1
|
Kaneko M, Sugiyama Y, Munekawa R, Kinoshita S, Mukudai S, Umezaki T, Dutschmann M, Hirano S. Sustained Effects of Capsaicin Infusion into the Oropharynx on Swallowing in Perfused Rats. Laryngoscope 2024; 134:305-314. [PMID: 37503765 DOI: 10.1002/lary.30918] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVES To examine the sustained effects of oropharyngeal capsaicin stimulation on the regulation of swallowing, we recorded the swallowing-related nerve activities during continuous infusion of capsaicin solution into the oropharynx. METHODS In 33 in situ perfused brainstem preparation of rats, we recorded the activities of the vagus, hypoglossal, and phrenic nerves during fictive swallowing. The interburst intervals (IBIs) of the swallowing-related nerves during sequential pharyngeal swallowing (sPSW) elicited by electrical stimulation of the superior laryngeal nerve (SLN) during concurrent capsaicin stimulation of 10, 1, and 0.1 μM (n = 28) were compared with those during oropharyngeal infusion of saline (control) (n = 5). RESULTS The IBIs during SLN-induced sPSW were reduced at 5 min after initiation of continuous infusion of 10 and 1 μM capsaicin solution. The IBIs showed significant decreases to -25.8 ± 6.9%, -25.9 ± 5.3, -18.3 ± 3.7, and -12.0 ± 1.6 at 30 min following 1 μM capsaicin stimulation at SLN stimulus conditions at 5 Hz of 1.2 times threshold, 10 Hz of 40 μA, 5 Hz of 60 μA, and 10 Hz of 60 μA, respectively. Continuous capsaicin stimulation of 0.1 μM solution did not show significant sustained effects. CONCLUSION Pharmacological stimulation of capsaicin could provide time-dependent effects on the likelihood of swallowing, particularly subserving sustained facilitation of swallowing reflex with appropriate concentration of capsaicin. LEVEL OF EVIDENCE NA Laryngoscope, 134:305-314, 2024.
Collapse
Affiliation(s)
- Mami Kaneko
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryoto Munekawa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shota Kinoshita
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeyuki Mukudai
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiro Umezaki
- Department of Speech and Hearing Sciences, International University of Health and Welfare, and the Voice and Swallowing Center, Fukuoka Sanno Hospital, Fukuoka, Japan
| | - Mathias Dutschmann
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Erin N, Szallasi A. Carcinogenesis and Metastasis: Focus on TRPV1-Positive Neurons and Immune Cells. Biomolecules 2023; 13:983. [PMID: 37371563 DOI: 10.3390/biom13060983] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Both sensory neurons and immune cells, albeit at markedly different levels, express the vanilloid (capsaicin) receptor, Transient Receptor Potential, Vanilloid-1 (TRPV1). Activation of TRPV1 channels in sensory afferent nerve fibers induces local effector functions by releasing neuropeptides (most notably, substance P) which, in turn, trigger neurogenic inflammation. There is good evidence that chronic activation or inactivation of this inflammatory pathway can modify tumor growth and metastasis. TRPV1 expression was also demonstrated in a variety of mammalian immune cells, including lymphocytes, dendritic cells, macrophages and neutrophils. Therefore, the effects of TRPV1 agonists and antagonists may vary depending on the prominent cell type(s) activated and/or inhibited. Therefore, a comprehensive understanding of TRPV1 activity on immune cells and nerve endings in distinct locations is necessary to predict the outcome of therapies targeting TRPV1 channels. Here, we review the neuro-immune modulation of cancer growth and metastasis, with focus on the consequences of TRPV1 activation in nerve fibers and immune cells. Lastly, the potential use of TRPV1 modulators in cancer therapy is discussed.
Collapse
Affiliation(s)
- Nuray Erin
- Department of Medical Pharmacology, School of Medicine, Akdeniz University, Antalya 07070, Turkey
- Immuno-Pharmacology and Immuno-Oncology Unit, School of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary
| |
Collapse
|
3
|
Matsumoto K, Sugimoto F, Mizuno T, Hayashi T, Okamura R, Nishioka T, Yasuda H, Horie S, Kido MA, Kato S. Immunohistochemical characterization of transient receptor potential vanilloid types 2 and 1 in a trinitrobenzene sulfonic acid-induced rat colitis model with visceral hypersensitivity. Cell Tissue Res 2023; 391:287-303. [PMID: 36513829 DOI: 10.1007/s00441-022-03723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Transient receptor potential vanilloid type 2 (TRPV2) and type 1 (TRPV1) are originally identified as heat-sensitive TRP channels. We compared the expression patterns of TRPV2 and TRPV1 in the rat distal colon and extrinsic primary afferent neurons, and investigated their roles in visceral hypersensitivity in 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis rats. Both TRPV2 and TRPV1 expressions in the colon, dorsal root ganglion (DRG), and nodose ganglion (NG) were significantly upregulated in the TNBS-induced colitis model. TRPV2 cell bodies co-localized with the intrinsic primary afferent marker NeuN and the inhibitory motor neuronal marker nNOS in the myenteric plexus. TRPV2 expressions were further detected in the resident macrophage marker ED2 in the mucosa. In contrast, no TRPV1-expressing cell bodies were detected in the myenteric plexus. Both TRPV2- and TRPV1-positive cell bodies in the DRG and NG were double-labeled with the neuronal retrograde tracer fluorescent fluorogold. Large- and medium-sized TRPV2-positive neurons were labeled with the A-fiber marker NF200, calcitonin gene-related peptide (CGRP), and substance P (SP) in the DRG while small-sized TRPV1-positive neurons were labeled with the C-fiber markers IB4, CGRP, and SP. TRPV2- and TRPV1-positive NG neurons were labeled with NF200 and IB4. TNBS treatment increased p-ERK1/2-positive cells in TRPV2 and TRPV1 neurons but did not affect the TRPV2 and TRPV1 subpopulations in the DRG and NG. Both TRPV2 and TRPV1 antagonists significantly alleviated visceral hypersensitivity in TNBS-induced colitis model rats. These findings suggest that intrinsic/extrinsic TRPV2- and extrinsic TRPV1-neurons contribute to visceral hypersensitivity in an experimental colitis model.
Collapse
Affiliation(s)
- Kenjiro Matsumoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Kyoto, Yamashina, 607-8414, Japan.
| | - Fumika Sugimoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Kyoto, Yamashina, 607-8414, Japan
| | - Toshiki Mizuno
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Kyoto, Yamashina, 607-8414, Japan
| | - Taisei Hayashi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Kyoto, Yamashina, 607-8414, Japan
| | - Ririka Okamura
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Kyoto, Yamashina, 607-8414, Japan
| | - Takuya Nishioka
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Kyoto, Yamashina, 607-8414, Japan
| | - Hiroyuki Yasuda
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Kyoto, Yamashina, 607-8414, Japan
| | - Syunji Horie
- Laboratory of Pharmacology, Josai International University, Chiba, Japan
| | - Mizuho A Kido
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Kyoto, Yamashina, 607-8414, Japan
| |
Collapse
|
4
|
Yajima T, Sato T, Hosokawa H, Kondo T, Ichikawa H. Transient receptor potential melastatin-7 in the rat dorsal root ganglion. J Chem Neuroanat 2022; 125:102163. [PMID: 36122679 DOI: 10.1016/j.jchemneu.2022.102163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022]
Abstract
AIMS Transient receptor potential melastatin-7 (TRPM7) is a selective cation permeable channel which plays important roles in cellular and developmental biology such as cell proliferation, survival, differentiation and migration. This channel is also known to be necessary for transmitter release in the peripheral nervous system. In this study, immunohistochemistry for TRPM7 was conducted in the rat lumbar dorsal root ganglion (DRG). METHODS Triple immunofluorescence methods were used to demonstrate distribution of TRPM7 and its relationship to other TRP channels in the DRG. Retrograde tracing and double immunofluorescence methods were also performed to know peripheral targets of DRG neurons containing TRPM7 and TRP vanilloid 1 (TRPV1). In addition, transection of the sciatic nerve was conducted to demonstrate an effect of the nerve injury on TRPM7expression in the DRG. RESULTS TRPM7-immunoreactivity was expressed by 53.9% of sensory neurons in the 4th lumbar DRG. TRPM7-immunoreactive (-IR) DRG neurons mostly had small (<600 µm²) and medium-sized (600-1200 µm²) cell bodies. By triple and double immunofluorescence methods, approximately 70% of TRPM7-IR DRG neurons contained TRPV1-immunoreactivity. Although the number of DRG neurons co-expressing TRPM7 and TRPM8 was small in the DRG, almost all of TRPM8-IR DRG neurons co-expressed TRPM7-immunoreactivity. By combination of retrograde tracing method and immunohistochemistry, TRPM7 was expressed by half of DRG neurons innervating the plantar skin (61.9%) and gastrocnemius muscle (51.2%), and 79.6% of DRG neurons innervating the periosteum. Co-expression of TRPM7 and TRPV1 among periosteum DRG neurons (75.7%) was more abundant than among cutaneous (53.2%) and muscular (40.4%) DRG neurons. DRG neurons which co-expressed these ion channels in the periosteum had smaller cell bodies compared to the skin and muscle. In addition, the sciatic nerve transection decreased the number of TRPM7-IR neurons in the DRG (approximately 60% reduction). The RT-qPCR analysis also demonstrated reduction of TRPM7 mRNA in the injured DRG. CONCLUSION The present study suggests that TRPM7 is mainly located in small nociceptors in the DRG. The content of TRPM7 in DRG neurons is probably different among their peripheral targets. TRPM7 in DRG neurons may be able to respond to noxious stimulation from their peripheral tissues. The nerve injury can decrease the level of TRPM7 mRNA and protein in DRG neurons.
