1
|
Zamanian MY, Parra RMR, Soltani A, Kujawska M, Mustafa YF, Raheem G, Al-Awsi L, Lafta HA, Taheri N, Heidari M, Golmohammadi M, Bazmandegan G. Targeting Nrf2 signaling pathway and oxidative stress by resveratrol for Parkinson's disease: an overview and update on new developments. Mol Biol Rep 2023; 50:5455-5464. [PMID: 37155008 DOI: 10.1007/s11033-023-08409-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/24/2023] [Indexed: 05/10/2023]
Abstract
Parkinson's disease (PD) as a prevalent neurodegenerative condition impairs motor function and is caused by the progressive deterioration of nigrostriatal dopaminergic (DAergic) neurons. The current therapy solutions for PD are ineffective because they could not inhibit the disease's progression and they even have adverse effects. Natural polyphenols, a group of phytochemicals, have been found to offer various health benefits, including neuroprotection against PD. Among these, resveratrol (RES) has neuroprotective properties owing to its capacity to protect mitochondria and act as an antioxidant. An increase in the formation of reactive oxygen species (ROS) leads to oxidative stress (OS), which is responsible for cellular damage resulting in lipid peroxidation, oxidative protein alteration, and DNA damage. In PD models, it's been discovered that RES pretreatment can diminish oxidative stress by boosting endogenous antioxidant status and directly scavenging ROS. Several studies have examined the involvement of RES in the modulation of the transcriptional factor Nrf2 in PD models because this protein recognizes oxidants and controls the antioxidant defense. In this review, we have examined the molecular mechanisms underlying the RES activity and reviewed its effects in both in vitro and in vivo models of PD. The gathered evidence herein showed that RES treatment provides neuroprotection against PD by reducing OS and upregulation of Nrf2. Moreover, in the present study, scientific proof of the neuroprotective properties of RES against PD and the mechanism supporting clinical development consideration has been described.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
| | | | - Afsaneh Soltani
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, Poznan, 60-631, Poland
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ghaidaa Raheem
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
| | - Lateef Al-Awsi
- Department of Radiological Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Holya A Lafta
- Department of Pharmacy, Al-Nisour University College, Baghdad, Iraq
| | - Niloofar Taheri
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mahsa Heidari
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Bazmandegan
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
2
|
Shin MJ, Eum WS, Youn GS, Park JH, Yeo HJ, Yeo EJ, Kwon HJ, Sohn EJ, Lee LR, Kim NY, Kwon SY, Kim SM, Jung HY, Kim DS, Cho SW, Kwon OS, Kim DW, Choi SY. Protective effects of cell permeable Tat-PIM2 protein on oxidative stress induced dopaminergic neuronal cell death. Heliyon 2023; 9:e15945. [PMID: 37223703 PMCID: PMC10200856 DOI: 10.1016/j.heliyon.2023.e15945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023] Open
Abstract
Background Oxidative stress is considered as one of the main causes of Parkinson's disease (PD), however the exact etiology of PD is still unknown. Although it is known that Proviral Integration Moloney-2 (PIM2) promotes cell survival by its ability to inhibit formation of reactive oxygen species (ROS) in the brain, the precise functional role of PIM2 in PD has not been fully studied yet. Objective We investigated the protective effect of PIM2 against apoptosis of dopaminergic neuronal cells caused by oxidative stress-induced ROS damage by using the cell permeable Tat-PIM2 fusion protein in vitro and in vivo. Methods Transduction of Tat-PIM2 into SH-SY5Y cells and apoptotic signaling pathways were determined by Western blot analysis. Intracellular ROS production and DNA damage was confirmed by DCF-DA and TUNEL staining. Cell viability was determined by MTT assay. PD animal model was induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and protective effects were examined using immunohistochemistry. Results Transduced Tat-PIM2 inhibited the apoptotic caspase signaling and reduced the production of ROS induced by 1-methyl-4-phenylpyridinium (MPP+) in SH-SY5Y cells. Furthermore, we confirmed that Tat-PIM2 transduced into the substantia nigra (SN) region through the blood-brain barrier and this protein protected the Tyrosine hydroxylase-positive cells by observation of immunohistostaining. Tat-PIM2 also regulated antioxidant biomolecules such as SOD1, catalase, 4-HNE, and 8-OHdG which reduce the formation of ROS in the MPTP-induced PD mouse model. Conclusion These results indicated that Tat-PIM2 markedly inhibited the loss of dopaminergic neurons by reducing ROS damage, suggesting that Tat-PIM2 might be a suitable therapeutic agent for PD.
Collapse
Affiliation(s)
- Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Gi Soo Youn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Jung Hwan Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Hyun Jung Kwon
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Lee Re Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Na Yeon Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Su Yeon Kwon
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Su Min Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Hyo Young Jung
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Duk-Soo Kim
- Department of Anatomy and BK21 FOUR Project, College of Medicine, Soonchunhyang University, Cheonan-si 31538, South Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Oh-Shin Kwon
- School of Life Sciences, College of Natural Sciences Kyungpook National University, Taegu 41566, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| |
Collapse
|
3
|
Choi YJ, Yeo HJ, Shin MJ, Youn GS, Park JH, Yeo EJ, Kwon HJ, Lee LR, Kim NY, Kwon SY, Kim SM, Kim DW, Jung HY, Kwon OS, Lee CH, Park JK, Lee KW, Han KH, Park J, Eum WS, Choi SY. Tat-GSTpi Inhibits Dopaminergic Cells against MPP+-Induced Cellular Damage via the Reduction of Oxidative Stress and MAPK Activation. Biomedicines 2023; 11:biomedicines11030836. [PMID: 36979816 PMCID: PMC10045456 DOI: 10.3390/biomedicines11030836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Glutathione S-transferase pi (GSTpi) is a member of the GST family and plays many critical roles in cellular processes, including anti-oxidative and signal transduction. However, the role of anti-oxidant enzyme GSTpi against dopaminergic neuronal cell death has not been fully investigated. In the present study, we investigated the roles of cell permeable Tat-GSTpi fusion protein in a SH-SY5Y cell and a Parkinson’s disease (PD) mouse model. In the 1-methyl-4-phenylpyridinium (MPP+)-exposed cells, Tat-GSTpi protein decreased DNA damage and reactive oxygen species (ROS) generation. Furthermore, this fusion protein increased cell viability by regulating MAPKs, Bcl-2, and Bax signaling. In addition, Tat-GSTpi protein delivered into the substantia nigra (SN) of mice brains protected dopaminergic neuronal cell death in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD animal model. Our results indicate that the Tat-GSTpi protein inhibited cell death from MPP+- and MPTP-induced damage, suggesting that it plays a protective role during the loss of dopaminergic neurons in PD and that it could help to identify the mechanism responsible for neurodegenerative diseases, including PD.
