1
|
Liu F, Liu J, Luo Y, Wu S, Liu X, Chen H, Luo Z, Yuan H, Shen F, Zhu F, Ye J. A Single-Cell Metabolic Profiling Characterizes Human Aging via SlipChip-SERS. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406668. [PMID: 39231358 DOI: 10.1002/advs.202406668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Metabolic dysregulation is a key driver of cellular senescence, contributing to the progression of systemic aging. The heterogeneity of senescent cells and their metabolic shifts are complex and unexplored. A microfluidic SlipChip integrated with surface-enhanced Raman spectroscopy (SERS), termed SlipChip-SERS, is developed for single-cell metabolism analysis. This SlipChip-SERS enables compartmentalization of single cells, parallel delivery of saponin and nanoparticles to release intracellular metabolites and to realize SERS detection with simple slipping operations. Analysis of different cancer cell lines using SlipChip-SERS demonstrated its capability for sensitive and multiplexed metabolic profiling of individual cells. When applied to human primary fibroblasts of different ages, it identified 12 differential metabolites, with spermine validated as a potent inducer of cellular senescence. Prolonged exposure to spermine can induce a classic senescence phenotype, such as increased senescence-associated β-glactosidase activity, elevated expression of senescence-related genes and reduced LMNB1 levels. Additionally, the senescence-inducing capacity of spermine in HUVECs and WRL-68 cells is confirmed, and exogenous spermine treatment increased the accumulation and release of H2O2. Overall, a novel SlipChip-SERS system is developed for single-cell metabolic analysis, revealing spermine as a potential inducer of senescence across multiple cell types, which may offer new strategies for addressing ageing and ageing-related diseases.
Collapse
Affiliation(s)
- Fugang Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jiaqing Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yang Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Siyi Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xu Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Haoran Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhewen Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Haitao Yuan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Fangfang Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
2
|
Soda K. Overview of Polyamines as Nutrients for Human Healthy Long Life and Effect of Increased Polyamine Intake on DNA Methylation. Cells 2022; 11:cells11010164. [PMID: 35011727 PMCID: PMC8750749 DOI: 10.3390/cells11010164] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Polyamines, spermidine and spermine, are synthesized in every living cell and are therefore contained in foods, especially in those that are thought to contribute to health and longevity. They have many physiological activities similar to those of antioxidant and anti-inflammatory substances such as polyphenols. These include antioxidant and anti-inflammatory properties, cell and gene protection, and autophagy activation. We have first reported that increased polyamine intake (spermidine much more so than spermine) over a long period increased blood spermine levels and inhibited aging-associated pathologies and pro-inflammatory status in humans and mice and extended life span of mice. However, it is unlikely that the life-extending effect of polyamines is exerted by the same bioactivity as polyphenols because most studies using polyphenols and antioxidants have failed to demonstrate their life-extending effects. Recent investigations revealed that aging-associated pathologies and lifespan are closely associated with DNA methylation, a regulatory mechanism of gene expression. There is a close relationship between polyamine metabolism and DNA methylation. We have shown that the changes in polyamine metabolism affect the concentrations of substances and enzyme activities involved in DNA methylation. I consider that the increased capability of regulation of DNA methylation by spermine is a key of healthy long life of humans.
Collapse
Affiliation(s)
- Kuniyasu Soda
- Department Cardiovascular Institute for Medical Research, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma, Saitama-City 330-0834, Saitama, Japan
| |
Collapse
|
3
|
Liu JH, Wang TW, Lin YY, Ho WC, Tsai HC, Chen SP, Lin AMY, Liu TY, Wang HT. Acrolein is involved in ischemic stroke-induced neurotoxicity through spermidine/spermine-N1-acetyltransferase activation. Exp Neurol 2019; 323:113066. [PMID: 31629858 DOI: 10.1016/j.expneurol.2019.113066] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Ischemic stroke is the most common type of cerebrovascular event and is responsible for approximately 85% of all strokes in Taiwan. Neurons contain high concentrations of polyamines, which are prone to various pathological states in the brain and are perturbed after cerebral ischemia. Acrolein, an α,β-unsaturated aldehyde, has been suggested as the primary culprit of neuronal damage in stroke patients. However, the mechanism by which acrolein induces neuronal damage during ischemic stroke is not clear. METHODS Urinary 3-hydroxypropyl mercapturic acid (3-HPMA), an acrolein-glutathione (GSH) metabolite, plasma acrolein-protein conjugates (Acr-PC) and plasma GSH levels were analyzed to correlate disease severity and prognosis of stroke patients compared with control subjects. In vivo middle cerebral artery occlusion (MCAO) animal models and an in vitro oxygen glucose deprivation (OGD) stroke model were used to investigate the mechanisms of acrolein-induced neuronal damage. RESULTS A deregulated acrolein metabolism, including significantly increased plasma Acr-PC levels, decreased urinary 3-HPMA levels and decreased plasma GSH levels, was found in stroke patients compared to control subjects. We further observed that acrolein was produced during ischemia resulting in brain damage in in vivo MCAO animal model. The induction of acrolein in neuronal cells during OGD occurred due to the increased expression of spermidine/spermine N1-acetyltransferase (SSAT) by NF-kB pathway activation. In addition, acrolein elicited a vicious cycling of oxidative stress resulting in neurotoxicity. Finally, N-acetylcysteine effectively prevented OGD-induced neurotoxicity by scavenging acrolein. CONCLUSION Overall, our current results demonstrate that acrolein is a culprit of neuronal damage through GSH depletion in stroke patients. The mechanism underlying the role of acrolein in stroke-related neuronal damage occurs through SSAT-induced polyamine oxidation by NF-kB pathway activation. These results provide a novel mechanism of neurotoxicity in stroke patients, aid in the development of neutralizing or preventive measures, and further our understanding of neural protection.