Collapse
Affiliation(s)
- Takehiro Yajima
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Tadasu Sato
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan.
| | - Hiroshi Hosokawa
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
| | - Teruyoshi Kondo
- Department of Animal Pharmaceutical Sciences, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Nobeoka 882-8508, Japan
| | - Hiroyuki Ichikawa
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
5
|
Kawashima M, Yajima T, Tachiya D, Kokubun S, Ichikawa H, Sato T. Parasympathetic neurons in the human submandibular ganglion. Tissue Cell 2021; 70:101496. [PMID: 33517097 DOI: 10.1016/j.tice.2021.101496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022]
Abstract
The submandibular ganglion (SMG) contains parasympathetic neurons which innervate the submandibular gland. In this study, immunohistochemistry for vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY), choline acetyltransferase (ChAT), dopamine β-hydroxylase (DBH), tyrosine hydroxylase (TH), and the transient receptor potential cation channel subfamily V members 1 (TRPV1) and 2 (TRPV2) was performed on the human SMG. In the SMG, 17.5 % and 8.9 % of parasympathetic neurons were immunoreactive for VIP and TRPV2, respectively. SMG neurons mostly contained ChAT- and DBH-immunoreactivity. In addition, subpopulations of SMG neurons were surrounded by VIP (69.6 %)-, TRPV2 (54.4 %)- and DBH (9.5 %)-immunoreactive (-ir) nerve fibers. SMG neurons with pericellular VIP- and TRPV2-ir nerve fibers were significantly larger than VIP- and TRPV2-ir SMG neurons, respectively. Other neurochemical substances were rare in the SMG. In the human submandibular gland, TRPV1- and TRPV2-ir nerve fiber profiles were seen around blood vessels. Double fluorescence method also demonstrated that TRPV2-ir nerve fiber profiles were located around myoepithelial and acinar cells in the submandibular gland. VIP and TRPV2 are probably expressed by both pre- and post-ganglionic neurons innervating the submandibular and sublingual glands. VIP, DBH and TRPV2 may have functions about regulation of salivary components in the salivary glands and neuronal activity in the SMG.
Collapse
Affiliation(s)
- Mutsuko Kawashima
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Takehiro Yajima
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Daisuke Tachiya
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Souichi Kokubun
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Hiroyuki Ichikawa
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Tadasu Sato
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan.
| |
Collapse
|
6
|
Atsumi K, Yajima T, Tachiya D, Kokubun S, Shoji N, Sasano T, Ichikawa H, Sato T. Sensory neurons in the human jugular ganglion. Tissue Cell 2020; 64:101344. [PMID: 32473709 DOI: 10.1016/j.tice.2020.101344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022]
Abstract
The jugular ganglion (JG) contains sensory neurons of the vagus nerve which innervate somatic and visceral structures in cranial and cervical regions. In this study, the number of sensory neurons in the human JG was investigated. And, the morphology of sensory neurons in the human JG and nodose ganglion (NG) was compared. The estimated number of JG neurons was 2721.8-9301.1 (average number of sensory neurons ± S.D. = 7975.1 ± 3312.8). There was no significant difference in sizes of the neuronal cell body and nucleus within the JG (cell body, 1128.8 ± 99.7 μ m2; nucleus, 127.7 ± 20.8 μ m2) and NG (cell body, 963.8 ± 225.7 μ m2; nucleus, 123.2 ± 32.3 μ m2). These findings indicate that most of sensory neurons show the similar morphology in the JG and NG. Our immunohistochemical method also demonstrated the distribution of ion channels, neurotransmitter agents and calcium-binding proteins in the human JG. Numerous JG neurons were immunoreactive for transient receptor potential cation channel subfamily V member 1 (TRPV1, mean ± SD = 19.9 ± 11.5 %) and calcitonin gene-related peptide (CGRP, 28.4 ± 6.7 %). A moderate number of JG neurons contained TRPV2 (12.0 ± 4.7 %), substance P (SP, 15.7 ± 6.9 %) and secreted protein, acidic and rich in cysteine-like 1 (SPARCL1, 14.6 ± 7.4 %). A few JG neurons had vesicular glutamate transporter 2 (VGLUT2, 5.6 ± 2.9 %) and parvalbumin (PV, 2.3 ± 1.4 %). SP- and TRPV2-containing JG neurons had mainly small and medium-sized cell bodies, respectively. TRPV1- and VGLUT2- containing JG neurons were small to medium-sized. CGRP- and SPARCL1-containing JG neurons were of various cell body sizes. Sensory neurons in the human JG were mostly free of vasoactive intestinal polypeptide (VIP), tyrosine hydroxylase (TH) and neuropeptide Y (NPY). In the external auditory canal skin, subepithelial nerve fibers contained TRPV1, TRPV2, SP, CGRP and VGLUT2. Perivascular nerve fibers also had TRPV1, TRPV2, SP, CGRP, VIP, NPY and TH. However, PV- and SPARCL1-containing nerve endings could not be seen in the external auditory canal. It is likely that sensory neurons in the human JG can transduce nociceptive and mechanoreceptive information from the external auditory canal. Theses neurons may be also associated with neurogenic inflammation in the external auditory canal and ear-cough reflex through the vagus nerve.
Collapse
Affiliation(s)
- Keiichiro Atsumi
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Takehiro Yajima
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Daisuke Tachiya
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Souichi Kokubun
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Noriaki Shoji
- Division of Oral Diagnosis, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Takashi Sasano
- Division of Oral Diagnosis, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Hiroyuki Ichikawa
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Tadasu Sato
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan.
| |
Collapse
|
7
|
Szereda-Przestaszewska M, Kaczyńska K. Pharmacologically evoked apnoeas. Receptors and nervous pathways involved. Life Sci 2018; 217:237-242. [PMID: 30553870 DOI: 10.1016/j.lfs.2018.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 01/07/2023]
Abstract
This review analyses the knowledge about the incidence of transient apnoeic spells, induced by substances which activate vagal chemically sensitive afferents. It considers the specificity and expression of appropriate receptors, and relevant research on pontomedullary circuits contributing to a cessation of respiration. Insight is gained into an excitatory drive of 5-HT1A serotonin receptors in overcoming opioid-induced respiratory inhibition.
Collapse
Affiliation(s)
- Małgorzata Szereda-Przestaszewska
- Department of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, A. Pawińskiego 5, 02-106 Warsaw, Poland
| | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, A. Pawińskiego 5, 02-106 Warsaw, Poland.
| |
Collapse
|
8
|
Del Fiacco M, Serra MP, Boi M, Poddighe L, Demontis R, Carai A, Quartu M. TRPV1-Like Immunoreactivity in the Human Locus K, a Distinct Subregion of the Cuneate Nucleus. Cells 2018; 7:cells7070072. [PMID: 29986526 PMCID: PMC6071077 DOI: 10.3390/cells7070072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/30/2018] [Accepted: 07/05/2018] [Indexed: 01/02/2023] Open
Abstract
The presence of transient receptor potential vanilloid type-1 receptor (TRPV1)-like immunoreactivity (LI), in the form of nerve fibres and terminals, is shown in a set of discrete gray matter subregions placed in the territory of the human cuneate nucleus. We showed previously that those subregions share neurochemical and structural features with the protopathic nuclei and, after the ancient name of our town, collectively call them Locus Karalis, and briefly Locus K. TRPV1-LI in the Locus K is codistributed, though not perfectly overlapped, with that of the neuropeptides calcitonin gene-related peptide and substance P, the topography of the elements immunoreactive to the three markers, in relation to each other, reflecting that previously described in the caudal spinal trigeminal nucleus. Myelin stainings show that myelinated fibres, abundant in the cuneate, gracile and trigeminal magnocellular nuclei, are scarce in the Locus K as in the trigeminal substantia gelatinosa. Morphometric analysis shows that cell size and density of Locus K neurons are consistent with those of the trigeminal substantia gelatinosa and significantly different from those of the magnocellular trigeminal, solitary and dorsal column nuclei. We propose that Locus K is a special component of the human dorsal column nuclei. Its functional role remains to be determined, but TRPV1 appears to play a part in it.
Collapse
Affiliation(s)
- Marina Del Fiacco
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Maria Pina Serra
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Marianna Boi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Laura Poddighe
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Roberto Demontis
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Antonio Carai
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Marina Quartu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| |
Collapse
|
9
|
Mitsuoka K, Kikutani T, Miwa Y, Sato I. Expression of CGRP neurotransmitter and vascular genesis marker mRNA is age-dependent in superior cervical ganglia of senescence-accelerated prone mice. Neurosci Lett 2018; 664:144-151. [PMID: 29154859 DOI: 10.1016/j.neulet.2017.11.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/30/2017] [Accepted: 11/13/2017] [Indexed: 11/30/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a neurotransmitter that is released from the superior cervical ganglion (SCG) and causes head and neck pain. The morphological properties of human SCG neurons, including neurotransmitter content, are altered during aging. However, morphological changes in CGRP in the SCG during aging are not known. Therefore, we investigated CGRP and other markers in the SCG during aging in an aging model of senescence-accelerated prone mouse (SAMP8) and senescence-accelerated resistant mice (SAMR1) using real-time RT-PCR mRNA analyses and in situ hybridization. The abundance of neurotransmitter (CGRP, NPY, TRPV1), vascular genesis marker (CD31, LYVE-1), and cytochrome C mRNA differed between 12-week-old and 24-week-old SAMP8 and SAMR1. Abundance of TRPV1, CD31 and cytochrome C mRNAs of SAMP8 decreased between 12- and 24-week-old. The ratio of CGRP mRNA positive cells and CGRP mRNA abundance levels of the SCG of aging mouse such as SAMP8 have already been also higher than that of SAMR1 at 12-week-old. The CGRP positive shrunken ganglion cells was increased from 12- to 24-weeks-old mouse in SAMR1 and SAMP8. The SCG primarily affected the internal and external carotid arteries, larynx thyroid gland, and pharyngeal muscle during aging.