Collapse
Affiliation(s)
- Yeon Joo Choi
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Min Jea Shin
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Gi Soo Youn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jung Hwan Park
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Eun Ji Yeo
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hyun Jung Kwon
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Lee Re Lee
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Na Yeon Kim
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Su Yeon Kwon
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Su Min Kim
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Hyo Young Jung
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Oh-Shin Kwon
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| | - Chan Hee Lee
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jong Kook Park
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Keun Wook Lee
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyu Hyung Han
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jinseu Park
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Won Sik Eum
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: (W.S.E.); (S.Y.C.); Tel.: +82-(33)-2483221 (W.S.E.); +82-(33)-2482112 (S.Y.C.); Fax: +82-(33)-2483202 (W.S.E. & S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: (W.S.E.); (S.Y.C.); Tel.: +82-(33)-2483221 (W.S.E.); +82-(33)-2482112 (S.Y.C.); Fax: +82-(33)-2483202 (W.S.E. & S.Y.C.)
| |
Collapse
|
4
|
A. HP, Diwakar L, Ravindranath V. Protein Glutathionylation and Glutaredoxin: Role in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11122334. [PMID: 36552543 PMCID: PMC9774553 DOI: 10.3390/antiox11122334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Oxidative stress has been implicated in the pathogenesis and progression of many neurodegenerative disorders including Parkinson's disease and Alzheimer's disease. One of the major enzyme systems involved in the defense against reactive oxygen species are the tripeptide glutathione and oxidoreductase glutaredoxin. Glutathione and glutaredoxin system are very important in the brain because of the oxidative modification of protein thiols to protein glutathione mixed disulfides with the concomitant formation of oxidized glutathione during oxidative stress. Formation of Pr-SSG acts as a sink in the brain and is reduced back to protein thiols during recovery, thus restoring protein functions. This is unlike in the liver, which has a high turnover of glutathione, and formation of Pr-SSG is very minimal as liver is able to quickly quench the prooxidant species. Given the important role glutathione and glutaredoxin play in the brain, both in normal and pathologic states, it is necessary to study ways to augment the system to help maintain the protein thiol status. This review details the importance of glutathione and glutaredoxin systems in several neurodegenerative disorders and emphasizes the potential augmentation of this system as a target to effectively protect the brain during aging.
Collapse
Affiliation(s)
- Haseena P. A.
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Latha Diwakar
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
| | - Vijayalakshmi Ravindranath
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
- Correspondence: ; Tel.: +91-80-22933433; Fax: +91-80-23603323
| |
Collapse
|
5
|
Neuroprotective Effects of Nicotinamide against MPTP-Induced Parkinson's Disease in Mice: Impact on Oxidative Stress, Neuroinflammation, Nrf2/HO-1 and TLR4 Signaling Pathways. Biomedicines 2022; 10:biomedicines10112929. [PMID: 36428497 PMCID: PMC9687839 DOI: 10.3390/biomedicines10112929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Nicotinamide (NAM) is the amide form of niacin and an important precursor of nicotinamide adenine dinucleotide (NAD), which is needed for energy metabolism and cellular functions. Additionally, it has shown neuroprotective properties in several neurodegenerative diseases. Herein, we sought to investigate the potential protective mechanisms of NAM in an intraperitoneal (i.p) 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model (wild-type mice (C57BL/6N), eight weeks old, average body weight 25-30 g). The study had four groups (n = 10 per group): control, MPTP (30 mg/kg i.p. for 5 days), MPTP treated with NAM (500 mg/kg, i.p for 10 days) and control treated with NAM. Our study showed that MPTP increased the expression of α-synuclein 2.5-fold, decreased tyrosine hydroxylase (TH) 0.5-fold and dopamine transporters (DAT) levels up to 0.5-fold in the striatum and substantia nigra pars compacta (SNpc), and impaired motor function. However, NAM treatment significantly reversed these PD-like pathologies. Furthermore, NAM treatment reduced oxidative stress by increasing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) between 0.5- and 1.0-fold. Lastly, NAM treatment regulated neuroinflammation by reducing Toll-like receptor 4 (TLR-4), phosphorylated nuclear factor-κB, tumor (p-NFκB), and cyclooxygenase-2 (COX-2) levels by 0.5- to 2-fold in the PD mouse brain. Overall, these findings suggest that NAM exhibits neuroprotective properties and may be an effective therapeutic agent for PD.
Collapse
|
6
|
Sriram K, Lin GX, Jefferson AM, McKinney W, Jackson MC, Cumpston JL, Cumpston JB, Leonard HD, Kashon ML, Fedan JS. Biological effects of inhaled crude oil vapor V. Altered biogenic amine neurotransmitters and neural protein expression. Toxicol Appl Pharmacol 2022; 449:116137. [PMID: 35750205 PMCID: PMC9936428 DOI: 10.1016/j.taap.2022.116137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/06/2022] [Accepted: 06/17/2022] [Indexed: 12/19/2022]
Abstract
Workers in the oil and gas industry are at risk for exposure to a number of physical and chemical hazards at the workplace. Chemical hazard risks include inhalation of crude oil or its volatile components. While several studies have investigated the neurotoxic effects of volatile hydrocarbons, in general, there is a paucity of studies assessing the neurotoxicity of crude oil vapor (COV). Consequent to the 2010 Deepwater Horizon (DWH) oil spill, there is growing concern about the short- and long-term health effects of exposure to COV. NIOSH surveys suggested that the DWH oil spill cleanup workers experienced neurological symptoms, including depression and mood disorders, but the health effects apart from oil dispersants were difficult to discern. To investigate the potential neurological risks of COV, male Sprague-Dawley rats were exposed by whole-body inhalation to COV (300 ppm; Macondo surrogate crude oil) following an acute (6 h/d × 1 d) or sub-chronic (6 h/d × 4 d/wk. × 4 wks) exposure regimen. At 1, 28 or 90 d post-exposure, norepinephrine (NE), epinephrine (EPI), dopamine (DA) and serotonin (5-HT) were evaluated as neurotransmitter imbalances are associated with psychosocial-, motor- and cognitive- disorders. Sub-chronic COV exposure caused significant reductions in NE, EPI and DA in the dopaminergic brain regions, striatum (STR) and midbrain (MB), and a large increase in 5-HT in the STR. Further, sub-chronic exposure to COV caused upregulation of synaptic and Parkinson's disease-related proteins in the STR and MB. Whether such effects will lead to neurodegenerative outcomes remain to be investigated.
Collapse
Affiliation(s)
- Krishnan Sriram
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America.
| | - Gary X Lin
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Amy M Jefferson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Walter McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Mark C Jackson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Jared L Cumpston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - James B Cumpston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Howard D Leonard
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Michael L Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Jeffrey S Fedan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| |
Collapse
|
7
|
Mantle D, Heaton RA, Hargreaves IP. Coenzyme Q10, Ageing and the Nervous System: An Overview. Antioxidants (Basel) 2021; 11:2. [PMID: 35052506 PMCID: PMC8773271 DOI: 10.3390/antiox11010002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 01/04/2023] Open
Abstract
The ageing brain is characterised by changes at the physical, histological, biochemical and physiological levels. This ageing process is associated with an increased risk of developing a number of neurological disorders, notably Alzheimer's disease and Parkinson's disease. There is evidence that mitochondrial dysfunction and oxidative stress play a key role in the pathogenesis of such disorders. In this article, we review the potential therapeutic role in these age-related neurological disorders of supplementary coenzyme Q10, a vitamin-like substance of vital importance for normal mitochondrial function and as an antioxidant. This review is concerned primarily with studies in humans rather than in vitro studies or studies in animal models of neurological disease. In particular, the reasons why the outcomes of clinical trials supplementing coenzyme Q10 in these neurological disorders is discussed.
