groups in mean arterial pressure, heart rate and body weight. Treatment with azelnidipine and amlodipine reduced infarct volume and brain edema. Azelnidipine treated group showed more marked reduction of infarct volume and cerebral edema than amlodipine group. There was no attenuation of CBF in CCBs groups. The number of HEL, 4-HNE, AGE and 8-OHdG positive cells were significantly decreased in the CCBs treated groups. These molecules were again fewer in the azelnidipine group than in the amlodipine group. In TUNEL staining, the numbers of positive cells was smaller in the CCBs treated groups, especially in the azelnidipine group. CONCLUSIONS Pretreatment of azelnidipine and amlodipine had a neuroprotective effect in ischemic brain. Antioxidative property is one of the important profiles of CCBs that is implicated in brain protection.
Collapse
Affiliation(s)
- Violeta Lukic-Panin
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Li YH, Gong PL. NEUROPROTECTIVE EFFECTS OF DAURICINE AGAINST APOPTOSIS INDUCED BY TRANSIENT FOCAL CEREBRAL ISCHAEMIA IN RATS VIA A MITOCHONDRIAL PATHWAY. Clin Exp Pharmacol Physiol 2007; 34:177-84. [PMID: 17250636 DOI: 10.1111/j.1440-1681.2007.04569.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Previous experimental studies have shown that dauricine can protect the brain against ischaemic damage, but the underlying mechanisms remain unknown. In the present study, we examined whether dauricine inhibits neuronal apoptosis in the penumbra in a rat model of transient focal cerebral ischaemia. 2. Male Wistar rats underwent a 90 min temporary occlusion of the middle cerebral artery. Dauricine (21, 42 and 84 mg/kg) was administered by intragastric gavage twice a day for 3 days before ischaemia. Rats were killed and brain samples were collected 24 h after ischaemia. Histopathological outcome was evaluated by haematoxylin-eosin staining. Apoptotic changes were evaluated by terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL) for DNA fragmentation. The mitochondrial pathway was explored using immunohistochemistry for cytochrome c release, caspase 9 and caspase 3 activation, as well as by reverse transcription-polymerase chain reaction for determination of caspase 9 and caspase 3 mRNA expression. 3. Cytochrome c release, activation of caspase 9 and caspase 3 and DNA fragmentation were detected 24 h after ischaemia. Dauricine (42 and 84 mg/kg) pretreatment improved histopathological recovery, diminished DNA fragmentation and reduced cytochrome c release and activation of caspase 9 and caspase 3 in the penumbra at 24 h. 4. These findings suggest that dauricine attenuates apoptosis in the penumbra after transient focal cerebral ischaemia. The infarct-reducing effects of dauricine may be due, in part, to the inhibition of apoptotic cell death via a mitochondrial pathway in the penumbra.
Collapse
Affiliation(s)
- Yan-Hong Li
- Department of Clinical Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | | |
Collapse
|
49
|
Gao J, Chi ZF, Liu XW, Shan PY, Wang R. Mitochondrial dysfunction and ultrastructural damage in the hippocampus of pilocarpine-induced epileptic rat. Neurosci Lett 2007; 411:152-7. [PMID: 17092649 DOI: 10.1016/j.neulet.2006.10.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2006] [Revised: 09/23/2006] [Accepted: 10/09/2006] [Indexed: 11/20/2022]
Abstract
Mitochondrial dysfunction has been implicated as a contributing factor in epileptic seizures. Present studies were carried out to decipher seizure-dependent changes in mitochondrial function and ultrastructure in the chronic condition of temporal lobe epilepsy (TLE) induced by pilocarpine in rat hippocampus. Enzyme assay revealed significant depression of the activity of mitochondrial- and nuclear-encoded cytochrome oxidase (COX). Conversely, the activity of nuclear-encoded succinate dehydrogenase (SDH) remained unchanged. Discernible mitochondrial ultrastructural damage, varying from swelling to disruption of membrane, was observed in the hippocampus. Quantitative real-time PCR and Western blotting showed the expression of mitochondrial-encoded COX subunit III (COXIII) dropped significantly during the chronic seizure activity; the corresponding expression of COX subunit IV (COXIV) displayed no significant change. Most likely, our results suggest that dysfunction of mitochondrial COX respiratory enzyme and mitochondrial ultrastructural damage in the hippocampus are associated with prolonged seizure during experimental TLE and mitochondria are more vulnerable to epilepsy.
Collapse
Affiliation(s)
- Jing Gao
- Department of Neurology, Qilu Hospital, Medical School of Shandong University, Jinan 250012, China
| | | | | | | | | |
Collapse
|
50
|
Panov A, Dikalov S, Shalbuyeva N, Hemendinger R, Greenamyre JT, Rosenfeld J. Species- and tissue-specific relationships between mitochondrial permeability transition and generation of ROS in brain and liver mitochondria of rats and mice. Am J Physiol Cell Physiol 2006; 292:C708-18. [PMID: 17050617 DOI: 10.1152/ajpcell.00202.2006] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In animal models of neurodegenerative diseases pathological changes vary with the type of organ and species of the animals. We studied differences in the mitochondrial permeability transition (mPT) and reactive oxygen species (ROS) generation in the liver (LM) and brain (BM) of Sprague-Dawley rats and C57Bl mice. In the presence of ADP mouse LM and rat LM required three times less Ca(2+) to initiate mPT than the corresponding BM. Mouse LM and BM sequestered 70% and 50% more Ca(2+) phosphate than the rat LM and BM. MBM generated 50% more ROS with glutamate than the RBM, but not with succinate. With the NAD substrates, generation of ROS do not depend on the energy state of the BM. Organization of the respiratory complexes into the respirasome is a possible mechanism to prevent ROS generation in the BM. With BM oxidizing succinate, 80% of ROS generation was energy dependent. Induction of mPT does not affect ROS generation with NAD substrates and inhibit with succinate as a substrate. The relative insensitivity of the liver to systemic insults is associated with its high regenerative capacity. Neuronal cells with low regenerative capacity and a long life span protect themselves by minimizing ROS generation and by the ability to withstand very large Ca(2+) insults. We suggest that additional factors, such as oxidative stress, are required to initiate neurodegeneration. Thus the observed differences in the Ca(2+)-induced mPT and ROS generation may underlie both the organ-specific and species-specific variability in the animal models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexander Panov
- Carolinas Neuromuscular/ALS-MDA Center, Carolinas Medical Center, 1000 Blythe Blvd., Charlotte, NC 28203, USA.
| | | | | | | | | | | |
Collapse
|