Collapse
Affiliation(s)
- Kazuyuki Mitsuoka
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan; Division of Oral Rehabilitation, Nippon Dental University Graduate School of Life Dentistry, Tokyo, Japan
| | - Takeshi Kikutani
- Division of Oral Rehabilitation, Nippon Dental University Graduate School of Life Dentistry, Tokyo, Japan; Nippon Dental University Tama Oral Rehabilitation Clinic, Japan
| | - Yoko Miwa
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| | - Iwao Sato
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan.
| |
Collapse
|
10
|
Quartu M, Serra MP, Boi M, Poddighe L, Picci C, Demontis R, Del Fiacco M. TRPV1 receptor in the human trigeminal ganglion and spinal nucleus: immunohistochemical localization and comparison with the neuropeptides CGRP and SP. J Anat 2016; 229:755-767. [PMID: 27456865 DOI: 10.1111/joa.12529] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2016] [Indexed: 01/02/2023] Open
Abstract
This work presents new data concerning the immunohistochemical occurrence of the transient receptor potential vanilloid type-1 (TRPV1) receptor in the human trigeminal ganglion (TG) and spinal nucleus of subjects at different ontogenetic stages, from prenatal life to postnatal old age. Comparisons are made with the sensory neuropeptides calcitonin gene-related peptide (CGRP) and substance P (SP). TRPV1-like immunoreactive (LI) material was detected by western blot in homogenates of TG and medulla oblongata of subjects at prenatal and adult stages of life. Immunohistochemistry showed that expression of the TRPV1 receptor is mostly restricted to the small- and medium-sized TG neurons and to the caudal subdivision of the spinal trigeminal nucleus (Sp5C). The extent of the TRPV1-LI TG neuronal subpopulation was greater in subjects at early perinatal age than at late perinatal age and in postnatal life. Centrally, the TRPV1 receptor localized to fibre tracts and punctate elements, which were mainly distributed in the spinal tract, lamina I and inner lamina II of the Sp5C, whereas stained cells were rare. The TRPV1 receptor colocalized partially with CGRP and SP in the TG, and was incompletely codistributed with both neuropeptides in the spinal tract and in the superficial laminae of the Sp5C. Substantial differences were noted with respect to the distribution of the TRPV1-LI structures described in the rat Sp5C and with respect to the temporal expression of the receptor during the development of the rat spinal dorsal horn. The distinctive localization of TRPV1-LI material supports the concept of the involvement of TRPV1 receptor in the functional activity of the protopathic compartment of the human trigeminal sensory system, i.e. the processing and neurotransmission of thermal and pain stimuli.
Collapse
Affiliation(s)
- Marina Quartu
- Department of Biomedical Sciences, Cytomorphology Section, University of Cagliari, Monserrato (CA), Italy
| | - Maria Pina Serra
- Department of Biomedical Sciences, Cytomorphology Section, University of Cagliari, Monserrato (CA), Italy
| | - Marianna Boi
- Department of Biomedical Sciences, Cytomorphology Section, University of Cagliari, Monserrato (CA), Italy
| | - Laura Poddighe
- Department of Biomedical Sciences, Cytomorphology Section, University of Cagliari, Monserrato (CA), Italy
| | - Cristina Picci
- Department of Biomedical Sciences, Cytomorphology Section, University of Cagliari, Monserrato (CA), Italy
| | - Roberto Demontis
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
| | - Marina Del Fiacco
- Department of Biomedical Sciences, Cytomorphology Section, University of Cagliari, Monserrato (CA), Italy
| |
Collapse
|
11
|
Ferreira LGB, Faria RX. TRPing on the pore phenomenon: what do we know about transient receptor potential ion channel-related pore dilation up to now? J Bioenerg Biomembr 2016; 48:1-12. [PMID: 26728159 DOI: 10.1007/s10863-015-9634-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 12/02/2015] [Indexed: 01/06/2023]
Abstract
Ion channels allow for rapid ion diffusion through the plasma membrane. In some conditions, ion channels induce changes in the critical plasma membrane permeability that permit 900-Da solutes to enter cells. This process is known as the pore phenomenon. Some transient receptor potential (TRP) channel subtypes have been highlighted such as the P2X7 receptor, plasma membrane VDAC-1 channel, and pannexin hemichannels. The TRP ion channels are considered multimodal transducers that respond to several kinds of stimuli. In addition, many TRP channel subtypes are involved in physiological and pathophysiological processes such as inflammation, pain, and cancer. The TRPA1, TRPM8, and TRPV1-4 subtypes have been shown to promote large-molecular-weight solute uptake, including impermeable fluorescent dyes, QX-314 hydrophilic lidocaine derivative, gabapentin, and antineoplastic drugs. This review discusses the current knowledge of TRP-associated pores and encourages scientists to study their features and explore them as novel therapeutic tools.
Collapse
Affiliation(s)
- L G B Ferreira
- Laboratory of Inflammation, Oswaldo Cruz Institute, FIOCRUZ, Av. Brasil, n° 4365, Manguinhos, CEP 21045-900, Rio de Janeiro, Brazil.
| | - R X Faria
- Laboratory of Cellular Communication, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, n° 4365, Manguinhos, CEP 21045-900, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Planells-Cases1 R, Ferrer-Montiel A. Drug design and development through the vanilloid receptor. Expert Opin Drug Discov 2015; 2:1053-63. [PMID: 23484872 DOI: 10.1517/17460441.2.8.1053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The vanilloid receptor (TRPV1) has attracted a great expectation in pain therapeutics for the treatment of chronic inflammatory conditions. As a result, several drug discovery programmes were launched in the past years that yielded a large number of receptor agonists and antagonists. However, despite the claimed therapeutic potential of TRPV1 modulators, a disappointing number of candidates have progressed into clinical trials and those were only for dental pain and migraine, indicating that our understanding of the role of TRPV1 in pain is still very limited. The widespread distribution of TRPV1 in different tissues suggests an involvement in body functions other than pain. Indeed, new findings indicate that TRPV1 is tonically active in physiological conditions and its pharmacological blockade leads to hyperthermia. Furthermore, the full abrogation of TRPV1 in some models of chronic pain results in enhanced pain. Therefore, a remaining challenge is the development of drugs that preserve the physiological activity of TRPV1 and downregulate the function of overactive receptors.
Collapse
|
13
|
Brain-derived neurotrophic factor immunoreactive vagal sensory neurons innervating the gastrointestinal tract of the rat. J Chem Neuroanat 2014; 61-62:83-7. [PMID: 25128629 DOI: 10.1016/j.jchemneu.2014.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/30/2014] [Accepted: 07/30/2014] [Indexed: 01/01/2023]
Abstract
We have determined whether brain-derived neurotrophic factor immunoreactive (BDNF-ir) neurons in the vagal ganglia innervate the gastrointestinal tract. Many BDNF-ir neurons were medium in size and located throughout the jugular and nodose ganglia. When Fluorogold was injected into the wall of the cervical esophagus, many retrogradely Fluorogold-labeled neurons were found in both the jugular ganglion and the nodose ganglion. When Fluorogold was injected into the body of the stomach or applied to the cut end of the subdiaphragmatic vagus nerve, numerous Fluorogold-labeled neurons were found mostly in the nodose ganglion. Double-labeling combining immunohistochemistry for BDNF and retrograde tracing with Fluorogold showed that more than 90% of the neurons in the jugular ganglion and the nodose ganglion projecting to the cervical esophagus contained BDNF-like immunoreactivity. In the cases of both Fluorogold injection into the stomach and Fluorogold application to the subdiaphragmatic vagus nerve, almost all Fluorogold-labeled neurons in the nodose ganglion contained BDNF-like immunoreactivity. These results indicated that almost all vagal sensory neurons located in either the jugular ganglion or the nodose ganglion that innervate the gastrointestinal tract are BDNF-ir neurons.
Collapse
|
14
|
Sato D, Sato T, Urata Y, Okajima T, Kawamura S, Kurita M, Takahashi K, Nanno M, Watahiki A, Kokubun S, Shimizu Y, Kasahara E, Shoji N, Sasano T, Ichikawa H. Distribution of TRPVs, P2X3, and parvalbumin in the human nodose ganglion. Cell Mol Neurobiol 2014; 34:851-8. [PMID: 24764033 DOI: 10.1007/s10571-014-0062-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/09/2014] [Indexed: 12/22/2022]
Abstract
Immunohistochemistry for several neurochemical substances, the transient receptor potential cation channel subfamily V member 1 (TRPV1) and 2 (TRPV2), P2X3 receptor, and parvalbumin (PV), was performed on the nodose ganglion, pharynx, and epiglottis in human cadavers. The nodose ganglion was situated beneath the jugular foramen, and had a spindle shape with the long rostrocaudal axis. The pharyngeal branch (PB) issued from a rostral quarter of the nodose ganglion, whereas the superior laryngeal nerve (SLN) usually originated from a caudal half of the ganglion. In the nodose ganglion, sensory neurons were mostly immunoreactive for TRPV1 (89 %) or P2X3 (93.9 %). About 30 % of nodose neurons contained TRPV2 (35.7 %)-or PV (29.9 %)-immunoreactivity (-IR). These neurons mainly had small to medium-sized cell bodies, and were distributed throughout the ganglion. Neurodegenerative profiles such as shrinkage or pyknosis could not be detected in the examined ganglion. Occasionally, TRPV2-IR nerve fibers surrounded blood vessels in the epiglottis as well as in the nasal and oral parts of the pharynx. Isolated TRPV2-IR nerve fibers were also located beneath the epithelium. TRPV1-, P2X3-, or PV-IR nerve endings could not be detected in the pharynx or epiglottis. In the PB and SLN, however, numerous nerve fibers contained TRPV1-, TRPV2-, P2X3-, and PV-IR. The present study suggests that TRPV1-, TRPV2-, P2X3-, and PV-IR neurons in the human nodose ganglion innervate the pharynx and epiglottis through the PB and SLN. These neurons may respond to chemical, thermal, and mechanical stimuli during respiration and swallowing.