Collapse
Affiliation(s)
| | - Robert A. Heaton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (R.A.H.); (I.P.H.)
| | - Iain P. Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (R.A.H.); (I.P.H.)
| |
Collapse
|
8
|
Qu ZB, Jiang Y, Zhang J, Chen S, Zeng R, Zhuo Y, Lu M, Shi G, Gu H. Tailoring Oxygen-Containing Groups on Graphene for Ratiometric Electrochemical Measurements of Ascorbic Acid in Living Subacute Parkinson's Disease Mouse Brains. Anal Chem 2021; 93:16598-16607. [PMID: 34844405 DOI: 10.1021/acs.analchem.1c03965] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ascorbic acid (AA), a major antioxidant in the central nervous system (CNS), is involved in withstanding oxidative stress that plays a significant role in the pathogenesis of Parkinson's disease (PD). Exploring the AA disturbance in the process of PD is of great value in understanding the molecular mechanism of PD. Herein, by virtue of a carbon fiber electrode (CFE) as a matric electrode, a three-step electrochemical process for tailoring oxygen-containing groups on graphene was well designed: potentiostatic deposition was carried out to fabricate graphene oxide on CFE, electrochemical reduction that assisted in removing the epoxy groups accelerated the electron transfer kinetics of AA oxidation, and electrochemical oxidation that increased the content of the carbonyl group (C═O) generated an inner-reference signal. The mechanism was solidified by ab initio calculations by comparing AA absorption on defected models of graphene functionalized with different oxygen groups including carboxyl, hydroxyl, epoxy, and carbonyl. It was found that epoxy groups would hinder the physical absorption of AA onto graphene, while other functional groups would be beneficial to it. Biocompatible polyethylenedioxythiophene (PEDOT) was further rationally assembled to improve the antifouling property of graphene. As a result, a new platform for ratiometric electrochemical measurements of AA with high sensitivity, excellent selectivity, and reproducibility was established. In vivo determination of AA levels in different regions of living mouse brains by the proposed method demonstrated that AA decreased remarkably in the hippocampus and cortex of a subacute PD mouse than those of a normal mouse.
Collapse
Affiliation(s)
- Zhi-Bei Qu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yimin Jiang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Jiaxin Zhang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Shu Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Rongjin Zeng
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Yi Zhuo
- Hunan Provincial Key Laboratory of Neurorestoratology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Ming Lu
- Hunan Provincial Key Laboratory of Neurorestoratology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, P. R. China
| | - Hui Gu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| |
Collapse
|
9
|
Oxidative Stress, Mitochondrial Dysfunction, and Neuroprotection of Polyphenols with Respect to Resveratrol in Parkinson's Disease. Biomedicines 2021; 9:biomedicines9080918. [PMID: 34440122 PMCID: PMC8389563 DOI: 10.3390/biomedicines9080918] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease and is characterized by dopaminergic neuronal loss. The exact pathogenesis of PD is complex and not yet completely understood, but research has established the critical role mitochondrial dysfunction plays in the development of PD. As the main producer of cytosolic reactive oxygen species (ROS), mitochondria are particularly susceptible to oxidative stress once an imbalance between ROS generation and the organelle’s antioxidative system occurs. An overabundance of ROS in the mitochondria can lead to mitochondrial dysfunction and further vicious cycles. Once enough damage accumulates, the cell may undergo mitochondria-dependent apoptosis or necrosis, resulting in the neuronal loss of PD. Polyphenols are a group of natural compounds that have been shown to offer protection against various diseases, including PD. Among these, the plant-derived polyphenol, resveratrol, exhibits neuroprotective effects through its antioxidative capabilities and provides mitochondria protection. Resveratrol also modulates crucial genes involved in antioxidative enzymes regulation, mitochondrial dynamics, and cellular survival. Additionally, resveratrol offers neuroprotective effects by upregulating mitophagy through multiple pathways, including SIRT-1 and AMPK/ERK pathways. This compound may provide potential neuroprotective effects, and more clinical research is needed to establish the efficacy of resveratrol in clinical settings.
Collapse
|
10
|
PEP-1-GLRX1 Reduces Dopaminergic Neuronal Cell Loss by Modulating MAPK and Apoptosis Signaling in Parkinson's Disease. Molecules 2021; 26:molecules26113329. [PMID: 34206041 PMCID: PMC8198499 DOI: 10.3390/molecules26113329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/22/2022] Open
Abstract
Parkinson’s disease (PD) is characterized mainly by the loss of dopaminergic neurons in the substantia nigra (SN) mediated via oxidative stress. Although glutaredoxin-1 (GLRX1) is known as one of the antioxidants involved in cell survival, the effects of GLRX1 on PD are still unclear. In this study, we investigated whether cell-permeable PEP-1-GLRX1 inhibits dopaminergic neuronal cell death induced by 1-methyl-4-phenylpyridinium (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We showed that PEP-1-GLRX1 protects cell death and DNA damage in MPP+-exposed SH-SY5Y cells via the inhibition of MAPK, Akt, and NF-κB activation and the regulation of apoptosis-related protein expression. Furthermore, we found that PEP-1-GLRX1 was delivered to the SN via the blood–brain barrier (BBB) and reduced the loss of dopaminergic neurons in the MPTP-induced PD model. These results indicate that PEP-1-GLRX1 markedly inhibited the loss of dopaminergic neurons in MPP+- and MPTP-induced cytotoxicity, suggesting that this fusion protein may represent a novel therapeutic agent against PD.
Collapse
|
11
|
Lim HS, Moon BC, Lee J, Choi G, Park G. The insect molting hormone 20-hydroxyecdysone protects dopaminergic neurons against MPTP-induced neurotoxicity in a mouse model of Parkinson's disease. Free Radic Biol Med 2020; 159:23-36. [PMID: 32745769 DOI: 10.1016/j.freeradbiomed.2020.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 01/02/2023]
Abstract
20-hydroxyecdysone (20E), a steroidal prohormone, is secreted from the prothoracic glands. While 20E has been shown to have neuroprotective effects in Parkinson's disease (PD) models in vitro, its effects have not yet been examined in vivo. We sought to assess the behavioral and mechanistic effects of 20E on MPTP-induced toxicity in mice. To this end, we used behavioral tests, stereological analyses of dopaminergic neurons by tyrosine hydroxylase immunohistochemistry, and assessments of apoptotic mechanisms, focusing on Nrf2 signaling through Western blotting and ELISA assays. A 20E treatment protected against MPTP-induced motor incoordination, postural imbalance, and bradykinesia, and significantly reduced dopaminergic neuronal loss in the substantia nigra pars compacta (SNpc) and the striatum (ST). It also attenuated dopamine deficiency in the ST, modulated levels of antioxidative enzymes superoxide dismutase, catalase, and glutathione in the SNpc, increased the Bcl-2/Bax ratio, and inhibited cytosolic cytochrome c release and caspase-9, -7, and -3 activity in the SNpc. These results indicated that 20E inhibited the apoptotic cascade. Furthermore, the attenuation of MPTP neurotoxicity was associated with inhibited cleaved-caspase signaling pathways, along with upregulated Nrf2 pathways in the SNpc, suggesting that 20E mitigates MPTP-induced neurotoxicity via mitochondria-mediated apoptosis by modulating anti-oxidative activities. Our results suggest that 20E can inhibit MPTP-induced behavioral and neurotoxic effects in mice. This lays the foundation for further research on 20E as a potential target for therapeutic use.