Collapse
Affiliation(s)
- Jin-Hui Liu
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming UniversRity, Taipei, Taiwan
| | - Tse-Wen Wang
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming UniversRity, Taipei, Taiwan
| | - Yung-Yang Lin
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Cerebrovascular Diseases, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan; Department of CritiWcal Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Chien Ho
- Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Hong-Chieh Tsai
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan; School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Shih-Pin Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Anya Maan-Yuh Lin
- Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan; Faculty of Pharmacy, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, Taipei-Veterans General Hospital, Taipei, Taiwan
| | - Tsung-Yun Liu
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming UniversRity, Taipei, Taiwan
| | - Hsiang-Tsui Wang
- Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
4
|
Changes in L-arginine metabolism by Sema4D deficiency induce promotion of microglial proliferation in ischemic cortex. Neuroscience 2019; 406:420-431. [PMID: 30922994 DOI: 10.1016/j.neuroscience.2019.03.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/26/2019] [Accepted: 03/15/2019] [Indexed: 02/02/2023]
Abstract
Cerebral ischemia induces neuroinflammation and microglial activation, in which activated microglia upregulate their proliferative activity and change their metabolic states. In activated microglia, l-arginine is metabolized competitively by inducible nitric oxide synthase (iNOS) and arginase (Arg), which then synthesize NO or polyamines, respectively. Our previous study demonstrated that Sema4D deficiency inhibits iNOS expression and promotes proliferation of ionized calcium-binding adaptor molecule 1 (Iba1)-positive (Iba1+) microglia in the ischemic cortex, although the underlying mechanisms were unclear. Using middle cerebral artery occlusion, we tested the hypothesis that Sema4D deficiency alters the balance of l-arginine metabolism between iNOS and Arg, leading to an increase in the production of polyamines, which are an essential factor for cell proliferation. In the peri-ischemic cortex, almost all iNOS+ and/or Arg1+ cells were Iba1+ microglia. In the peri-ischemic cortex of Sema4D-deficient (Sema4D-/-) mice, the number of iNOS+ Arg1- Iba1+ microglia was smaller and that of iNOS- Arg1+ Iba1+ microglia was greater than those of wild-type (WT) mice. In addition, urea and polyamine levels in the ischemic cortex of Sema4D-/- mice were higher than those of WT mice; furthermore, the presence of Sema4D inhibited polyamine production in primary microglia obtained from Sema4D-/- mice. Finally, microglia cultured under polyamine putrescine-supplemented conditions demonstrated increased proliferation rates over non-supplemented controls. These findings indicate that Sema4D regulates microglial proliferation at least in part by regulating the competitive balance of l-arginine metabolism.
Collapse
|
5
|
Kim J. Spermidine rescues proximal tubular cells from oxidative stress and necrosis after ischemic acute kidney injury. Arch Pharm Res 2017; 40:1197-1208. [DOI: 10.1007/s12272-017-0957-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/10/2017] [Indexed: 12/19/2022]
|
6
|
Pucciarelli S, Moreschini B, Micozzi D, De Fronzo GS, Carpi FM, Polzonetti V, Vincenzetti S, Mignini F, Napolioni V. Spermidine and Spermine Are Enriched in Whole Blood of Nona/Centenarians. Rejuvenation Res 2012; 15:590-5. [DOI: 10.1089/rej.2012.1349] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Stefania Pucciarelli
- School of Biosciences and Biotechnologies, University of Camerino, Camerino, Italy
| | - Benedetta Moreschini
- School of Biosciences and Biotechnologies, University of Camerino, Camerino, Italy
| | - Daniela Micozzi
- School of Biosciences and Biotechnologies, University of Camerino, Camerino, Italy
| | - Giusi S. De Fronzo
- School of Biosciences and Biotechnologies, University of Camerino, Camerino, Italy
| | - Francesco M. Carpi
- School of Biosciences and Biotechnologies, University of Camerino, Camerino, Italy
| | - Valeria Polzonetti
- School of Biosciences and Biotechnologies, University of Camerino, Camerino, Italy
| | | | - Fiorenzo Mignini
- School of Pharmacy and Health Products, University of Camerino, Camerino, Italy
| | - Valerio Napolioni
- School of Biosciences and Biotechnologies, University of Camerino, Camerino, Italy
| |
Collapse
|
7
|
Zahedi K, Barone SL, Xu J, Steinbergs N, Schuster R, Lentsch AB, Amlal H, Wang J, Casero RA, Soleimani M. Hepatocyte-specific ablation of spermine/spermidine-N1-acetyltransferase gene reduces the severity of CCl4-induced acute liver injury. Am J Physiol Gastrointest Liver Physiol 2012; 303:G546-60. [PMID: 22723264 PMCID: PMC3468550 DOI: 10.1152/ajpgi.00431.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Activation of spermine/spermidine-N(1)-acetyltransferase (SSAT) leads to DNA damage and growth arrest in mammalian cells, and its ablation reduces the severity of ischemic and endotoxic injuries. Here we have examined the role of SSAT in the pathogenesis of toxic liver injury caused by carbon tetrachloride (CCl(4)). The expression and activity of SSAT increase in the liver subsequent to CCl(4) administration. Furthermore, the early liver injury after CCl(4) treatment was significantly attenuated in hepatocyte-specific SSAT knockout mice (Hep-SSAT-Cko) compared with wild-type (WT) mice as determined by the reduced serum alanine aminotransferase levels, decreased hepatic lipid peroxidation, and less severe liver damage. Cytochrome P450 2e1 levels remained comparable in both genotypes, suggesting that SSAT deficiency does not affect the metabolism of CCl(4). Hepatocyte-specific deficiency of SSAT also modulated the induction of cytokines involved in inflammation and repair as well as leukocyte infiltration. In addition, Noxa and activated caspase 3 levels were elevated in the livers of WT compared with Hep-SSAT-Cko mice. Interestingly, the onset of cell proliferation was significantly more robust in the WT compared with Hep-SSAT Cko mice. The inhibition of polyamine oxidases protected the animals against CCl(4)-induced liver injury. Our studies suggest that while the abrogation of polyamine back conversion or inhibition of polyamine oxidation attenuate the early injury, they may delay the onset of hepatic regeneration.