Collapse
Affiliation(s)
- Daisuke Sato
- Division of Oral Diagnosis, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hayakawa T, Kuwahara-Otani S, Maeda S, Tanaka K, Seki M. Calcitonin gene-related peptide immunoreactive sensory neurons in the vagal and glossopharyngeal ganglia innervating the larynx of the rat. J Chem Neuroanat 2014; 55:18-23. [DOI: 10.1016/j.jchemneu.2013.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/06/2013] [Accepted: 11/08/2013] [Indexed: 10/26/2022]
|
16
|
Sasaki R, Sato T, Yajima T, Kano M, Suzuki T, Ichikawa H. The distribution of TRPV1 and TRPV2 in the rat pharynx. Cell Mol Neurobiol 2013; 33:707-14. [PMID: 23584686 DOI: 10.1007/s10571-013-9938-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/01/2013] [Indexed: 11/30/2022]
Abstract
Immunohistochemistry for two nociceptive transducers, the transient receptor potential cation channel subfamily V members 1 (TRPV1) and 2 (TRPV2), was performed on the pharynx and its adjacent regions. TRPV1-immunoreactivity (IR) was detected in nerve fibers beneath and within the epithelium and/or taste bud-like structure. In the pharynx, these nerve fibers were abundant in the naso-oral part and at the border region of naso-oral and laryngeal parts. They were also numerous on the laryngeal side of the epiglottis and in the soft palate. TRPV2-IR was expressed by dendritic cells in the pharynx and epiglottis, as well as in the root of the tongue and soft palate. These cells were located in the epithelium and lamina propria. TRPV2-immunoreactive (IR) dendritic cells were numerous in the naso-oral part of the pharynx, epiglottis, and tongue. Abundance of TRPV2-IR dendritic processes usually obscured the presence of TRPV2-IR nerve fibers in these portions. However, some TRPV2-IR nerve fibers could be observed in the epithelium of the soft palate. Retrograde tracing method also revealed that sensory neurons which innervate the pharynx or soft palate were abundant in the jugular-petrosal ganglion complex and relatively rare in the nodose ganglion. In the jugular-petrosal ganglion complex, TRPV1- and TRPV2-IR were expressed by one-third of pharyngeal and soft palate neurons. TRPV2-IR was also detected in 11.5 % pharyngeal and 30.9 % soft palate neurons in the complex. Coexpression of TRPV1 and CGRP was frequent among pharyngeal and soft palate neurons. The present study suggests that TRPV1- and TRPV2-IR jugular-petrosal neurons may be associated with the regulation of the swallowing reflex.
Collapse
Affiliation(s)
- Rika Sasaki
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Lavinka PC, Dong X. Molecular signaling and targets from itch: lessons for cough. COUGH 2013; 9:8. [PMID: 23497684 PMCID: PMC3630061 DOI: 10.1186/1745-9974-9-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/08/2013] [Indexed: 01/05/2023]
Abstract
Itch is described as an unpleasant sensation that elicits the desire to scratch, which results in the removal of the irritant from the skin. The cough reflex also results from irritation, with the purpose of removing said irritant from the airway. Could cough then be similar to itch? Anatomically, both pathways are mediated by small-diameter sensory fibers. These cough and itch sensory fibers release neuropeptides upon activation, which leads to inflammation of the nerves. Both cough and itch also involve mast cells and their mediators, which are released upon degranulation. This common inflammation and interaction with mast cells are involved in the development of chronic conditions of itch and cough. In this review, we examine the anatomy and molecular mechanisms of itch and compare them to known mechanisms for cough. Highlighting the common aspects of itch and cough could lead to new thoughts and perspectives in both fields.
Collapse
Affiliation(s)
- Pamela Colleen Lavinka
- The Solomon H, Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA.
| | | |
Collapse
|
18
|
Ide R, Saiki C, Makino M, Matsumoto S. TRPV1 receptor expression in cardiac vagal afferent neurons of infant rats. Neurosci Lett 2012; 507:67-71. [DOI: 10.1016/j.neulet.2011.11.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/10/2011] [Accepted: 11/28/2011] [Indexed: 01/01/2023]
|
19
|
Abraham TS, Chen ML, Ma SX. TRPV1 expression in acupuncture points: response to electroacupuncture stimulation. J Chem Neuroanat 2011; 41:129-36. [PMID: 21256210 PMCID: PMC3117662 DOI: 10.1016/j.jchemneu.2011.01.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 12/16/2010] [Accepted: 01/03/2011] [Indexed: 01/23/2023]
Abstract
The present study was to examine the distribution of transient receptor potential vanilloid type-1 (TRPV1) receptor immunoreactivity in the acupuncture points (acupoint), and determine the influences of electroacupuncture (EA) stimulation on TRPV1 expression. EA stimulation of BL 40 was conducted in two sessions of 20 min separated by an 80 min interval in anesthetized rats. Sections of skin containing BL 40, and its non-meridian control were examined by immunolabeling with antibodies directed against TRPV1. Without EA, the number of subepidermal nerve fibers expressing TRPV1 was higher in the acupoint than in non-acupoint control skin (p<0.01). The subepidermal nerve fibers showed the co-localization of TRPV1 with peripherine, a marker for the C-fibers and A-δ fibers. The expression of TRPV1 in nerve fibers is significantly increased by EA stimulation in acupoints (p<0.01). However the upregulation in the non acupoint meridian and the non-meridian control skin was short of statistical significance. Double immunostaining of TRPV1 and neuronal nitric oxide synthase (nNOS) revealed their co-localization in both the subepidermal nerve fibers and in the dermal connective tissue cells. These results show that a high expression of TRPV1 endowed with nNOS in subepidermal nerve fibers exists in the acupoints and the expression is increased by EA. We conclude that the higher expression of TRPV1 in the subepidermal nerve fibers and its upregulation after EA stimulation may play a key role in mediating the transduction of EA signals to the CNS, and its expression in the subepidermal connective tissue cells may play a role in conducting the local effect of the EA.
Collapse
Affiliation(s)
- Therese S Abraham
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | | | | |
Collapse
|
20
|
Boesmans W, Owsianik G, Tack J, Voets T, Vanden Berghe P. TRP channels in neurogastroenterology: opportunities for therapeutic intervention. Br J Pharmacol 2011; 162:18-37. [PMID: 20804496 PMCID: PMC3012403 DOI: 10.1111/j.1476-5381.2010.01009.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 07/02/2010] [Accepted: 08/17/2010] [Indexed: 12/14/2022] Open
Abstract
The members of the superfamily of transient receptor potential (TRP) cation channels are involved in a plethora of cellular functions. During the last decade, a vast amount of evidence is accumulating that attributes an important role to these cation channels in different regulatory aspects of the alimentary tract. In this review we discuss the expression patterns and roles of TRP channels in the regulation of gastrointestinal motility, enteric nervous system signalling and visceral sensation, and provide our perspectives on pharmacological targeting of TRPs as a strategy to treat various gastrointestinal disorders. We found that the current knowledge about the role of some members of the TRP superfamily in neurogastroenterology is rather limited, whereas the function of other TRP channels, especially of those implicated in smooth muscle cell contractility (TRPC4, TRPC6), visceral sensitivity and hypersensitivity (TRPV1, TRPV4, TRPA1), tends to be well established. Compared with expression data, mechanistic information about TRP channels in intestinal pacemaking (TRPC4, TRPC6, TRPM7), enteric nervous system signalling (TRPCs) and enteroendocrine cells (TRPM5) is lacking. It is clear that several different TRP channels play important roles in the cellular apparatus that controls gastrointestinal function. They are involved in the regulation of gastrointestinal motility and absorption, visceral sensation and visceral hypersensitivity. TRP channels can be considered as interesting targets to tackle digestive diseases, motility disorders and visceral pain. At present, TRPV1 antagonists are under development for the treatment of heartburn and visceral hypersensitivity, but interference with other TRP channels is also tempting. However, their role in gastrointestinal pathophysiology first needs to be further elucidated.
Collapse
Affiliation(s)
- Werend Boesmans
- TARGID – Translational Research Center for Gastrointestinal DisordersKULeuven, Leuven, Belgium
| | | | - Jan Tack
- TARGID – Translational Research Center for Gastrointestinal DisordersKULeuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel ResearchKULeuven, Leuven, Belgium
| | - Pieter Vanden Berghe
- TARGID – Translational Research Center for Gastrointestinal DisordersKULeuven, Leuven, Belgium
| |
Collapse
|
21
|
Wang B, Danjo A, Kajiya H, Okabe K, Kido M. Oral Epithelial Cells are Activated via TRP Channels. J Dent Res 2010; 90:163-7. [DOI: 10.1177/0022034510385459] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Transient receptor potential (TRP) ion channels are critical contributors to the perception of various environmental stimuli. Although the oral cavity is the access point for various food types, the expression of TRP channels in oral mucosa remains unknown. We hypothesized that the oral epithelium itself may participate in sensing thermal, mechanical, and chemical conditions. The expression profiles of TRP channels exhibited regional differences among the buccal, palatal, and tongue epithelia. Changes in elevated intracellular Ca2+ concentration ([Ca2+]i) in oral epithelial cells were found after stimulation of the TRP channels with capsaicin, camphor, 4α-phorbol-12,13 didecanoate (4α-PDD), 2-aminoethoxydiphenyl borate (2-APB), and menthol. These increases in Ca2+ appeared dependent on the TRP channels, because [Ca2+]i suppression was observed after the addition of the TRPV channel antagonist ruthenium red. These results demonstrate that the oral epithelia express various TRP channels and may have functional roles in sensory activities, together with neurons.
Collapse
Affiliation(s)
- B. Wang
- Department of Oral Anatomy and Cell Biology, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - A. Danjo
- Department of Oral Anatomy and Cell Biology, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Saga University, Japan
| | - H. Kajiya
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - K. Okabe
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - M.A. Kido
- Department of Oral Anatomy and Cell Biology, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
22
|
Messeguer A, Planells-Cases R, Ferrer-Montiel A. Physiology and pharmacology of the vanilloid receptor. Curr Neuropharmacol 2010; 4:1-15. [PMID: 18615132 DOI: 10.2174/157015906775202995] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The identification and cloning of the vanilloid receptor 1 (TRPV1) represented a significant step for the understanding of the molecular mechanisms underlying the transduction of noxious chemical and thermal stimuli by peripheral nociceptors. TRPV1 is a non-selective cation channel gated by noxious heat, vanilloids and extracellular protons. TRPV1 channel activity is remarkably potentiated by pro-inflammatory agents, a phenomenon that is thought to underlie the peripheral sensitisation of nociceptors that leads to thermal hyperalgesia. Cumulative evidence is building a strong case for the involvement of this receptor in the etiology of both peripheral and visceral inflammatory pain, such as inflammatory bowel disease, bladder inflammation and cancer pain. The validation of TRPV1 receptor as a key therapeutic target for pain management has thrust intensive drug discovery programs aimed at developing orally active antagonists of the receptor protein. Nonetheless, the real challenge of these drug discovery platforms is to develop antagonists that preserve the physiological activity of TRPV1 receptors while correcting over-active channels. This is a condition to ensure normal pro-prioceptive and nociceptive responses that represent a safety mechanism to prevent tissue injury. Recent and exciting advances in the function, dysfunction and modulation of this receptor will be the focus of this review.