Collapse
Affiliation(s)
- Hye-Sun Lim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea
| | - Byeong Cheol Moon
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea
| | - Jun Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea
| | - Goya Choi
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea
| | - Gunhyuk Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea.
| |
Collapse
|
12
|
Liao JF, Cheng YF, You ST, Kuo WC, Huang CW, Chiou JJ, Hsu CC, Hsieh-Li HM, Wang S, Tsai YC. Lactobacillus plantarum PS128 alleviates neurodegenerative progression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse models of Parkinson's disease. Brain Behav Immun 2020; 90:26-46. [PMID: 32739365 DOI: 10.1016/j.bbi.2020.07.036] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Evidence suggests that the Parkinson's disease (PD) pathogenesis is strongly associated with bidirectional pathways in the microbiota-gut-brain axis (MGBA), and psychobiotics may inhibit PD progression. We previously reported that the novel psychobiotic strain, Lactobacillus plantarum PS128 (PS128), ameliorated abnormal behaviors and modulated neurotransmissions in dopaminergic pathways in rodent models. Here, we report that orally administering PS128 for 4 weeks significantly alleviated the motor deficits, elevation in corticosterone, nigrostriatal dopaminergic neuronal death, and striatal dopamine reduction in 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-induced PD mouse models. PS128 ingestion suppressed glial cell hyperactivation and increased norepinephrine and neurotrophic factors in the striatum of the PD-model mice. PS128 administration also attenuated MPTP-induced oxidative stress and neuroinflammation in the nigrostriatal pathway. Fecal analysis showed that PS128 modulated the gut microbiota. L. plantarum abundance was significantly increased along with methionine biosynthesis-related microbial modules. PS128 also suppressed the increased family Enterobacteriaceae and lipopolysaccharide and peptidoglycan biosynthesis-related microbial modules caused by MPTP. In conclude, PS128 ingestion alleviated MPTP-induced motor deficits and neurotoxicity.PS128 supplementation inhibited neurodegenerative processes in PD-model mice and may help prevent PD.
Collapse
Affiliation(s)
- Jian-Fu Liao
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC
| | - Yun-Fang Cheng
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC; Microbiome Research Center, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC; Bened Biomedical Co. Ltd., 2F-2, No.129, Sec. 2, Zhongshan N. Rd., Zhongshan Dist., Taipei City 104, Taiwan, ROC
| | - Shu-Ting You
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC
| | - Wen-Chun Kuo
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC
| | - Chi-Wei Huang
- Center for Systems and Synthetic Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC
| | - Jen-Jie Chiou
- Center for Systems and Synthetic Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC
| | - Chih-Chieh Hsu
- Bened Biomedical Co. Ltd., 2F-2, No.129, Sec. 2, Zhongshan N. Rd., Zhongshan Dist., Taipei City 104, Taiwan, ROC
| | - Hsiu-Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, 88, Section 4, Tingchow Rd., Wenshan Dist., Taipei City 116, Taiwan, ROC
| | - Sabrina Wang
- Institute of Anatomy and Cell Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC.
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC; Microbiome Research Center, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC.
| |
Collapse
|
13
|
Anti-Apoptotic Effects of Carotenoids in Neurodegeneration. Molecules 2020; 25:molecules25153453. [PMID: 32751250 PMCID: PMC7436041 DOI: 10.3390/molecules25153453] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Apoptosis, programmed cell death type I, is a critical part of neurodegeneration in cerebral ischemia, Parkinson’s, and Alzheimer’s disease. Apoptosis begins with activation of pro-death proteins Bax and Bak, release of cytochrome c and activation of caspases, loss of membrane integrity of intracellular organelles, and ultimately cell death. Approaches that block apoptotic pathways may prevent or delay neurodegenerative processes. Carotenoids are a group of pigments found in fruits, vegetables, and seaweeds that possess antioxidant properties. Over the last several decades, an increasing number of studies have demonstrated a protective role of carotenoids in neurodegenerative disease. In this review, we describe functions of commonly consumed carotenoids including lycopene, β-carotene, lutein, astaxanthin, and fucoxanthin and their roles in neurodegenerative disease models. We also discuss the underlying cellular mechanisms of carotenoid-mediated neuroprotection, including their antioxidant properties, role as signaling molecules, and as gene regulators that alleviate apoptosis-associated brain cell death.
Collapse
|
14
|
Zeng Z, Roussakis AA, Lao-Kaim NP, Piccini P. Astrocytes in Parkinson's disease: from preclinical assays to in vivo imaging and therapeutic probes. Neurobiol Aging 2020; 95:264-270. [PMID: 32905922 DOI: 10.1016/j.neurobiolaging.2020.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/30/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is increasingly thought to be associated with glial pathology. Recently, research in neurodegenerative disorders has applied a greater focus to better understanding the role of astrocytes in the disease pathophysiology. In this article, we review results from the latest preclinical and clinical work, including functional imaging studies on astrocytes in PD and highlight key molecules that may prove valuable as biomarkers. We discuss how astrocytes may contribute to the initiation and progression of PD. We additionally present trials of investigational medicinal products and the current background for the design of future clinical trials.
Collapse
Affiliation(s)
- Zhou Zeng
- Department of Brain Sciences, Imperial College London, Neurology Imaging Unit, London, UK; Department of Neurology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | | | - Nicholas P Lao-Kaim
- Department of Brain Sciences, Imperial College London, Neurology Imaging Unit, London, UK
| | - Paola Piccini
- Department of Brain Sciences, Imperial College London, Neurology Imaging Unit, London, UK.
| |
Collapse
|
15
|
Park HA, Ellis AC. Dietary Antioxidants and Parkinson's Disease. Antioxidants (Basel) 2020; 9:antiox9070570. [PMID: 32630250 PMCID: PMC7402163 DOI: 10.3390/antiox9070570] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/14/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder caused by the depletion of dopaminergic neurons in the basal ganglia, the movement center of the brain. Approximately 60,000 people are diagnosed with PD in the United States each year. Although the direct cause of PD can vary, accumulation of oxidative stress-induced neuronal damage due to increased production of reactive oxygen species (ROS) or impaired intracellular antioxidant defenses invariably occurs at the cellular levels. Pharmaceuticals such as dopaminergic prodrugs and agonists can alleviate some of the symptoms of PD. Currently, however, there is no treatment to halt the progression of PD pathology. Due to the nature of PD, a long and progressive neurodegenerative process, strategies to prevent or delay PD pathology may be well suited to lifestyle changes like dietary modification with antioxidant-rich foods to improve intracellular redox homeostasis. In this review, we discuss cellular and genetic factors that increase oxidative stress in PD. We also discuss neuroprotective roles of dietary antioxidants including vitamin C, vitamin E, carotenoids, selenium, and polyphenols along with their potential mechanisms to alleviate PD pathology.