Collapse
Affiliation(s)
- Kamyar Zahedi
- Division of Nephrology and Hypertension, Department of Medicine, University of Cincinnati College of Medicine, Ohio, USA.
| | - Sharon L. Barone
- 1Division of Nephrology and Hypertension, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio;
| | - Jie Xu
- 1Division of Nephrology and Hypertension, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio;
| | - Nora Steinbergs
- 2The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| | - Rebecca Schuster
- 3Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Alex B. Lentsch
- 3Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Hassane Amlal
- 1Division of Nephrology and Hypertension, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio;
| | - Jiang Wang
- 4Department of Pathology and Laboratory Medicine and
| | - Robert A. Casero
- 2The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| | - Manoocher Soleimani
- 1Division of Nephrology and Hypertension, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; ,5Veterans Affair Medical Center, Cincinnati, Ohio
| |
Collapse
|
8
|
Héja L, Nyitrai G, Kékesi O, Dobolyi A, Szabó P, Fiáth R, Ulbert I, Pál-Szenthe B, Palkovits M, Kardos J. Astrocytes convert network excitation to tonic inhibition of neurons. BMC Biol 2012; 10:26. [PMID: 22420899 PMCID: PMC3342137 DOI: 10.1186/1741-7007-10-26] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/15/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glutamate and γ-aminobutyric acid (GABA) transporters play important roles in balancing excitatory and inhibitory signals in the brain. Increasing evidence suggest that they may act concertedly to regulate extracellular levels of the neurotransmitters. RESULTS Here we present evidence that glutamate uptake-induced release of GABA from astrocytes has a direct impact on the excitability of pyramidal neurons in the hippocampus. We demonstrate that GABA, synthesized from the polyamine putrescine, is released from astrocytes by the reverse action of glial GABA transporter (GAT) subtypes GAT-2 or GAT-3. GABA release can be prevented by blocking glutamate uptake with the non-transportable inhibitor DHK, confirming that it is the glutamate transporter activity that triggers the reversal of GABA transporters, conceivably by elevating the intracellular Na+ concentration in astrocytes. The released GABA significantly contributes to the tonic inhibition of neurons in a network activity-dependent manner. Blockade of the Glu/GABA exchange mechanism increases the duration of seizure-like events in the low-[Mg2+] in vitro model of epilepsy. Under in vivo conditions the increased GABA release modulates the power of gamma range oscillation in the CA1 region, suggesting that the Glu/GABA exchange mechanism is also functioning in the intact hippocampus under physiological conditions. CONCLUSIONS The results suggest the existence of a novel molecular mechanism by which astrocytes transform glutamatergic excitation into GABAergic inhibition providing an adjustable, in situ negative feedback on the excitability of neurons.
Collapse
Affiliation(s)
- László Héja
- Department of Functional Pharmacology, Institute of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pusztaszeri 59-67, 1025 Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Extracellular spermine exacerbates ischemic neuronal injury through sensitization of ASIC1a channels to extracellular acidosis. J Neurosci 2011; 31:2101-12. [PMID: 21307247 DOI: 10.1523/jneurosci.4351-10.2011] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ischemic brain injury is a major problem associated with stroke. It has been increasingly recognized that acid-sensing ion channels (ASICs) contribute significantly to ischemic neuronal damage, but the underlying mechanism has remained elusive. Here, we show that extracellular spermine, one of the endogenous polyamines, exacerbates ischemic neuronal injury through sensitization of ASIC1a channels to extracellular acidosis. Pharmacological blockade of ASIC1a or deletion of the ASIC1 gene greatly reduces the enhancing effect of spermine in ischemic neuronal damage both in cultures of dissociated neurons and in a mouse model of focal ischemia. Mechanistically, spermine profoundly reduces desensitization of ASIC1a by slowing down desensitization in the open state, shifting steady-state desensitization to more acidic pH, and accelerating recovery between repeated periods of acid stimulation. Spermine-mediated potentiation of ASIC1a activity is occluded by PcTX1 (psalmotoxin 1), a specific ASIC1a inhibitor binding to its extracellular domain. Functionally, the enhanced channel activity is accompanied by increased acid-induced neuronal membrane depolarization and cytoplasmic Ca(2+) overload, which may partially explain the exacerbated neuronal damage caused by spermine. More importantly, blocking endogenous spermine synthesis significantly attenuates ischemic brain injury mediated by ASIC1a but not that by NMDA receptors. Thus, extracellular spermine contributes significantly to ischemic neuronal injury through enhancing ASIC1a activity. Our data suggest new neuroprotective strategies for stroke patients via inhibition of polyamine synthesis and subsequent spermine-ASIC interaction.
Collapse
|
10
|
Zahedi K, Lentsch AB, Okaya T, Barone S, Sakai N, Witte DP, Arend LJ, Alhonen L, Jell J, Jänne J, Porter CW, Soleimani M. Spermidine/spermine-N1-acetyltransferase ablation protects against liver and kidney ischemia-reperfusion injury in mice. Am J Physiol Gastrointest Liver Physiol 2009; 296:G899-909. [PMID: 19164485 PMCID: PMC2670665 DOI: 10.1152/ajpgi.90507.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 01/12/2009] [Indexed: 01/31/2023]
Abstract
Expression of spermine/spermidine-N1-acetyltransferase (SSAT), the rate-limiting enzyme of polyamine backconversion cascade, increases after ischemia-reperfusion injuries (IRI). We hypothesized that SSAT plays an important role in the mediation of IRI. To test our hypothesis, wild-type (SSAT-wt) and SSAT-deficient (SSAT-ko) mice were subjected to liver or kidney IRI by ligation of hepatic or renal arteries. The liver and kidney content of putrescine (Put), a downstream by-product of SSAT activity, increased in SSAT-wt animals but not in SSAT-ko animals after IRI, indicating that polyamine backconversion is not functional in SSAT-deficient mice. When subjected to hepatic IRI, SSAT-ko mice were significantly protected against liver damage compared with SSAT-wt mice. Similarly, SSAT-ko animals subjected to renal IRI showed significantly greater protection against damage to kidney tubules than SSAT-wt mice. These studies indicate that SSAT-deficient animals are protected against IRI and suggest that SSAT is an important mediator of the tissue damage in IRI.