Collapse
Affiliation(s)
- Angel Messeguer
- Department of Biological Organic Chemistry, IIQAB-CSIC, J. Girona 23, 080034 Barcelona, Spain
| | | | | |
Collapse
|
23
|
Hondoh A, Ishida Y, Ugawa S, Ueda T, Shibata Y, Yamada T, Shikano M, Murakami S, Shimada S. Distinct expression of cold receptors (TRPM8 and TRPA1) in the rat nodose-petrosal ganglion complex. Brain Res 2010; 1319:60-9. [PMID: 20079339 DOI: 10.1016/j.brainres.2010.01.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 01/06/2010] [Accepted: 01/06/2010] [Indexed: 01/06/2023]
Abstract
TRPM8 and TRPA1 are cold-activated transient receptor potential (TRP) cation channels. TRPM8 is activated by moderate cooling, while TRPA1 is activated by extreme, noxious cold temperatures. These cold receptors are expressed in different subpopulations of primary afferent neurons. TRPA1 is co-expressed in a subpopulation of somatosensory neurons expressing TRPV1, which is activated by heat. However, the distribution and co-expression of these channels in the nodose-petrosal ganglion complex, which contains the jugular (JG), petrosal (PG), and nodose ganglia (NG) (mainly involved in putative somatic, chemo- and somato-sensation, and somato and visceral sensation, respectively), remain unknown. Here, we conducted in situ hybridization analysis of the rat nodose-petrosal ganglion complex using specific riboprobes for TRPM8, TRPA1, and TRPV1 to compare the features of the cranial sensory ganglia. Hybridization signals for TRPA1 were diffusely observed throughout these ganglia, whereas TRPM8 transcripts were seen in the JG and PG but not in the NG. We retrogradely labeled cranial nerve X with Fast Blue (fluorescent dye) and found TRPM8 transcripts in the jugular-vagal ganglion but not the NG neurons. TRPA1 transcripts were not detected in TRPM8-expressing neurons but were present in the subpopulation of TRPV1-expressing visceral sensory neurons. Taken together, these findings support that in the vagal system the expression of cold-activated TRP channels differs between nodose- and jugular-ganglion neurons suggesting different mechanisms of cold-transduction and that the TRPA1 distribution is consistent with its proposed function as a cold-sensing receptor in the visceral system.
Collapse
Affiliation(s)
- Aki Hondoh
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
OBJECTIVES Capsaicin/vanilloid (transient receptor potential vanilloid 1, (TRPV1) receptor has been shown to be expressed in gastrointestinal tract and play a role as a member of sensory ion channel superfamily. The G315C polymorphism affects the TRPV1 gene and alters its protein level. We aimed to investigate the effect of TRPV1 G315C polymorphism on functional dyspepsia (FD) in a Japanese population. METHODS TRPV1 G315C polymorphism was genotyped in 98 subjects with no upper abdominal symptoms and 109 patients with FD. Severity of 7 upper gastrointestinal symptoms was assessed during cold water, and cold carbonated water drinking for randomly selected 20 healthy subjects. RESULTS We found a significant inverse association between TRPV1 315CC genotype and FD [CC vs. others; odds ratio (OR)=0.40, 95% confidence interval (CI)=0.38-0.82]. We also found that the same genotype held a lower risk of both epigastric pain syndrome (OR=0.25, 95% CI=0.09-0.73), postprandial syndrome (OR=0.27, 95% CI=0.07-0.96) according to Rome III, and Helicobacter pylori positive FD (OR=0.28, 95% CI=0.10-0.79). The evolution of symptom severity scale of 7 total symptoms (P=0.004), and heavy feeling in stomach (P=0.02) during cold carbonated water drinking were significantly lower among 315CC genotypes compared with others. CONCLUSIONS Homozygous TRPV1 315C influences the susceptibility to FD through altering the upper gastrointestinal sensation.
Collapse
|
25
|
Modulation of sensory nerve function and the cough reflex: understanding disease pathogenesis. Pharmacol Ther 2009; 124:354-75. [PMID: 19818366 DOI: 10.1016/j.pharmthera.2009.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 09/16/2009] [Indexed: 12/29/2022]
Abstract
To cough is a protective defence mechanism that is vital to remove foreign material and secretions from the airways and which in the normal state serves its function appropriately. Modulation of the cough reflex pathway in disease can lead to inappropriate chronic coughing and an augmented cough response. Chronic cough is a symptom that can present in conjunction with a number of diseases including chronic obstructive pulmonary disease (COPD) and asthma, although often the cause of chronic cough may be unknown. As current treatments for cough have proved to exhibit little efficacy and are largely ineffective, there is a need to develop novel, efficacious and safe antitussive therapies. The underlying mechanisms of the cough reflex are complex and involve a network of events, which are not fully understood. It is accepted that the cough reflex is initiated following activation of airway sensory nerves. Therefore, in the hope of identifying novel antitussives, much research has focused on understanding the neural mechanisms of cough provocation. Experimentally this has been undertaken using chemical or mechanical tussive stimuli in conjunction with animal models of cough and clinical cough assessments. This review will discuss the neural mechanisms involved in the cough, changes that occur under pathophysiological conditions and and how current research may lead to novel therapeutic opportunities for the treatment of cough.
Collapse
|
26
|
Shimohira D, Kido MA, Danjo A, Takao T, Wang B, Zhang JQ, Yamaza T, Masuko S, Goto M, Tanaka T. TRPV2 expression in rat oral mucosa. Histochem Cell Biol 2009; 132:423-33. [PMID: 19579031 DOI: 10.1007/s00418-009-0616-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2009] [Indexed: 11/25/2022]
Abstract
The oral mucosa is a highly specialised, stratified epithelium that confers protection from infection and physical, chemical and thermal stimuli. The non-keratinised junctional epithelium surrounds each tooth like a collar and is easily attacked by foreign substances from the oral sulcus. We found that TRPV2, a temperature-gated channel, is highly expressed in junctional epithelial cells, but not in oral sulcular epithelial cells or oral epithelial cells. Dual or triple immunolabelling with immunocompetent cell markers also revealed TRPV2 expression in Langerhans cells and in dendritic cells and macrophages. Electron microscopy disclosed TRPV2 immunoreactivity in the unmyelinated and thinly myelinated axons within the connective tissue underlying the epithelium. TRPV2 labelling was also observed in venule endothelial cells. The electron-dense immunoreaction in junctional epithelial cells, macrophages and neural axons occurred on the plasma membrane, on invaginations of the plasma membrane and in vesicular structures. Because TRPV2 has been shown to respond to temperature, hypotonicity and mechanical stimuli, gingival cells expressing TRPV2 may act as sensor cells, detecting changes in the physical and chemical environment, and may play a role in subsequent defence mechanisms.
Collapse
Affiliation(s)
- Daiji Shimohira
- Department of Oral Anatomy and Cell Biology, Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Czaja K, Burns GA, Ritter RC. Capsaicin-induced neuronal death and proliferation of the primary sensory neurons located in the nodose ganglia of adult rats. Neuroscience 2008; 154:621-30. [PMID: 18456414 DOI: 10.1016/j.neuroscience.2008.03.055] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 03/07/2008] [Accepted: 03/20/2008] [Indexed: 01/15/2023]
Abstract
To evaluate the potential for neuronal replacement following destruction of vagal afferent neurons, we examined nodose ganglia following i.p. capsaicin treatment of adult rats. Rats received capsaicin or vehicle followed by a regimen of 5'-bromo-2'-deoxyuridine injections (BrdU) to reveal DNA replication. Nodose ganglia were harvested at various times post-treatment and processed for 4',6-diamidino-2-phenylindole (DAPI) nuclear staining and immunofluorescence to estimate neuronal numbers and to determine vanilloid receptor, cleaved caspase 3, TUNEL, BrdU, the neuron-selective marker protein gene product (PGP) -9.5 and neurofilament-M-immunoreactivity. Twenty-four hours after capsaicin approximately 40% of nodose ganglion neurons expressed cleaved caspase 3-immunoreactivity and 16% revealed TUNEL staining, indicating that primary sensory neurons are killed by the capsaicin treatment of adult rats. The occurrence of neuronal death was confirmed by counts of DAPI-stained neuronal nuclei, which revealed >or=50% reduction of nodose neuron number by 30 days post-capsaicin. However, by 60 days post-capsaicin, the total numbers of neuronal nuclei in nodose ganglia from capsaicin-treated rats were not different from controls, suggesting that new neurons had been added to the nodose ganglia. Neuronal proliferation was confirmed by significant BrdU incorporation in nuclei of nodose ganglion cells immunoreactive for the neuron-specific antigen PGP-9.5 revealed 30 and 60 days post-capsaicin. Collectively, these observations suggest that in adult rats massive scale neurogenesis occurs in nodose ganglia following capsaicin-induced neuronal destruction. The adult nodose ganglion, therefore, provides a novel system for studying neural plasticity and adult neurogenesis after peripheral injury of primary sensory neurons.