Collapse
|
16
|
NLRP3 inflammasome and glia maturation factor coordinately regulate neuroinflammation and neuronal loss in MPTP mouse model of Parkinson's disease. Int Immunopharmacol 2020; 83:106441. [PMID: 32259702 DOI: 10.1016/j.intimp.2020.106441] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/10/2020] [Accepted: 03/22/2020] [Indexed: 02/06/2023]
Abstract
Neuroinflammation plays an active role in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease (PD). Earlier studies from this laboratory showed that glia maturation factor (GMF), a proinflammatory mediator; is up-regulated in the brain in neurodegenerative diseases and that deficiency of GMF showed decreased production of IL-1β and improved behavioral abnormalities in mouse model of PD. However, the mechanisms linking GMF and dopaminergic neuronal death have not been completely explored. In the present study, we have investigated the expression of NLRP3 inflammasome and caspase-1 in the substantia nigra (SN) of human PD and non-PD brains by immunohistochemistry. Wild-type (WT) and GMF-/- (GMF knock-out) mice were treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydro pyridine (MPTP) and the brains were isolated for neurochemical and morphological examinations. NLRP3 and caspase-1 positive cells were found significantly increased in PD when compared to non-PD control brains. Moreover, GMF co-localized with α-Synuclein within reactive astrocytes in the midbrain of PD. Mice treated with MPTP exhibit glial activation-induced inflammation, and nigrostriatal dopaminergic neurodegeneration. Interestingly, increased expression of the inflammasome components in astrocytes and microglia observed in the SN of MPTP-treated WT mice were significantly reduced in GMF-/- mice. Additionally, we show that NLRP3 activation in microglia leads to translocation of GMF and NLRP3 to the mitochondria. We conclude that downregulation of GMF may have beneficial effects in prevention of PD by modulating the cytotoxic functions of microglia and astrocytes through reduced activation of the NLRP3 inflammasome; a major contributor of neuroinflammation in the CNS.
Collapse
|
17
|
Barilar JO, Knezovic A, Perhoc AB, Homolak J, Riederer P, Salkovic-Petrisic M. Shared cerebral metabolic pathology in non-transgenic animal models of Alzheimer's and Parkinson's disease. J Neural Transm (Vienna) 2020; 127:231-250. [PMID: 32030485 PMCID: PMC7035309 DOI: 10.1007/s00702-020-02152-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/24/2020] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) and Alzheimer's disease (AD) are the most common chronic neurodegenerative disorders, characterized by motoric dysfunction or cognitive decline in the early stage, respectively, but often by both symptoms in the advanced stage. Among underlying molecular pathologies that PD and AD patients have in common, more attention is recently paid to the central metabolic dysfunction presented as insulin resistant brain state (IRBS) and altered cerebral glucose metabolism, both also explored in animal models of these diseases. This review aims to compare IRBS and alterations in cerebral glucose metabolism in representative non-transgenic animal PD and AD models. The comparison is based on the selectivity of the neurotoxins which cause experimental PD and AD, towards the cellular membrane and intracellular molecular targets as well as towards the selective neurons/non-neuronal cells, and the particular brain regions. Mitochondrial damage and co-expression of insulin receptors, glucose transporter-2 and dopamine transporter on the membrane of particular neurons as well as astrocytes seem to be the key points which are further discussed in a context of alterations in insulin signalling in the brain and its interaction with dopaminergic transmission, particularly regarding the time frame of the experimental AD/PD pathology appearance and the correlation with cognitive and motor symptoms. Such a perspective provides evidence on IRBS being a common underlying metabolic pathology and a contributor to neurodegenerative processes in representative non-transgenic animal PD and AD models, instead of being a direct cause of a particular neurodegenerative disorder.
Collapse
Affiliation(s)
- Jelena Osmanovic Barilar
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Peter Riederer
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Würzburg, Füchsleinstrasse 15, 97080, Würzburg, Germany
- Department and Research Unit of Psychiatry, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia.
- Institute of Fundamental Clinical and Translational Neuroscience, Research Centre of Excellence, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 12, 10 000, Zagreb, Croatia.
| |
Collapse
|
18
|
Jeong SY, Hogarth P, Placzek A, Gregory AM, Fox R, Zhen D, Hamada J, van der Zwaag M, Lambrechts R, Jin H, Nilsen A, Cobb J, Pham T, Gray N, Ralle M, Duffy M, Schwanemann L, Rai P, Freed A, Wakeman K, Woltjer RL, Sibon OCM, Hayflick SJ. 4'-Phosphopantetheine corrects CoA, iron, and dopamine metabolic defects in mammalian models of PKAN. EMBO Mol Med 2019; 11:e10489. [PMID: 31660701 PMCID: PMC6895607 DOI: 10.15252/emmm.201910489] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/07/2019] [Accepted: 08/14/2019] [Indexed: 11/19/2022] Open
Abstract
Pantothenate kinase-associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigating an existing mouse mutant of Pank2 and found that isolating the disease-vulnerable brain revealed regional perturbations in CoA metabolism, iron homeostasis, and dopamine metabolism and functional defects in complex I and pyruvate dehydrogenase. Feeding mice a CoA pathway intermediate, 4'-phosphopantetheine, normalized levels of the CoA-, iron-, and dopamine-related biomarkers as well as activities of mitochondrial enzymes. Human cell changes also were recovered by 4'-phosphopantetheine. We can mechanistically link a defect in CoA metabolism to these secondary effects via the activation of mitochondrial acyl carrier protein, which is essential to oxidative phosphorylation, iron-sulfur cluster biogenesis, and mitochondrial fatty acid synthesis. We demonstrate the fidelity of our model in recapitulating features of the human disease. Moreover, we identify pharmacodynamic biomarkers, provide insights into disease pathogenesis, and offer evidence for 4'-phosphopantetheine as a candidate therapeutic for PKAN.
Collapse
Affiliation(s)
- Suh Young Jeong
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Penelope Hogarth
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
- Department of NeurologyOregon Health & Science UniversityPortlandORUSA
| | - Andrew Placzek
- Medicinal Chemistry CoreOregon Health & Science UniversityPortlandORUSA
| | - Allison M Gregory
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Rachel Fox
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Dolly Zhen
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Jeffrey Hamada
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | | | - Roald Lambrechts
- Department of Cell BiologyUniversity Medical Center GroningenGroningenthe Netherlands
| | - Haihong Jin
- Medicinal Chemistry CoreOregon Health & Science UniversityPortlandORUSA
| | - Aaron Nilsen
- Medicinal Chemistry CoreOregon Health & Science UniversityPortlandORUSA
| | - Jared Cobb
- Department of PathologyOregon Health & Science UniversityPortlandORUSA
| | - Thao Pham
- Department of PathologyOregon Health & Science UniversityPortlandORUSA
| | - Nora Gray
- Department of NeurologyOregon Health & Science UniversityPortlandORUSA
| | - Martina Ralle
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Megan Duffy
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Leila Schwanemann
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Puneet Rai
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Alison Freed
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Katrina Wakeman
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
| | - Randall L Woltjer
- Department of PathologyOregon Health & Science UniversityPortlandORUSA
| | - Ody CM Sibon
- Department of Cell BiologyUniversity Medical Center GroningenGroningenthe Netherlands
| | - Susan J Hayflick
- Department of Molecular & Medical GeneticsOregon Health & Science UniversityPortlandORUSA
- Department of NeurologyOregon Health & Science UniversityPortlandORUSA
- Department of PediatricsOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
19
|
Shalgum A, Govindarajulu M, Majrashi M, Ramesh S, Collier WE, Griffin G, Amin R, Bradford C, Moore T, Dhanasekaran M. Neuroprotective effects of Hibiscus Sabdariffa against hydrogen peroxide-induced toxicity. J Herb Med 2019. [DOI: 10.1016/j.hermed.2018.100253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Neuroprotective Effect of Schisandra Chinensis on Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Parkinsonian Syndrome in C57BL/6 Mice. Nutrients 2019; 11:nu11071671. [PMID: 31330885 PMCID: PMC6683275 DOI: 10.3390/nu11071671] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/02/2019] [Accepted: 07/16/2019] [Indexed: 12/25/2022] Open
Abstract
Schisandra chinensis (Turcz.) Baill. (S. chinensis) is a well-known botanical medicine and nutritional supplement that has been shown to have potential effects on neurodegeneration. To investigate the potential neuroprotective effect of S. chinensis fruit extract, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was used to induce behavioral disorders and dopaminergic neuronal damage in mice, and biochemical indicators were examined. Male C57BL/6 mice were used to establish the MPTP-induced parkinsonian syndrome model. Open field and rotarod tests were performed to evaluate the overall manifestation of motor deficits and rodent motor coordination. The mice were divided into 8 groups as follows: normal control; MPTP alone (25 mg/kg, i.p.); S. chinensis extract pretreatment (0.5, 1.5, 5 g/kg, p.o.); and S. chinensis extract treatment (0.5, 1.5, 5 g/kg, p.o.). Liquid chromatography coupled to electrochemical detection was used to monitor neurochemicals in the striatum. Tyrosine hydroxylase content was measured by immunohistochemistry, and biochemical antioxidative indicators were used to evaluate the potential neuroprotective effects of S. chinensis fruit extract. The results demonstrated that treatment with S. chinensis fruit extract ameliorated MPTP-induced deficits in behavior, exercise balance, dopamine level, dopaminergic neurons, and tyrosine hydroxylase-positive cells in the striatum of mice. Among the pretreated and treatment groups, a high dose of S. chinensis fruit extract was the most effective treatment. In conclusion, S. chinensis fruit extract is a potential herbal drug candidate for the amelioration and prevention of Parkinson's disease.