Collapse
Affiliation(s)
- Kamyar Zahedi
- Division of Nephrology and Hypertension, Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabine Way, MSB 259G, Cincinnati, OH 45267-0585, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wood PL, Khan MA, Moskal JR, Todd KG, Tanay VAMI, Baker G. Aldehyde load in ischemia-reperfusion brain injury: neuroprotection by neutralization of reactive aldehydes with phenelzine. Brain Res 2006; 1122:184-90. [PMID: 17026969 DOI: 10.1016/j.brainres.2006.09.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 08/31/2006] [Accepted: 09/03/2006] [Indexed: 10/24/2022]
Abstract
In ongoing studies of the neuroprotective properties of monoamine oxidase inhibitors, we found that phenelzine provided robust neuroprotection in the gerbil model of transient forebrain ischemia, with drug administration delayed up to 3 h post reperfusion. Since ischemia-reperfusion brain injury is associated with large increases in the concentrations of reactive aldehydes in the penumbra area, we investigated if the hydrazine function of phenelzine was capable of sequestering reactive aldehydes. Both aminoaldehydes and acrolein are generated from the metabolism of polyamines to putrescine by polyamine oxidase. These toxic aldehydes in turn compromise mitochondrial and lysosomal integrity and initiate apoptosis and necrosis. Previous studies have demonstrated that pharmacological neutralization of reactive aldehydes via the formation of thioacetal derivatives results in significant neuroprotection in ischemia-reperfusion injury, in both focal and global ischemia models. In our studies of acrolein and 3-aminopropanal toxicity, using an immortalized retinal cell line, we found that aldehyde sequestration with phenelzine was neuroprotective. The neuroprotection observed with phenelzine is in agreement with previous studies of aldehyde sequestering agents in the treatment of ischemia-reperfusion brain injury and supports the concept that "aldehyde load" is a major factor in the delayed cell losses of the ischemic penumbra.
Collapse
Affiliation(s)
- Paul L Wood
- The Falk Center for Molecular Therapeutics, Dept. of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, 1801 Maple Ave., Suite 4306, Evanston, IL 60201, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Wood PL, Khan MA, Kulow SR, Mahmood SA, Moskal JR. Neurotoxicity of reactive aldehydes: The concept of “aldehyde load” as demonstrated by neuroprotection with hydroxylamines. Brain Res 2006; 1095:190-9. [PMID: 16730673 DOI: 10.1016/j.brainres.2006.04.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 04/06/2006] [Accepted: 04/08/2006] [Indexed: 11/15/2022]
Abstract
The concept of "oxidative stress" has become a mainstay in the field of neurodegeneration but has failed to differentiate critical events from epiphenomena and sequalae. Furthermore, the translation of current concepts of neurodegenerative mechanisms into effective therapeutics for neurodegenerative diseases has been meager and disappointing. A corollary of current concepts of "oxidative stress" is that of "aldehyde load". This relates to the production of reactive aldehydes that covalently modify proteins, nucleic acids, lipids and carbohydrates and activate apoptotic pathways. However, reactive aldehydes can also be generated by mechanisms other than "oxidative stress". We therefore hypothesized that agents that can chemically neutralize reactive aldehydes should demonstrate superior neuroprotective actions to those of free radical scavengers. To this end, we evaluated hydroxylamines as aldehyde-trapping agents in an in vitro model of neurodegeneration induced by the reactive aldehyde, 3-aminopropanal (3-AP), a product of polyamine oxidase metabolism of spermine and spermidine. In this model, the hydroxylamines N-benzylhydroxylamine, cyclohexylhydroxylamine and t-butylhydroxylamine were shown to protect, in a concentration-dependent manner, against 3-AP neurotoxicity. Additionally, a therapeutic window of 3 h was demonstrated for delayed administration of the hydroxylamines. In contrast, the free radical scavengers TEMPO and TEMPONE and the anti-oxidant ascorbic acid were ineffective in this model. Extending these tissue culture findings in vivo, we examined the actions of N-benzylhydroxylamine in the trimethyltin (TMT) rat model of hippocampal CA3 neurodegeneration. This model involves augmented polyamine metabolism resulting in the generation of reactive aldehydes that compromise mitochondrial integrity. In the rat TMT model, NBHA (50 mg/kg, sc, daily) provided 100% protection against neurodegeneration, as reflected by measurements of KCl-evoked glutamate release from hippocampal brain slices and septal high affinity glutamate uptake. In contrast, ascorbic acid (100 mg/kg, sc, daily) failed to protect CA3 neurons from TMT toxicity. In summary, our data support further evaluation of the concept of "aldehyde load" in neurodegeneration and the potential clinical investigation of agents that are effective traps for reactive aldehydes.
Collapse
Affiliation(s)
- Paul L Wood
- Department of Biomedical Engineering, The Falk Center for Molecular Therapeutics, McCormick School of Engineering and Applied Sciences, Northwestern University, 1801 Maple Avenue, Suite 4306, Evanston, IL 60201, USA.
| | | | | | | | | |
Collapse
|
13
|
Virgili M, Crochemore C, Peña-Altamira E, Contestabile A. Regional and temporal alterations of ODC/polyamine system during ALS-like neurodegenerative motor syndrome in G93A transgenic mice. Neurochem Int 2005; 48:201-7. [PMID: 16290266 DOI: 10.1016/j.neuint.2005.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 10/05/2005] [Indexed: 11/22/2022]
Abstract
Natural polyamines (putrescine, spermidine and spermine) are ubiquitous molecules known to regulate a number of physiological processes and suspected to play a role also in various pathological conditions. Changes in polyamine levels and in their biosynthetic enzymes have been described for some neurodegenerative diseases but the available data are incomplete and somewhat contradictory. We report here alterations of the key enzyme of the polyamine pathway, ornithine decarboxylase (ODC) catalytic activity and polyamine levels in different CNS areas from SOD1 G39A transgenic mice, an animal model for amyotrophic lateral sclerosis (ALS). ODC catalytic activity, was found significantly increased both in the cervical and lumbar spinal cord and, to a lesser extent in the brain stem of transgenic mice at a symptomatic stage of the disease (125-day-old mice), while no differences were present at a pre-symptomatic stage (55-day-old mice). In parallel with the increase of ODC activity putrescine levels were several times increased in both cervical and lumbar spinal cord and in the brain stem of 125-day-old SOD1 G39A mice. Higher order polyamines were not increased except for a significant increase of spermidine in the cervical spinal cord. The present data demonstrate considerable alterations of the ODC/polyamine system in a reliable animal model of ASL, consistent with their role in neurodegeneration and in particular in motor neuron diseases.