Collapse
Affiliation(s)
- K Czaja
- Department of Veterinary, Comparative Anatomy, Pharmacology, and Physiology, College of Veterinary Medicine, Washington State University, Pullman, WA 99163-6520, USA.
| | | | | |
Collapse
|
28
|
Yamamoto Y, Sato Y, Taniguchi K. Distribution of TRPV1- and TRPV2-immunoreactive afferent nerve endings in rat trachea. J Anat 2007; 211:775-83. [PMID: 17979952 DOI: 10.1111/j.1469-7580.2007.00821.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nociception in the trachea is important for respiratory modulation. We investigated the distribution, neurochemical characteristics, and origin of nerve endings with immunoreactivity for candidate sensor channels, TRPV1 and TRPV2, in rat trachea. In the epithelial layer, the intraepithelial nerve endings and dense subepithelial network of nerve fibers were immunoreactive for TRPV1. In contrast, TRPV2 immunoreactivity was observed mainly in nerve fibers of the tracheal submucosal layer and in several intrinsic ganglion cells in the peritracheal plexus. Double immunostaining revealed that some TRPV1-immunoreactive nerve fibers were also immunoreactive for substance P or calcitonin gene-related peptide, but neither neuropeptide colocalized with TRPV2. Injection of the retrograde tracer, fast blue, into the tracheal wall near the thoracic inlet demonstrated labeled neurons in the jugular, nodose, and dorsal root ganglia at segmental levels of C2-C8. In the jugular and nodose ganglia, 59.3% (70/118) and 10.7% (17/159), respectively, of fast blue-labeled neurons were immunoreactive for TRPV1, compared to 8.8% (8/91) and 2.6% (5/191) for TRPV2-immunoreactive. Our results indicate that TRPV1-immunoreactive nerve endings are important for tracheal nociception, and the different expression patterns of TRPV1 and TRPV2 with neuropeptides may reflect different subpopulations of sensory neurons.
Collapse
Affiliation(s)
- Yoshio Yamamoto
- Laboratory of Veterinary Biochemistry and Cell Biology, Department of Veterinary Sciences, Faculty of Agriculture, Iwate University, Morioka, Japan.
| | | | | |
Collapse
|
29
|
Ichikawa H, Terayama R, Yamaai T, Yan Z, Sugimoto T. Brain-derived neurotrophic factor-immunoreactive neurons in the rat vagal and glossopharyngeal sensory ganglia; co-expression with other neurochemical substances. Brain Res 2007; 1155:93-9. [PMID: 17512913 DOI: 10.1016/j.brainres.2006.11.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 11/08/2006] [Accepted: 11/08/2006] [Indexed: 11/20/2022]
Abstract
Immunohistochemistry for brain-derived neurotrophic factor (BDNF) was performed on the rat vagal and glossopharyngeal sensory ganglia. In the jugular, petrosal and nodose ganglia, 56.1+/-5.5%, 52.4+/-9.4% and 80.0+/-3.0% of sensory neurons, respectively, were immunoreactive for BDNF. These neurons were small- to medium-sized and observed throughout the ganglia. In the solitary tract nucleus, the neuropil showed BDNF immunoreactivity. A double immunofluorescence method demonstrated that BDNF-immunoreactive neurons were also immunoreactive for calcitonin gene-related peptide (CGRP), P2X3 receptor, the capsaicin receptor (VR1) or vanilloid receptor 1-like receptor (VRL-1) in the jugular (CGRP, 43.5%; P2X3 receptor, 51.1%; VR1, 71.7%; VRL-1, 0.5%), petrosal (CGRP, 33.2%; P2X3 receptor, 58.4%; VR1, 54.2%; VRL-1, 23.3%) and nodose ganglia (CGRP, 1.8%; P2X3 receptor, 49.1%; VR1, 70.7%; VRL-1, 11.5%). The co-expression with tyrosine hydroxylase was also detected in the petrosal (2.9%) and nodose ganglia (2.2%). However, BDNF-immunoreactive neurons were devoid of parvalbumin in these ganglia. The present findings suggest that BDNF-containing vagal and glossopharyngeal sensory neurons have nociceptive and chemoreceptive functions.
Collapse
Affiliation(s)
- H Ichikawa
- Department of Oral Function and Anatomy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | | | | | | | | |
Collapse
|
30
|
Ruan T, Lin YS, Lin KS, Kou YR. Mediator mechanisms involved in TRPV1 and P2X receptor-mediated, ROS-evoked bradypneic reflex in anesthetized rats. J Appl Physiol (1985) 2006; 101:644-54. [PMID: 16627682 DOI: 10.1152/japplphysiol.00192.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhalation of H2O2 is known to evoke bradypnea followed by tachypnea, which are reflexes resulting from stimulation by reactive oxygen species of vagal lung capsaicin-sensitive and myelinated afferents, respectively. This study investigated the pharmacological receptors and chemical mediators involved in triggering these responses. The ventilatory responses to 0.2% aerosolized H2O2 were studied before and after various pharmacological pretreatments in anesthetized rats. The initial bradypneic response was reduced by a transient receptor potential vanilloid 1 (TRPV1) receptor antagonist [capsazepine; change (Delta) = -53%] or a P2X purinoceptor antagonist [iso-pyridoxalphosphate-6-azophenyl-2',5'-disulphonate (PPADS); Delta = -47%] and was further reduced by capsazepine and iso-PPADS in combination (Delta = -78%). The initial bradypneic response was reduced by a cyclooxygenase inhibitor (indomethacin; Delta = -48%), ATP scavengers (apyrase and adenosine deaminase in combination; Delta = -50%), or capsazepine and indomethacin in combination (Delta = -47%), was further reduced by iso-PPADS and indomethacin in combination (Delta = -75%) or capsazepine and ATP scavengers in combination (Delta = -83%), but was not affected by a lipoxygenase inhibitor (nordihydroguaiaretic acid) or by any of the various vehicles. No pretreatment influenced delayed tachypnea. We concluded that 1) the initial bradypneic response to H2O2 results from activation of both TRPV1 and P2X receptors, possibly located at terminals of vagal lung capsaicin-sensitive afferent fibers; 2) the functioning of the TRPV1 and P2X receptors in triggering the initial bradypnea is, in part, mediated through the actions of cyclooxygenase metabolites and ATP, respectively; and 3) these mechanisms do not contribute to the H2O2-evoked delayed tachypnea.
Collapse
Affiliation(s)
- Ting Ruan
- Dept. of Physiology, School of Medicine, National Yang-Ming Univ., Shih-Pai, Taipei 112, Taiwan
| | | | | | | |
Collapse
|
31
|
Fukuda T, Ichikawa H, Terayama R, Yamaai T, Kuboki T, Sugimoto T. ASIC3-immunoreactive neurons in the rat vagal and glossopharyngeal sensory ganglia. Brain Res 2006; 1081:150-5. [PMID: 16510130 DOI: 10.1016/j.brainres.2006.01.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 01/11/2006] [Accepted: 01/16/2006] [Indexed: 12/31/2022]
Abstract
ASIC3-immunoreactivity (ir) was examined in the rat vagal and glossopharyngeal sensory ganglia. In the jugular, petrosal and nodose ganglia, 24.8%, 30.8% and 20.6% of sensory neurons, respectively, were immunoreactive for ASIC3. These neurons were observed throughout the ganglia. A double immunofluorescence method demonstrated that many ASIC3-immunoreactive (ir) neurons co-expressed calcitonin gene-related peptide (CGRP)- or vanilloid receptor subtype 1 (VRL-1)-ir in the jugular (CGRP, 77.8%; VRL-1, 28.0%) and petrosal ganglia (CGRP, 61.7%; VRL-1, 21.5%). In the nodose ganglion, however, such neurons were relatively rare (CGRP, 6.3%; VRL-1, 0.4%). ASIC3-ir neurons were mostly devoid of tyrosine hydroxylase in these ganglia. However, some ASIC3-ir neurons co-expressed calbindin D-28k in the petrosal (5.5%) and nodose ganglia (3.8%). These findings may suggest that ASIC3-containing neurons have a wide variety of sensory modalities in the vagal and glossopharyngeal sensory ganglia.
Collapse
Affiliation(s)
- T Fukuda
- Department of Oral and Maxillofacial Rehabilitation, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Okano H, Koike S, Bamba H, Toyoda KI, Uno T, Hisa Y. Participation of TRPV1 and TRPV2 in the rat laryngeal sensory innervation. Neurosci Lett 2006; 400:35-8. [PMID: 16517068 DOI: 10.1016/j.neulet.2006.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 01/24/2006] [Accepted: 02/07/2006] [Indexed: 11/28/2022]
Abstract
Laryngeal sensory innervation is essential to the laryngeal defense system. We investigated the participation of TRPV1 and its homologue TRPV2 in the rat laryngeal sensory innervation using immunohistochemistry and the neuronal tracer, fluoro-gold (FG). After injection of FG into the internal branch of the superior laryngeal nerve, FG-labeled neurons were seen in the rostral part of the nodose ganglion (NG). Neurons immunoreactive for TRPV1 or TRPV2 were distributed throughout the NG. TRPV1 immunoreactivity was seen in 49.0+/-4.5% of the FG-labeled neurons, while TRPV2 immunoreactivity was seen in 12.5+/-4.1% of the FG-labeled neurons. These findings suggest that both TRPV1 and TRPV2 participate in laryngeal nociception, but that TRPV1 may have a particularly important role.
Collapse
Affiliation(s)
- Hiroyuki Okano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto 602-8566, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Sugiura T, Dang K, Lamb K, Bielefeldt K, Gebhart GF. Acid-sensing properties in rat gastric sensory neurons from normal and ulcerated stomach. J Neurosci 2006; 25:2617-27. [PMID: 15758172 PMCID: PMC6725180 DOI: 10.1523/jneurosci.2894-04.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Gastric acid contributes to dyspeptic symptoms, including abdominal pain, in patients with disorders of the proximal gastrointestinal tract. To examine the molecular sensor(s) of gastric acid chemonociception, we characterized acid-elicited currents in dorsal root ganglion (DRG) and nodose ganglion (NG) neurons that innervate the stomach and examined their modulation after induction of gastric ulcers. A fluorescent dye (DiI) was injected into the stomach wall to retrogradely label gastric sensory neurons. After 1-2 weeks, gastric ulcers were induced by 45 s of luminal exposure of the stomach to 60% acetic acid injected into a clamped area of the distal stomach; control animals received saline. In whole-cell voltage-clamp recordings, all gastric DRG neurons and 55% of NG neurons exhibited transient, amiloride-sensitive, acid-sensing ion-channel (ASIC) currents. In the remaining 45% of NG neurons, protons activated a slow, sustained current that was attenuated by the transient receptor potential vanilloid subtype 1 antagonist, capsazepine. The kinetics and proton sensitivity of amiloride-sensitive ASIC currents differed between NG and DRG neurons. NG neurons had a lower proton sensitivity and faster kinetics, suggesting expression of specific subtypes of ASICs in the vagal and splanchnic innervation of the stomach. Effects of Zn2+ and N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine on acid-elicited currents suggest contributions of ASIC1a and ASIC2a subunits. Gastric ulcers altered the properties of acid-elicited currents by increasing pH sensitivity and current density and changing current kinetics in gastric DRG neurons. The distinct properties of NG and DRG neurons and their modulation after injury suggest differential contributions of vagal and spinal afferent neurons to chemosensation and chemonociception.