Collapse
|
21
|
Kurosaki H, Yamaguchi K, Man-Yoshi K, Muramatsu SI, Hara S, Ichinose H. Administration of tetrahydrobiopterin restored the decline of dopamine in the striatum induced by an acute action of MPTP. Neurochem Int 2019; 125:16-24. [PMID: 30739038 DOI: 10.1016/j.neuint.2019.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/19/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
Abstract
Parkinson's disease (PD) is the second common neurodegenerative disorder. Deficit of the nigro-striatal dopaminergic neurons causes the motor symptoms of PD. While the oxidative stress is thought to be deeply involved in the etiology of PD, molecular targets for the oxidative insults has not been fully elucidated. 6R-5,6,7,8-Tetrahydrobiopterin (BH4) is a cofactor for tyrosine hydroxylase (TH), the rate-limiting enzyme for production of dopamine, and easily oxidized to its dihydro-form. In this study, we examined the alteration in the metabolism of BH4 caused by a parkinsonian neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP reduced the dopamine content and the in vivo activity of TH in the striatum prior to degeneration of the dopaminergic neurons. We found that administration of BH4 could restore the dopamine content and in vivo TH activity in the striatum of MPTP-treated mice. Unexpectedly, when BH4 was administered with MPTP, BH4 contents in the brain were far higher than those injected without MPTP even at 23 h after the last injection. Because MPTP has been shown to increase ROS production in the dopaminergic neurons, we assumed that the increased ROS oxidizes BH4 into its dihydro-form, excreted from the dopaminergic neurons, taken-up by the neighboring cells, reduced back to BH4, and then accumulated in the brain. We also investigated the action of MPTP in mice lacking quinonoid-dihydropteridine reductase (Qdpr), an enzyme catalyzing regeneration of BH4 from quinonoid dihydrobiopterin. The dopamine depletion induced by MPTP was severer in Qdpr-deficient mice than in wild-type mice. The present data suggest that perturbation of the BH4 metabolism would be the cause of early and persistent dopamine depletion in the striatum.
Collapse
Affiliation(s)
- Hiroki Kurosaki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kentaro Yamaguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kohei Man-Yoshi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurology, Jichi Medical University, Shimotsuke, Tochigi, Japan; Center for Gene & Cell Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Satoshi Hara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroshi Ichinose
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
22
|
Okadaic Acid and Hypoxia Induced Dementia Model of Alzheimer's Type in Rats. Neurotox Res 2019; 35:621-634. [PMID: 30729451 DOI: 10.1007/s12640-019-0005-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 01/19/2019] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of progressive decline of memory function in aged humans. To study about a disease mechanism and progression, animal models for the specific disease are needed. For AD, although highly valid animal models exist, none of the existing models recapitulates all aspects of human AD. The pathogenic mechanisms involved in AD are diverse and thus it is difficult to recapitulate human AD in model organisms. Intracerebroventricular (ICV) injection of okadaic acid (OKA), a protein phosphatase 2A (PP2A) inhibitor, in rats causes neurotoxicity associated with neurofibrillary degeneration. However, this model lacks amyloid pathology as observed in AD. We aimed at combining two different treatments and hence producing a better animal model of AD which may mimic most of the neuropathological, neurobehavioral, and neurochemical changes observed in AD. For this, OKA (200 ng) was microinjected bilaterally into the hippocampus of male Wistar rats followed by exposure of same rats to hypoxic conditions (10%) for 3 days. The result of which, the combination model exhibited tau hyperphosphorylation along with Aβ upregulation as evident by western blotting and immunohistochemistry. The observed changes were accompanied with dysfunction of neurotransmitter system, i.e., decreased acetylcholine activity and expression. This combinatorial model also exhibited cognitive deficiency which was assessed by Morris water maze and avoidance tests along with enhanced oxidative stress which is thought to be a major player in AD pathogenesis. Taken together, we established an easily reproducible and reliable rat model for sporadic dementia of Alzheimer's type in rats which allows effective testing of new therapeutic strategies.
Collapse
|
23
|
Sex-dependent effect on mitochondrial and oxidative stress parameters in the hypothalamus induced by prepubertal stress and access to high fat diet. Neurochem Int 2019; 124:114-122. [PMID: 30639195 DOI: 10.1016/j.neuint.2019.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Some factors related to lifestyle, including stress and high-fat diet (HFD) consumption, are associated with higher prevalence of obesity. These factors can lead to an imbalance between ROS production and antioxidant defenses and to mitochondrial dysfunctions, which, in turn, could cause metabolic impairments, favoring the development of obesity. However, little is known about the interplay between these factors, particularly at early ages, and whether long-term sex-specific changes may occur. Here, we evaluated whether social isolation during the prepubertal period only, associated or not with chronic HFD, can exert long-term effects on oxidative status parameters and on mitochondrial function in the whole hypothalamus, in a sex-specific manner. METHODS Wistar male and female rats were divided into two groups (receiving standard chow or standard chow + HFD), that were subdivided into exposed or not to social isolation during the prepubertal period. Oxidative status parameters, and mitochondrial function were evaluated in the hypothalamus in the adult age. RESULTS Regarding antioxidant enzymes activities, HFD decreased GPx activity in the hypothalamus, while increasing SOD activity in females. Females also presented increased total thiols; however, non-protein thiols were lower. Main effects of stress and HFD were observed in TBARS levels in males, with both factors decreasing this parameter. Additionally, HFD increased complex IV activity, and decreased mitochondrial mass in females. Complex I-III activity was higher in males compared to females. CONCLUSION Stress during the prepubertal period and chronic consumption of HFD had persistent sex-specific effects on oxidative status, as well as on its consequences for the cell and for mitochondrial function. HFD had more detrimental effects on females, inducing oxidative imbalance, which resulted in damage to the mitochondria. This HFD-induced imbalance may be related to the development of obesity.