Collapse
Affiliation(s)
- Marco Virgili
- Department of Biology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | | | | | | |
Collapse
|
14
|
Clarkson AN, Liu H, Rahman R, Jackson DM, Appleton I, Kerr DS. Clomethiazole: mechanisms underlying lasting neuroprotection following hypoxia-ischemia. FASEB J 2005; 19:1036-8. [PMID: 15809357 DOI: 10.1096/fj.04-3367fje] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Damage after hypoxia-ischemia (HI) is observed in both cortical and subcortical regions. In this study, we employed a "Levine" rat model of HI (left carotid ligation + 1 h global hypoxia on PND-26) and used histological and electrophysiological paradigms to assess the long-term neuroprotective properties of clomethiazole (CMZ; a GABA(A) receptor modulator). Key enzymes involved in inflammation, namely nitric oxide synthase (NOS) and arginase, were also examined to assess potential CMZ mechanisms not involving GABA-R activation. Assessments were carried out 3 and 90 days post-HI. Extensive CNS lesions were evident after HI ipsilaterally at both short- and long-term intervals. CMZ significantly decreased the lesion size at 3 and 90 days (P<0.01; P<0.05). Evoked field potential analyses were used to assess hippocampal CA1 neuronal activity ex vivo. Electrophysiological measurements contralateral to the occlusion revealed impaired neuronal function after HI relative to short- and long-term controls (P<0.001, 3 and 14 days; P<0.01, 90 days), with CMZ treatment providing near complete protection (P<0.001 at 3 and 14 days; P<0.01 at 90 days). Both NOS and arginase activities were significantly increased at 3 days (P<0.01), with arginase remaining elevated at 90 days post-HI (P<0.05) ipsilaterally. CMZ suppressed the HI-induced increase in iNOS and arginase activities (P<0.001; P<0.05). These data provide evidence of long-term functional neuroprotection by CMZ in a model of HI. We further conclude that under conditions of HI, functional deficits are not restricted to the ipsilateral hemisphere and are due, at least in part, to changes in the activity of NOS and arginase.
Collapse
Affiliation(s)
- Andrew N Clarkson
- Department of Pharmacology and Toxicology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | | | | | | | | | | |
Collapse
|
15
|
Kapoor M, Clarkson AN, Sutherland BA, Appleton I. The role of antioxidants in models of inflammation: Emphasis on l-arginine and arachidonic acid metabolism. Inflammopharmacology 2005; 12:505-19. [PMID: 16259718 DOI: 10.1163/156856005774382797] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inflammatory processes are made up of a multitude of complex cascades. Under physiological conditions these processes aid in tissue repair. However, under pathophysiological environments, such as wound healing and hypoxia-ischaemia (HI), inflammatory mediators become imbalanced, resulting in tissue destruction. This review addresses the changes in reactive oxygen species (ROS), L-arginine and arachidonic acid metabolism in wound healing and HI and subsequent treatments with promising anti-oxidants. Even though these models may appear divergent, anti-oxidant treatments are nevertheless still having favourable effects. On the basis of recent findings, it is apparent that protection with anti-oxidants is not solely attributed to scavenging of ROS. In addition, the actions of anti-oxidants must be considered in light of the inflammatory process being assessed. To this end, there does not appear to be any universally applicable single mechanism to explain the actions of anti-oxidants.
Collapse
Affiliation(s)
- M Kapoor
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, P.O. Box 913, New Zealand
| | | | | | | |
Collapse
|
16
|
Clarkson AN, Liu H, Pearson L, Kapoor M, Harrison JC, Sammut IA, Jackson DM, Appleton I. Neuroprotective effects of spermine following hypoxia‐ischemia‐induced brain damage: A mechanistic study. FASEB J 2004; 18:1114-6. [PMID: 15132986 DOI: 10.1096/fj.03-1203fje] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The polyamines (spermine, putrescine, and spermidine) can have neurotoxic or neuroprotective properties in models of neurodegeneration. However, assessment in a model of hypoxia-ischemia (HI) has not been defined. Furthermore, the putative mechanisms of neuroprotection have not been elucidated. Therefore, the present study examined the effects of the polyamines in a rat pup model of HI and determined effects on key enzymes involved in inflammation, namely, nitric oxide synthase (NOS) and arginase. In addition, effects on mitochondrial function were investigated. The polyamines or saline were administered i.p. at 10mg/kg/day for 6 days post-HI. Histological assessment 7 days post-HI revealed that only spermine significantly (P<0.01) reduced infarct size from 46.14 +/- 10.4 mm3 (HI + saline) to 4.9 +/- 2.7 mm3. NOS activity was significantly increased following spermine treatment in the left (ligated) hemisphere compared with nonintervention controls (P<0.01) and HI + saline (P<0.05). In contrast, spermine decreased arginase activity compared with HI + saline but was still significantly elevated in comparison to nonintervention controls (P<0.01). Assessment of mitochondrial function in the HI + saline group, revealed significant and extensive damage to complex-I (P<0.01) and IV (P<0.001) and loss of citrate synthase activity (P<0.05). No effect on complex II-III was observed. Spermine treatment significantly prevented all these effects. This study has therefore confirmed the neuroprotective effects of spermine in vivo. However, for the first time, we have shown that this effect may, in part, be due to increased NOS activity and preservation of mitochondrial function.