Collapse
Affiliation(s)
- Takeshi Sugiura
- Department of Pharmacology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
34
|
Peeters PJ, Aerssens J, de Hoogt R, Stanisz A, Göhlmann HW, Hillsley K, Meulemans A, Grundy D, Stead RH, Coulie B. Molecular profiling of murine sensory neurons in the nodose and dorsal root ganglia labeled from the peritoneal cavity. Physiol Genomics 2006; 24:252-63. [PMID: 16303873 DOI: 10.1152/physiolgenomics.00169.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Vagal afferent neurons are thought to convey primarily physiological information, whereas spinal afferents transmit noxious signals from the viscera to the central nervous system. To elucidate molecular identities for these different properties, we compared gene expression profiles of neurons located in nodose ganglia (NG) and dorsal root ganglia (DRG) in mice. Intraperitoneal administration of Alexa Fluor-488-conjugated cholera toxin B allowed enrichment for neurons projecting to the viscera. Fluorescent neurons in DRG (from T10 to T13) and NG were isolated using laser-capture microdissection. Gene expression profiles of these afferent neurons, obtained by microarray hybridization, were analyzed using multivariate spectral map analysis, significance analysis of microarrays (SAM) algorithm, and fold-difference filtering. A total of 1,996 genes were differentially expressed in DRG vs. NG, including 41 G protein-coupled receptors and 60 ion channels. Expression profiles obtained on laser-captured neurons were contrasted to those obtained on whole ganglia, demonstrating striking differences and the need for microdissection when studying visceral sensory neurons because of dilution of the signal by somatic sensory neurons. Furthermore, we provide a detailed catalog of all adrenergic and cholinergic, GABA, glutamate, serotonin, and dopamine receptors; voltage-gated potassium, sodium, and calcium channels; and transient receptor potential cation channels present in afferents projecting to the peritoneal cavity. Our genome-wide expression profiling data provide novel insight into molecular signatures that underlie both functional differences and similarities between NG and DRG sensory neurons. Moreover, these findings will offer novel insight into mode of action of pharmacological agents modulating visceral sensation.
Collapse
Affiliation(s)
- Pieter J Peeters
- Department of Internal Medicine, Johnson and Johnson Pharmaceutical Research and Development, Beerse, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Watanabe N, Horie S, Michael GJ, Keir S, Spina D, Page CP, Priestley JV. Immunohistochemical co-localization of transient receptor potential vanilloid (TRPV)1 and sensory neuropeptides in the guinea-pig respiratory system. Neuroscience 2006; 141:1533-43. [PMID: 16765524 DOI: 10.1016/j.neuroscience.2006.04.073] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 04/20/2006] [Accepted: 04/22/2006] [Indexed: 12/30/2022]
Abstract
Electrophysiological studies within the lung have documented the presence of heterogenous groups of afferent fibers composed of Adelta and C-fibers and studies of somatosensory nerves within the skin reveal a complex pattern of distribution of sensory neuropeptides and transient receptor potential vanilloid (TRPV)1 positive nerves. However, the anatomical location of these different subpopulations of nerves within the lung has not been extensively studied. In the present study we have demonstrated that TRPV1 axons represented only a small proportion of the total number of PGP9.5 staining nerves within guinea-pig tracheal epithelium and only half the number of TRPV1 axons was immunopositive for substance P. In contrast, most TRPV1 positive neurones found within guinea-pig intrapulmonary airways were found to co-localize with sensory neuropeptides substance P and calcitonin gene-related peptide within and beneath the epithelium, around blood vessels, within airway smooth muscle and alveoli, indicative of heterogeneity of TRPV1 positive axons throughout the airways. However, in the smooth muscle layer of the trachea there was evidence of substance P and calcitonin gene-related peptide containing nerves that did not stain for TRPV1. We also demonstrated a complete loss of TRVP1 positive axons in the trachea and intrapulmonary airways and associated loss of bronchoconstriction induced by capsaicin, in animals chronically treated with capsaicin. However, some neuropeptide immunoreactive axons remained in the smooth muscle layer of capsaicin-treated animals which could represent the small subset of neuropeptide containing fibers which do not co-localize with TRPV1. We have provided evidence of heterogeneity of TRPV1 positive nerve fibers, including fibers characterized by lack of co-localization with neuropeptides in various regions of the airways and the existence of neuropeptide containing fibers that were not TRPV1 positive in guinea-pigs.
Collapse
Affiliation(s)
- N Watanabe
- Sackler Institute of Pulmonary Pharmacology, Pharmaceutical Sciences Research Division, School of Biomedical and Health Sciences, King's College London, St. Thomas Street, London SE1 1UL, UK
| | | | | | | | | | | | | |
Collapse
|
36
|
Fukuoka T, Noguchi K. Chapter 15 Expression Patterns and Histological Aspects of TRP Channels in Sensory Neurons. CURRENT TOPICS IN MEMBRANES 2006. [DOI: 10.1016/s1063-5823(06)57014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Schaefer M. Homo- and heteromeric assembly of TRP channel subunits. Pflugers Arch 2005; 451:35-42. [PMID: 15971080 DOI: 10.1007/s00424-005-1467-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2005] [Accepted: 05/07/2005] [Indexed: 12/29/2022]
Abstract
Mammalian homologues of the Drosophila melanogaster transient receptor potential (TRP) channels are the second largest cation channel family within the superfamily of hexahelical cation channels. Most mammalian TRP channels function as homooligomers and mediate mono- or divalent cation entry upon activation by a variety of stimuli. Because native TRP channels may be multimeric proteins of possibly complex composition, it is difficult to compare cation conductances in native tissues to those of clearly defined homomeric TRP channel complexes in living cells. Therefore, the possibility of heteromeric TRP channel assembly has been investigated in recent years by several groups. As a major conclusion of these studies, most heteromeric TRP channel complexes appear to consist of subunit combinations only within relatively narrow confines of phylogenetic subfamilies. Although the general capability of heteromer formation between closely related TRP channel subunits is now clearly established, we are only beginning to understand whether these heteromeric complexes are of physiological significance. This review summarizes the current knowledge on the promiscuity and specificity of the assembly of channel complexes composed of TRPC-, TRPV- and TRPM-subunits of mammalian TRP channels.
Collapse
Affiliation(s)
- Michael Schaefer
- Institut für Pharmakologie, Charité, Universitätsmedizin Berlin, Campus Benjamin Franklin, Thielallee 67-73, 14195 Berlin, Germany.
| |
Collapse
|
38
|
Nagy I, Sántha P, Jancsó G, Urbán L. The role of the vanilloid (capsaicin) receptor (TRPV1) in physiology and pathology. Eur J Pharmacol 2005; 500:351-69. [PMID: 15464045 DOI: 10.1016/j.ejphar.2004.07.037] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 02/06/2023]
Abstract
The cloning of the vanilloid receptor 1 opened a floodgate for discoveries regarding the function of this complex molecule. It has been found that, in addition to heat, protons and vanilloids, this receptor also responds to various endogenous ligands. Furthermore, it has been also emerged that, through associations with other molecules, the vanilloid receptor 1 plays an important role in the integration of various stimuli and modulation of cellular excitability. Although, originally, the vanilloid receptor 1 was associated with nociceptive primary afferent fibres, it has been gradually revealed that it is broadly expressed in the brain, epidermis and visceral cells. The expression pattern of the vanilloid receptor 1 indicates that it could be involved in various physiological functions and in the pathomechanisms of diverse diseases. Here, we summarise the molecular, pharmacological and physiological characteristics, and putative functions, of the vanilloid receptor 1, and discuss the therapeutic potential of this molecule.
Collapse
Affiliation(s)
- István Nagy
- Department of Anaesthetics and Intensive Care, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, United Kingdom.
| | | | | | | |
Collapse
|
39
|
Ruan T, Lin YS, Lin KS, Kou YR. Sensory transduction of pulmonary reactive oxygen species by capsaicin-sensitive vagal lung afferent fibres in rats. J Physiol 2005; 565:563-78. [PMID: 15802291 PMCID: PMC1464522 DOI: 10.1113/jphysiol.2005.086181] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The mechanisms of sensory transduction of pulmonary reactive oxygen species (ROS) by capsaicin-sensitive vagal lung afferent fibres are unclear. To investigate the role of transient receptor potential vanilloid 1 (TRPV1) receptors and P2X purinoceptors in this sensory transduction, we recorded fibre activity (FA) from 132 fibres of this type in 132 anaesthetized and ventilated rats. Airway challenge of aerosolized H2O2 (0, 0.2 and 0.4%) produced a concentration-dependant fibre stimulation. The fibre responses to 0.4% H2O2 were attenuated by dimethylthiourea (a hydroxyl radical (.OH) scavenger; change in fibre activity (DeltaFA), -55+/-9%) or deferoxamine (an iron-chelator that prevents formation of .OH; DeltaFA, -59+/-9%), were prevented by catalase (an enzyme catalysing H2O2; DeltaFA, -96+/-3%) and were unaffected by the vehicle for dimethylthiourea, iron-saturated deferoxamine or heat-inactivated catalase. The fibre responses to 0.4% H2O2 were attenuated by capsazepine (a TRPV1 receptor antagonist; DeltaFA, -39+/-9%) or iso-pyridoxalphosphate-6-azophenyl-2',5'-disulphonate (iso-PPADS, a P2X receptor antagonist; DeltaFA, -51+/-9%), were further reduced by capsazepine and iso-PPADS in combination (DeltaFA, -70+/-13%), and were unaltered by their vehicles. The fibre responses to cigarette smoke (20 ml), an irritant that generates ROS, were attenuated by dimethylthiourea (DeltaFA, -61+/-9%) or capsazepine and iso-PPADS in combination (DeltaFA, -67+/-9%). These results suggest that both the TRPV1 and P2X receptors mediate the sensory transduction of ROS, especially H2O2 and .OH, by capsaicin-sensitive vagal lung afferent fibres.