Collapse
|
24
|
Majrashi M, Almaghrabi M, Fadan M, Fujihashi A, Lee W, Deruiter J, Randall Clark C, Dhanasekaran M. Dopaminergic neurotoxic effects of 3-TFMPP derivatives. Life Sci 2018; 209:357-369. [PMID: 30067941 DOI: 10.1016/j.lfs.2018.07.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022]
Abstract
Designer drugs are synthetically formulated to mimic the psychostimulatory effects of an original controlled/illegal drug of abuse. Designer drugs have similar chemical structure or functional analog as compared to existing controlled psychostimulatory drugs. There is a substantial rise in the production and use of designer drugs globally. Piperazine designer drugs were synthesized as an alternative to MDMA and have shown to induce numerous toxic effects leading to huge health, safety, law enforcement & monetary problems, and lethality. Currently, there are very few studies on the dopaminergic neurotoxicity of 1-(3-trifluoromethylphenyl) piperazine (3-TFMPP) and its derivatives (structural congeners). N27 rat dopaminergic neurons are valid cells to investigate the neurotoxic effects and establish the neurotoxic mechanisms of various substances. In the current study, we studied the time and dose-dependent neurotoxicity mechanisms of dopaminergic neurotoxicity of 3-TFMPP (parent compound) and its derivatives (2-TFMPP, 4-TFMPP). TFMPP derivatives-induced significant neurotoxicity (induced dopaminergic neuronal death. TFMPP derivatives-induced oxidative stress, mitochondrial dysfunction, apoptosis and decreased tyrosine hydroxylase expression. If the use of designer drugs are not strictly regulated and restricted around the world, this can lead to numerous central and peripheral disorders leading to a liability to the current and future society.
Collapse
Affiliation(s)
- Mohammed Majrashi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA; Department of Pharmacology, Faculty of Medicine, University of Jeddah, Jeddah, 23881, Saudi Arabia
| | - Mohammed Almaghrabi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA; Department of Medicinal Chemistry, Faculty of Pharmacy, Taibah University, AL Medina, KSA
| | - Maali Fadan
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Ayaka Fujihashi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Wooseok Lee
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Jack Deruiter
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - C Randall Clark
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA.
| |
Collapse
|
25
|
Neal M, Richardson JR. Time to get Personal: A Framework for Personalized Targeting of Oxidative Stress in Neurotoxicity and Neurodegenerative Disease. CURRENT OPINION IN TOXICOLOGY 2018; 7:127-132. [PMID: 30272040 DOI: 10.1016/j.cotox.2018.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The annual cost for neurological disorders in the United States was $789 billion in 2014, and with an aging population these numbers are expected to significantly increase in the next 50 years [1]. Neurodegenerative diseases make up a significant portion of these costs. Neurodegenerative diseases are characterized by the loss of neuronal populations in specific regions of the brain. Although the cause is still unknown for most of these diseases, both genetic and environmental factors are thought to play important roles. There are multiple convergent mechanisms underlying the unique susceptibility of neurons to degeneration, including aging, inflammation, mitochondrial dysfunction, and oxidative stress. Oxidative stress (OS) is of particular importance because evidence indicates that the neuronal populations lost in neurodegenerative diseases are particular susceptible to OS. OS is a complex neurotoxic mechanism that arises from excessive generation of free radicals such as reactive oxygen species (ROS), reduction in anti-oxidant factors, or a combination of the two. A complex interplay between the endogenous susceptibility of the brain, genetic factors, and environmental exposures leads to the harmful generation of OS in the brain and contributes significantly to the initiation and/or progression of neurodegeneration. Unfortunately, therapeutics for neurodegenerative diseases have consistently failed in clinical trials. Thus, a better understanding of the interplay between genetic susceptibility and common molecular mechanisms of environmental contributors to OS generation could aid in elucidation of novel therapeutic strategies for neurodegenerative diseases. This review will explore the current picture of oxidative stress in the brain as it relates to neurotoxicity, specifically exploring common mechanisms behind the endogenous susceptibility of the brain to OS, genetic susceptibility and environmental exposures leading to neurotoxicity, to identify precision/personalized medicine approaches for improving therapeutic outcome.
Collapse
Affiliation(s)
- Matthew Neal
- Department of Pharmaceutical Sciences, Center for Neurodegenerative Diseases and Aging, Northeast Ohio Medical University, Rootstown, OH 44272
| | - Jason R Richardson
- Department of Pharmaceutical Sciences, Center for Neurodegenerative Diseases and Aging, Northeast Ohio Medical University, Rootstown, OH 44272
| |
Collapse
|
26
|
García-Beltrán O, Mena NP, Aguirre P, Barriga-González G, Galdámez A, Nagles E, Adasme T, Hidalgo C, Núñez MT. Development of an iron-selective antioxidant probe with protective effects on neuronal function. PLoS One 2017; 12:e0189043. [PMID: 29228015 PMCID: PMC5724820 DOI: 10.1371/journal.pone.0189043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/19/2017] [Indexed: 12/19/2022] Open
Abstract
Iron accumulation, oxidative stress and calcium signaling dysregulation are common pathognomonic signs of several neurodegenerative diseases, including Parkinson´s and Alzheimer’s diseases, Friedreich ataxia and Huntington’s disease. Given their therapeutic potential, the identification of multifunctional compounds that suppress these damaging features is highly desirable. Here, we report the synthesis and characterization of N-(1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)-2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetamide, named CT51, which exhibited potent free radical neutralizing activity both in vitro and in cells. CT51 bound Fe2+ with high selectivity and Fe3+ with somewhat lower affinity. Cyclic voltammetric analysis revealed irreversible binding of Fe3+ to CT51, an important finding since stopping Fe2+/Fe3+ cycling in cells should prevent hydroxyl radical production resulting from the Fenton-Haber-Weiss cycle. When added to human neuroblastoma cells, CT51 freely permeated the cell membrane and distributed to both mitochondria and cytoplasm. Intracellularly, CT51 bound iron reversibly and protected against lipid peroxidation. Treatment of primary hippocampal neurons with CT51 reduced the sustained calcium release induced by an agonist of ryanodine receptor-calcium channels. These protective properties of CT51 on cellular function highlight its possible therapeutic use in diseases with significant oxidative, iron and calcium dysregulation.