Collapse
Affiliation(s)
- Andrew N Clarkson
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
17
|
de Vera N, Camón L, Martínez E. Putrescine as a marker of the effects of 2-chloropropionic acid in the rat brain. Neurosci Lett 2004; 362:209-12. [PMID: 15158016 DOI: 10.1016/j.neulet.2004.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 03/04/2004] [Accepted: 03/11/2004] [Indexed: 11/28/2022]
Abstract
The neurotoxin 2-chloropropionic acid (2CPA, 750 mg/kg, per os) induces ataxia in rats causing neuropathological changes (necrosis and edema) localized mainly in the cerebellum (CB). It has been described that putrescine (PUT) is a good marker of severe brain damage. We measured the concentration of PUT (by HPLC) in ataxic rat brains 3 days after 2CPA dosing. PUT was 9-fold higher than normal values in CB, 5-fold higher in midbrain (MB) and medulla oblongata + pons (MO) and 3-fold higher in the remaining areas studied. Treatment with glycerol, a reducer of brain edema, lowered the concentration of PUT only in CB, MB and MO. Histological damage was found in CB and the spinal trigeminal nucleus (located in the pontomedullar brainstem). We suggest that PUT can act as a marker of both neuronal necrosis and brain edema.
Collapse
Affiliation(s)
- Núria de Vera
- Department of Pharmacology and Toxicology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC, IDIBAPS), Barcelona, Spain.
| | | | | |
Collapse
|
18
|
Babu GN, Sailor KA, Beck J, Sun D, Dempsey RJ. Ornithine decarboxylase activity in in vivo and in vitro models of cerebral ischemia. Neurochem Res 2004; 28:1851-7. [PMID: 14649727 DOI: 10.1023/a:1026123809033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ornithine decarboxylase (ODC) is considered the rate-limiting enzyme in polyamine biosynthesis, and an increase in putrescine after central nervous system (CNS) injury appears to be involved in neuronal death. Cerebral ischemia and reperfusion trigger an active series of metabolic events, which eventually lead to neuronal death. In the present study, ODC activity was evaluated following transient focal cerebral ischemia and reperfusion in rat. The middle cerebral artery (MCA) was occluded for 2 h in male rats with an intraluminal suture technique. Animals were sacrificed between 3 and 48 h of reperfusion following MCA occlusion, and ODC activity was assayed in cortex and striatum. ODC activity was also estimated in an in vitro ischemia model using primary rat cortical neuron cultures, at 6-24 h reoxygenation following 1 h oxygen-glucose deprivation (OGD). In cortex, following ischemia, ODC activity was increased at 3 h (P < .05), reached peak levels by 6-9 h (P < .001) and returned to sham levels by 48 h reperfusion. In striatum the ODC activity followed a similar time course, but returned to basal levels by 24 h. This suggests that ODC activity is upregulated in rat CNS following transient focal ischemia and its time course of activation is region specific. In vitro, ODC activity showed a significant rise only at 24 h reoxygenation following ischemic insult. The release of lactate dehydrogenase (LDH), an indicator for cell damage, was also significantly elevated after OGD. 0.25 mM alpha-difluoromethylornithine (DFMO) inhibited ischemia-induced ODC activity, whereas a 10-mM dose of DFMO appears to provide some neuroprotection by suppressing both ODC activity and LDH release in neuronal cultures, suggesting the involvement of polyamines in the development of neuronal cell death.
Collapse
Affiliation(s)
- G Nagesh Babu
- Department of Neurology, SGPG Institute of Medical Sciences, Lucknow, UP, 226014, India.
| | | | | | | | | |
Collapse
|
19
|
Lee SY, Kim CY, Lee JJ, Jung JG, Lee SR. Effects of delayed administration of (-)-epigallocatechin gallate, a green tea polyphenol on the changes in polyamine levels and neuronal damage after transient forebrain ischemia in gerbils. Brain Res Bull 2003; 61:399-406. [PMID: 12909283 DOI: 10.1016/s0361-9230(03)00139-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
(-)-Epigallocatechin gallate has a potent antioxidant property and can reduce free radical-induced lipid peroxidation as a green tea polyphenol. In previous study, systemic administration of (-)-epigallocatechin gallate immediately after ischemia has been shown to inhibit the hippocampal neuronal damage in the gerbil model of global ischemia. Polyamines are thought to be important in the generation of brain edema and neuronal cell damage associated with various types of excitatory neurotoxicity. We examined the effects of delayed administration of (-)-epigallocatechin gallate on the changes in polyamine levels and neuronal damage after transient global ischemia in gerbils. To produce transient global ischemia, both common carotid arteries were occluded for 3 min with micro-clips. The gerbils were treated with (-)-epigallocatechin gallate (50 mg/kg, i.p.) at 1 or 3 h after ischemia. The polyamines; putrescine, spermidine, and spermine levels were examined using high performance liquid chromatography in the cerebral cortex and hippocampus 24 h after ischemia. Putrescine levels in the cerebral cortex and hippocampus were increased significantly after ischemia and the delayed administrations of (-)-epigallocatechin gallate (1 or 3 h after ischemia) attenuated the increases. Only minor changes were noted in the spermidine and spermine levels after ischemia. In histology, neuronal injuries in the hippocampal CA1 regions were evaluated quantitatively 5 days after ischemia. (-)-Epigallocatechin gallate administered 1 h or 3 after ischemia significantly reduced hippocampal neuronal damage. The present results show that the delayed administrations of (-)-epigallocatechin gallate inhibit the transient global ischemia-induced increase of putrescine levels in the cerebral cortex and hippocampus. (-)-Epigallocatechin gallate is neuroprotective against neuronal damage even when administered up to 3 h after global ischemia. These findings suggest that (-)-epigallocatechin gallate may be promising in the acute treatment of stroke.
Collapse
Affiliation(s)
- So-Young Lee
- Department of Pharmacology, Kyungpook National University, 700-422 Taegu, South Korea
| | | | | | | | | |
Collapse
|
20
|
Vivó M, Camón L, de Vera N, Martínez E. Extracellular putrescine content after acute excitotoxic brain damage in the rat. Neurosci Lett 2002; 330:74-8. [PMID: 12213638 DOI: 10.1016/s0304-3940(02)00733-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We examined the effects of the local infusion of kainic acid (KA), by reverse dialysis in the rat striatum, on the concentration of polyamines in the extracellular striatal compartment and in tissue. KA infusion markedly increased (3-fold) extracellular putrescine (PUT) concentration, which reached its maximum at the end of the dialysis experiments (6 h). Tissue PUT concentration was also increased (2-fold) in the striatum perfused with KA but not in the contralateral side. Extracellular spermidine (SD) concentration but not tissue SD concentration was affected by KA. The increase in PUT was accompanied by histological damage around the probe and by an increase in ornithine decarboxylase content, as assessed by immunohistochemistry. These results indicate that in the first stages of the excitotoxic lesion, there is an increase in the extracellular concentrations of PUT and SD.