Collapse
Affiliation(s)
- Ting Ruan
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | |
Collapse
|
40
|
Yamamoto Y, Taniguchi K. Immunolocalization of VR1 and VRL1 in rat larynx. Auton Neurosci 2005; 117:62-5. [PMID: 15620571 DOI: 10.1016/j.autneu.2004.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 10/26/2004] [Accepted: 11/02/2004] [Indexed: 10/26/2022]
Abstract
Immunoreactivity for vanilloid receptor subtype 1 (VR1) and its analogue vanilloid receptor-like protein 1 (VRL1) were examined in combination with immunoreactivity for substance P (SP) and calcitonin gene-related peptide (CGRP) in the rat larynx. VR1 and VRL1 immunoreactivity were observed in the intraepithelial free nerve endings, subepithelial nerve plexus and laryngeal epithelial cells. Most of VR1 immunoreactive nerves were also immunoreactive for SP or CGRP. VR1 immunoreactive intraepithelial nerve endings may be laryngeal nociceptors.
Collapse
Affiliation(s)
- Yoshio Yamamoto
- Laboratory of Veterinary Anatomy, Department of Veterinary Sciences, Faculty of Agriculture, Iwate University, Ueda 3-19-8, Morioka, Iwate, 080-8550, Japan.
| | | |
Collapse
|
41
|
Gaudet AD, Williams SJ, Hwi LPR, Ramer MS. Regulation of TRPV2 by axotomy in sympathetic, but not sensory neurons. Brain Res 2004; 1017:155-62. [PMID: 15261111 DOI: 10.1016/j.brainres.2004.05.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2004] [Indexed: 11/29/2022]
Abstract
Neuropathic pain results from traumatic or disease-related insults to the nervous system. Mechanisms that have been postulated to underlie peripheral neuropathy commonly implicate afferent neurons that have been damaged but still project centrally to the spinal cord, and/or intact neurons that interact with degenerating distal portions of the injured neurons. One pain state that is observed following peripheral nerve injury in the rat is thermal hyperalgesia. The noxious heat-gated ion channel TRPV1 may be responsible for this increased sensitivity, as it is up-regulated in L4 dorsal root ganglion (DRG) neurons following L5 spinal nerve lesion (SpNL). The TRPV1 homologue TRPV2 (or VRL-1) is another member of the TRPV subfamily of TRP ion channels. TRPV2 is a nonselective cation channel activated by high noxious temperatures (>52 degrees C) and is present in a subset of medium- to large-diameter DRG neurons. To establish whether TRPV2 is endogenous to the spinal cord, we examined its expression in the dorsal horn following rhizotomy. We found no significant decrease in TRPV2 immunoreactivity, suggesting that TRPV2 is endogenous to the spinal cord. In order to determine whether TRPV2, like TRPV1, is regulated by peripheral axotomy, we performed L5 SpNL and characterized TRPV2 distribution in the DRG, spinal cord, brainstem, and sympathetic ganglia. Our results show that peripheral axotomy did not regulate TRPV2 in the DRG, spinal cord, or brainstem; however, TRPV2 was up-regulated in sympathetic postganglionic neurons following injury, suggesting a potential role for TRPV2 in sympathetically mediated neuropathic pain.
Collapse
Affiliation(s)
- Andrew D Gaudet
- Department of Zoology, International Collaboration on Repair Discoveries (ICORD), University of British Columbia, 2469-6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| | | | | | | |
Collapse
|
42
|
Holzer P. TRPV1 and the gut: from a tasty receptor for a painful vanilloid to a key player in hyperalgesia. Eur J Pharmacol 2004; 500:231-41. [PMID: 15464036 DOI: 10.1016/j.ejphar.2004.07.028] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 12/26/2022]
Abstract
Capsaicin, the pungent ingredient in red pepper, has been used since ancient times as a spice, despite the burning sensation associated with its intake. More than 50 years ago, Nikolaus Jancso discovered that capsaicin can selectively stimulate nociceptive primary afferent neurons. The ensuing research established that the neuropharmacological properties of capsaicin are due to its activation of the transient receptor potential ion channel of the vanilloid type 1 (TRPV1). Expressed by primary afferent neurons innervating the gut and other organs, TRPV1 is gated not only by vanilloids such as capsaicin, but also by noxious heat, acidosis and intracellular lipid mediators such as anandamide and lipoxygenase products. Importantly, TRPV1 can be sensitized by acidosis and activation of various pro-algesic pathways. Upregulation of TRPV1 in inflammatory bowel disease and the beneficial effect of TRPV1 downregulation in functional dyspepsia and irritable bladder make this polymodal nociceptor an attractive target of novel therapies for chronic abdominal pain.
Collapse
Affiliation(s)
- Peter Holzer
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
43
|
Rong W, Hillsley K, Davis JB, Hicks G, Winchester WJ, Grundy D. Jejunal afferent nerve sensitivity in wild-type and TRPV1 knockout mice. J Physiol 2004; 560:867-81. [PMID: 15331673 PMCID: PMC1665286 DOI: 10.1113/jphysiol.2004.071746] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to investigate the contribution of the TRPV1 receptor to jejunal afferent sensitivity in the murine intestine. Multiunit activity was recorded in vitro from mesenteric afferents supplying segments of mouse jejunum taken from wild-type (WT) and TRPV1 knockout (TRPV1(-/-)) animals. In WT preparations, ramp distension of the gut (up to 60 mmHg) produced biphasic changes in afferent activity so the pressure-response curve had an initial rapid increase in afferent discharge followed by a second phase of slower increase in activity. Afferent response to distension was significantly lower in TRPV1(-/-) than in WT mice. Single-unit analysis revealed three functional types of afferent fibres: (1) low-threshold fibres (2) wide dynamic range fibres and (3) high-threshold fibres. There was a marked downward shift of the pressure-response curve for wide dynamic range fibres in the TRPV1(-/-) mice as compared to the WT controls. The afferent response to intraluminal hydrochloric acid (20 mM) was also attenuated in the TRPV1(-/-) mice. In contrast, the response to bath application of bradykinin (1 microm, 3 ml) was not significantly different between the two groups. The TRPV1 antagonist capsazepine (10 microm) significantly attenuated the nerve responses to distension, intraluminal acid and bradykinin, as well as the spontaneous discharge in WT mice. The WT jejunal afferents responded to capsaicin with rapid increases in afferent activity, whereas TRPV1(-/-) afferents were not at all sensitive to capsaicin. Previous evidence indicates that TRPV1 is not mechanosensitive, so the results of the present study suggest that activation of TRPV1 may sensitize small intestinal afferent neurones.
Collapse
Affiliation(s)
- Weifang Rong
- Department of Biomedical Science, University of Sheffield, Alfred Danny Building, Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | | | |
Collapse
|
44
|
Kashiba H, Uchida Y, Takeda D, Nishigori A, Ueda Y, Kuribayashi K, Ohshima M. TRPV2-immunoreactive intrinsic neurons in the rat intestine. Neurosci Lett 2004; 366:193-6. [PMID: 15276245 DOI: 10.1016/j.neulet.2004.05.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 05/14/2004] [Accepted: 05/15/2004] [Indexed: 10/26/2022]
Abstract
Transient receptor potential channel vanilloid subfamily 2 (TRPV2) was shown to receive noxious thermal stimuli (>52 degrees C), and to be expressed in fine myelinated afferent neurons. The mRNA and the immunoreactivity have also been detected in several peripheral tissues. We examined the expression of TRPV2 in the rat intestine. An analysis by transcriptase-polymerase chain reaction (RT-PCR) demonstrated TRPV2 gene expression in the intestine. Many TRPV2-positive neurons were observed in the myenteric plexus by immunohistochemistry. Some of these neurons were positive for calbindin D-28K (CaBP), which is present in intrinsic afferent neurons. TRPV2 immunoreactivity was also observed in nodose ganglion neurons (vagal afferents). These findings suggest that TRPV2 is expressed not only in sensory ganglion neurons, but also in enteric neurons, including primary afferent neurons.
Collapse
Affiliation(s)
- Hitoshi Kashiba
- Department of Physiology, Kansai College of Oriental Medicine, 2-11-1 Wakaba, Kumatori, Sennan-gun, Osaka 590-0433, Japan.
| | | | | | | | | | | | | |
Collapse
|
45
|
Ichikawa H, Gouty S, Regalia J, Helke CJ, Sugimoto T. Ca2+/calmodulin-dependent protein kinase II in the rat cranial sensory ganglia. Brain Res 2004; 1005:36-43. [PMID: 15044062 DOI: 10.1016/j.brainres.2004.01.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2004] [Indexed: 11/15/2022]
Abstract
Immunohistochemistry for Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) was performed on the rat cranial sensory ganglia. More than one half of neurons was immunoreactive for the enzyme in the trigeminal (60%), jugular (70%), petrosal (55%) and nodose ganglia (63%). These neurons were mainly small to medium-sized. The co-expression study demonstrated that one half of CaMKII-immunoreactive (ir) neurons was also immunoreactive for calcitonin gene-related peptide (CGRP) or the vanilloid receptor subtype 1 (VR1) in the trigeminal, jugular and petrosal ganglia. In the nodose ganglion, CaMKII-ir neurons were mostly devoid of CGRP-immunoreactivity (ir) (8.2%) whereas the co-expression with VR1-ir was common among such neurons (72%). In the facial skin, nasal mucosa and palate, the epithelium and taste bud were innervated by CaMKII-ir nerve fibers. In addition, the retrograde tracing study demonstrated that 39.6% and 44.8% of trigeminal neurons which were retrogradely traced with fluorogold from the facial skin and nasal mucosa exhibited CaMKII-ir. Forty-six percent of petrosal neurons which innervated the soft palate were immunoreactive for the enzyme.
Collapse
Affiliation(s)
- H Ichikawa
- Department of Oral Function and Anatomy, Shikata-Cho, Okayama, Japan.
| | | | | | | | | |
Collapse
|