Collapse
Affiliation(s)
- Meritxell Vivó
- Department of Neurochemistry, Institut d'Investigacions Biomèdiques de Barcelona, (CSIC-IDIBAPS), c/Rosselló 161, 6th floor, E-08036 Barcelona, Spain
| | | | | | | |
Collapse
|
21
|
Diler AS, Ziylan YZ, Uzum G, Lefauconnier JM, Seylaz J, Pinard E. Passage of spermidine across the blood-brain barrier in short recirculation periods following global cerebral ischemia: effects of mild hyperthermia. Neurosci Res 2002; 43:335-42. [PMID: 12135777 DOI: 10.1016/s0168-0102(02)00059-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transport of a polyamine (PA), spermidine (SPMD) into rat brain at various early postischemic periods was studied. Rats underwent 20 min of four-vessel occlusion (4VO) followed by 5, 10, 30 and 60 min of recirculation (RC) periods with natural brain temperature. 3H-aminoisobutyricacid (AIB) and 14C-SPMD were utilised to search dual functions of the blood-brain barrier (BBB); barrier and carrier functions, respectively. Unidirectional blood-to-brain transfer constant (Kin) was calculated for AIB and SPMD in four brain regions-parieto-temporal cortex, striatum, hippocampus and cerebellum. Kin for SPMD ranged between 1.2+/-0.3 x 10(3) ml g(-1) min(-1) (for striatum) and 2.2+/-0.4 x 10(3) ml g(-1) min(-1) (for cerebellum) in controls. Kin for AIB showed similar values. At 5 and 10 min RC periods, Kin for both substances increased in a non-specific manner in all brain regions studied. In the cortex, Kin for SPMD at 5 and 10 min RC periods were 3.2+/-0.4 x 10(3) and 2.9+/-0.3 x 10(3) ml g(-1) min(-1), respectively, and found to be maximum with respect to other brain regions studied. 30 and 60 min RC groups showed specific transport for SPMD, whilst there were no changes for Kin for AIB, in all brain regions studied. Hippocampus showed the maximum increase in Kin SPMD at 60 min RC (2.7+/-0.3 x 10(3) ml g(-1) min(-1)), corresponding to a percentage rise of 121%. Intraischemic mild brain hyperthermia (39 degrees C) gave rise to a striking increase in Kin at 60 min postischemia for both substances. These results suggest that there is a specific transport of SPMD into brain at 30 and 60 min RC periods following 20 min of forebrain ischemia. Moreover, dual functions of the BBB were perturbed with intracerebral mild hyperthermia during ischemia.
Collapse
Affiliation(s)
- A S Diler
- Department of Medical Biology, Istanbul Faculty of Medicine, Capa, 34390 Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
22
|
Nagesh Babu G, Sailor KA, Sun D, Dempsey RJ. Spermidine/spermine N1-acetyl transferase activity in rat brain following transient focal cerebral ischemia and reperfusion. Neurosci Lett 2001; 300:17-20. [PMID: 11172929 DOI: 10.1016/s0304-3940(01)01538-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The polyamine system is very sensitive to different pathological states of brain and is perturbed after central nervous system (CNS) injury. Spermidine/Spermine N(1)-acetyl transferase (SSAT) is the key enzyme responsible for interconversion of spermine and spermidine to spermidine and putrescine respectively. In the present study, SSAT activity was evaluated in the rat CNS, following transient focal cerebral ischemia and reperfusion. The middle cerebral artery (MCA) was occluded for 2 h in male spontaneously hypertensive rats by an intraluminal suture technique. Animals were sacrificed at 3-24 h reperfusion following the MCA occlusion and SSAT activity was assayed in cortex and striatum. Results showed that SSAT activity was significantly increased at 12 h reperfusion in cortex and at 9, 12 and 18 h reperfusion in striatum following ischemia compared to sham or contralateral controls. These results demonstrate that polyamine catabolism in the rat CNS is altered following MCA occlusion. In the in vitro ischemia study, SSAT activity was evaluated in primary cortical neuronal cultures at 6-24 h re-oxygenation intervals following oxygen-glucose deprivation for 1 h, and the results from this group show that the enzyme activity increased by about 62% (P<0.05) at 24 h re-oxygenation. This study suggests that the increased SSAT activity may contribute to the increase in putrescine during the post-ischemic period.
Collapse
Affiliation(s)
- G Nagesh Babu
- Department of Neurological Surgery, F4/315, University of Wisconsin Clinical Sciences Center 600, Highland Avenue, Madison, WI 53792-3232, USA.
| | | | | | | |
Collapse
|
23
|
Els T, Bruckmann J, Röhn G, Daffertshofer M, Mönting JS, Ernestus RI, Hennerici M. Spermidine: A predictor for neurological outcome and infarct size in focal cerebral ischemia? Stroke 2001; 32:43-6. [PMID: 11136912 DOI: 10.1161/01.str.32.1.43] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Polyamines are mainly restricted to the intracellular space. During focal cerebral ischemia, polyamines are released from the intracellular compartment. Experimental studies have implicated a marked elevation in brain tissue and blood. The aim of our study was to investigate whether the elevation of polyamines in the blood of patients with focal cerebral ischemia correlates with the clinical outcome and the infarct volume. METHODS Polyamines were measured in 16 patients with focal cerebral ischemia and in 8 healthy control subjects. Blood samples for polyamine measurement were taken at admission and at fixed time points for the next 28 days. Polyamines were analyzed in red blood cells by a high-pressure liquid chromatography system. Clinical findings were recorded with the NIH Stroke Scale score. Volume of infarction was analyzed from cranial CT at admission and on days 4 to 6 after ischemia. RESULTS A significant increase of the spermidine level in the peripheral blood could be observed in all patients with focal cerebral ischemia as compared with control subjects (P:<0.01), starting with the admission. Spermidine values correlated positively with the clinical outcome at several time points in the first 48 hours (r=0.90 to 0.40; P:<0.01) and with the infarct volume in cranial CT on days 4 to 6 (r=0.91; P:<0.01). CONCLUSIONS As hypothesized from experimental data, polyamine levels in blood increase in patients after focal cerebral ischemia. The results indicate that the peripheral spermidine level is closely associated with the clinical outcome as well as with the infarction volume. Therefore, polyamines may be used as a novel predictor for the prognosis of patients with focal cerebral ischemia.
Collapse
Affiliation(s)
- T Els
- Department of Neurology, University of Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
24
|
Lee YK, Lee SR, Kim CY. Melatonin attenuates the changes in polyamine levels induced by systemic kainate administration in rat brains. J Neurol Sci 2000; 178:124-31. [PMID: 11018704 DOI: 10.1016/s0022-510x(00)00393-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Systemically administered kainate has been demonstrated to induce neuronal damage and changes of the levels of biochemical substances related to neurotoxicity. Polyamines are thought to be important in the generation of edema and neuronal cell loss associated with various type of excitotoxicity. Melatonin exerts potent free radical scavenging, antioxidant, and neuroprotective properties. This study was designed to estimate the effect of exogenous melatonin administration on the changes of polyamine levels in rat brains after systemic administration of kainate. Kainate [10 mg/kg, intraperitoneally (i.p.)] was injected into the rats to produce excitotoxicity. Melatonin (15 mg/kg, i.p.) was administered 1 h before, immediately after, and 1 h after kainate treatment. We examined the polyamine [putrescine (PU), spermidine (SD) and spermine (SM)] levels in the cerebral cortex and hippocampus and neuronal density in the hippocampal CA1 and CA3 subsectors in brain sections. PU levels were increased 8 and 24 h after kainate treatment and the administration of melatonin attenuated these changes. Only minor changes were noted in the levels of the polyamine SD and SM after the kainate treatment. In histology, neuronal injuries in the hippocampal CA1 and CA3 subsectors were examined 3 days after kainate treatment and melatonin reduced the kainate-induced neuronal injuries. Our results show that melatonin inhibits the polyamine responses in the cerebral cortex and hippocampus following kainate-induced excitotoxicity and PU may be responsible for the protective effect of melatonin against kainate-induced excitotoxicity.
Collapse
Affiliation(s)
- Y K Lee
- Department of Pharmacology, School of Medicine, Kyungpook National University, 2-101 Dongin dong, 700-422, Taegu, South Korea
| | | | | |
Collapse
|
25
|
Coert BA, Anderson RE, Meyer FB. Exogenous spermine reduces ischemic damage in a model of focal cerebral ischemia in the rat. Neurosci Lett 2000; 282:5-8. [PMID: 10713383 DOI: 10.1016/s0304-3940(00)00856-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Alterations in polyamine metabolism during and after global or focal cerebral ischemia can produce a multiplicity of effects on brain such as modification in mitochondria calcium buffering capacity, exacerbating glutamate-mediated neurotoxicity, and impairment of the blood-brain barrier. In this study, the endogenous polyamine spermine was administered intravenously 30 min prior to temporary focal cerebral ischemia in rats induced by clipping of the left middle cerebral and bilateral common carotid arteries for 3 h. Three days after removal of the microclips, intracardiac perfusion with 2% 2,3,5-triphenyl tetrazolium chloride was performed. Coronal slices were cut, photographed, and examined for cortical infarct volume. Spermine reduced infarct volume in a dose-dependent fashion. This study demonstrates that the use of polyamines may be considered as a powerful tool in prevention of ischemic tissue damage following focal cerebral ischemia.
Collapse
Affiliation(s)
- B A Coert
- Thoralf M. Sundt Neurosurgical Research Laboratory, Mayo Clinic, Rochester, USA
| | | | | |
Collapse
|
26
|
Rao AM, Hatcher JF, Baskaya MK, Dempsey RJ. Simultaneous assay of ornithine decarboxylase and polyamines after central nervous system injury in gerbil and rat. Neurosci Lett 1998; 256:65-8. [PMID: 9853704 DOI: 10.1016/s0304-3940(98)00780-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ornithine decarboxylase (ODC) is considered the rate-limiting enzyme in polyamine biosynthesis. An increase in putrescine (a natural polyamine) synthesis after central nervous system (CNS) injury appears to be involved in blood-brain barrier dysfunction, development of vasogenic edema and neuronal death. An improved method is described to determine the ODC activity as well as polyamine levels from the same brain tissue. The polyamine results showed no significant differences from data obtained with the conventional assay. The advantages of this method are to: (1) minimize the number of animals needed for the study, and (2) eliminate any internal inconsistencies resulting from use of two independent groups of animals for ODC and polyamine measurements. Using this method, ODC activities and polyamine levels were measured in cortices and hippocampi from global transient ischemia of gerbils and traumatic brain injury (TBI) of rats.
Collapse
Affiliation(s)
- A M Rao
- Department of Neurological Surgery, Clinical Science Center, University of Wisconsin-Madison, 53792-3232, USA.
| | | | | | | |
Collapse
|
27
|
Johnson TD. Polyamines and cerebral ischemia. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1998; 50:193-258. [PMID: 9670780 DOI: 10.1007/978-3-0348-8833-2_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It has been well established that alterations in polyamine metabolism are associated with animal models of global ischemia. Recently, this has been extended to include models of focal ischemia and traumatic brain injury. There is much evidence to support the idea that polyamines may play a multifaceted detrimental role following ischemia reperfusion. Due to the deficit of knowledge about their physiology in the CNS, the link between ischemia-induced alterations in polyamine metabolism and neuronal injury remains to be substantiated. With the recent revelation that polyamines are major intracellular modulators of inward rectifier potassium channels and certain types of NMDA and AMPA receptors, the long wait for the physiologic relevance of these ubiquitous compounds may be in sight. Therefore, it is now conceivable that the alterations in polyamines could have major effects on ion homeostasis in the CNS, especially potassium, and thus account for the observed injury after cerebral ischemia.
Collapse
Affiliation(s)
- T D Johnson
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|