Collapse
Affiliation(s)
- Olimpo García-Beltrán
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Natalia P. Mena
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Pabla Aguirre
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Germán Barriga-González
- Universidad Metropolitana de Ciencias de la Educación, Facultad de Ciencias Básicas, Departamento de Química, Santiago, Chile
| | - Antonio Galdámez
- Department of Chemistry, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Edgar Nagles
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Ibagué, Colombia
| | - Tatiana Adasme
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Integrative Center for Applied Biology and Chemistry (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Neuroscience, CEMC and ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- * E-mail: (CH); (MTN)
| | - Marco T. Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- * E-mail: (CH); (MTN)
| |
Collapse
|
27
|
Nrf2 activation by tauroursodeoxycholic acid in experimental models of Parkinson's disease. Exp Neurol 2017; 295:77-87. [DOI: 10.1016/j.expneurol.2017.05.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/05/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022]
|
28
|
Valle MTC, Couto-Pereira NS, Lampert C, Arcego DM, Toniazzo AP, Limberger RP, Dallegrave E, Dalmaz C, Arbo MD, Leal MB. Energy drinks and their component modulate attention, memory, and antioxidant defences in rats. Eur J Nutr 2017; 57:2501-2511. [DOI: 10.1007/s00394-017-1522-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/04/2017] [Indexed: 01/07/2023]
|
29
|
Lampert C, Arcego DM, de Sá Couto-Pereira N, Dos Santos Vieira A, Toniazzo AP, Krolow R, Garcia E, Vendite DA, Calcagnotto ME, Dalmaz C. Short post-weaning social isolation induces long-term changes in the dopaminergic system and increases susceptibility to psychostimulants in female rats. Int J Dev Neurosci 2017; 61:21-30. [PMID: 28559209 DOI: 10.1016/j.ijdevneu.2017.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/10/2017] [Accepted: 05/24/2017] [Indexed: 12/09/2022] Open
Abstract
Childhood and adolescence are sensitive periods of development, marked by high brain maturation and plasticity. Exposure to early life stress, such as social isolation, is able to prompt changes in sensitive brain circuitries, essentially in the mesolimbic dopaminergic system and increase the risk for addictive behaviors later in life. Post-weaning social isolation can stimulate the consumption of rewarding substances, like drugs of abuse and palatable foods. However, most studies analyze long periods of social isolation and very little is known about the effects of a brief social isolation in a sensitive period of development and its association with palatable food on the reward system sensitization. Furthermore, females are more susceptible to the reinforcing effect of drugs than males. Therefore, the aim of this study was to analyze the effects of a short post-weaning social isolation combined with a free access to a chronic high sugar diet (HSD) on the dopaminergic system, oxidative status and behavioral response to an amphetamine-like drug in adulthood. We used female Wistar rats that were socially isolated from post-natal days (PD) 21 to 35 and received free access to a HSD until PD 60. On PD 65, animals were submitted to a challenge with diethylpropion (DEP), an amphetamine-like drug and different responses were analyzed: locomotor activity, immmunocontent of dopamine related proteins, and the oxidative status in the striatum, before and after the DEP challenge. We showed that a short post-weaning social isolation (SI) increased the locomotor response to DEP, when compared with previous saline administration. Social isolation also increased dopamine transporter, tyrosine hydroxylase, and decreased dopamine D2 receptor immunocontent. Additionally, SI increased the overall oxidative status parameters after the challenge with DEP. Interestingly, the exposure to a HSD prevented the SI effects on locomotor response, but did not interfere in the dopaminergic parameters evaluated, despite having modified some oxidative parameters. This study showed for the first time that a short post-weaning social isolation was able to induce long-term changes in the striatal dopaminergic system and increased the response to psychostimulants. These results emphasize the importance of stressful experiences during a short period of development on programming susceptibility to psychostimulants later in life.
Collapse
Affiliation(s)
- Carine Lampert
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Danusa Mar Arcego
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Natividade de Sá Couto-Pereira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Aline Dos Santos Vieira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana Paula Toniazzo
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rachel Krolow
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Emily Garcia
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Deusa Aparecida Vendite
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carla Dalmaz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
30
|
Ferroptosis and cell death mechanisms in Parkinson's disease. Neurochem Int 2017; 104:34-48. [DOI: 10.1016/j.neuint.2017.01.004] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/18/2016] [Accepted: 01/06/2017] [Indexed: 01/18/2023]
|
31
|
Ray A, Kambali M, Ravindranath V. Thiol Oxidation by Diamide Leads to Dopaminergic Degeneration and Parkinsonism Phenotype in Mice: A Model for Parkinson's Disease. Antioxid Redox Signal 2016; 25:252-67. [PMID: 27121974 DOI: 10.1089/ars.2015.6602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS This study investigates the role of thiol homeostasis disruption in Parkinson's disease (PD) pathogenesis using a novel animal model. A single unilateral administration of the thiol oxidant, diamide (1.45 μmol) into substantia nigra (SN) of mice leads to locomotor deficits and degeneration of dopaminergic (DA) neurons in SN pars compacta (SNpc). RESULTS Diamide-injected mice showed hemiparkinsonian behavior, measured as spontaneous contralateral body rotations, poor grip strength, and impaired locomotion on a rotarod. We observed a significant loss of DA neurons in ipsilateral but not contralateral SNpc and their striatal fibers. This was accompanied by increased Fluoro-Jade C-positive cells and a loss of NeuN-positive neurons, indicative of neurodegeneration. Importantly, diamide injection led to α-synuclein aggregation in ipsilateral SNpc, a hallmark of PD pathology not often seen in animal models of PD. On investigating putative mechanism(s) involved, we observed a loss of glutathione, which is essential for maintaining protein thiol homeostasis (PTH). Concomitantly, the redox-sensitive ASK1-p38 mitogen-activated protein kinase (MAPK) death signaling pathway was activated in the ipsilateral but not contralateral ventral midbrain through dissociation of ASK1-Trx1 complex. In Neuro-2a cells, diamide activated ASK1-p38 cascade through Trx1 oxidation, leading to cell death, which was abolished by ASK1 knockdown. INNOVATION Since diamide selectively disrupts PTH, DA neurons appear to be vulnerable to such perturbations and even a single insult with a thiol oxidant can result in long-lasting degeneration. CONCLUSION Identification of the role of PTH dysregulation in neurodegeneration, especially in early PD, not only facilitates an understanding of novel regulatory features of molecular signaling cascades but also may aid in developing disease-modifying strategies for PD. Antioxid. Redox Signal. 25, 252-267.
Collapse
Affiliation(s)
- Ajit Ray
- 1 Centre for Neuroscience, Indian Institute of Science , Bangalore, India .,2 National Brain Research Centre , Manesar, India
| | - Maltesh Kambali
- 1 Centre for Neuroscience, Indian Institute of Science , Bangalore, India
| | | |
Collapse
|
32
|
Sridharan S, Mohankumar K, Jeepipalli SPK, Sankaramourthy D, Ronsard L, Subramanian K, Thamilarasan M, Raja K, Chandra VK, Sadras SR. Neuroprotective effect of Valeriana wallichii rhizome extract against the neurotoxin MPTP in C57BL/6 mice. Neurotoxicology 2015; 51:172-83. [PMID: 26522450 DOI: 10.1016/j.neuro.2015.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 01/08/2023]
Abstract
Oxidative stress and inflammation are some of the contributing factors for dopaminergic neurodegeneration in Parkinson's disease (PD). Though Valeriana wallichii D.C. is known for its nervine activities its effect against PD is yet to be studied. This is the first report on the antioxidant and anti-inflammatory effect of V. wallichii rhizome extract (VWE) in MPTP induced PD mice. GC-MS analysis of VWE indicated the presence of phytoconstituents like isovaleric acid and acacetin. PD induced mice were treated orally with three different doses (50, 100 and 200mg/kg body weight (BW)) of VWE for 14 days and their behavioural changes were studied on days 0, 8, 13 and 21. The levels of striatal dopamine, mid brain tyrosine hydroxylase positive (TH(+)) cell count, TH protein expression, reactive oxygen species (ROS), lipid peroxidation (LPO), antioxidants and inflammatory cytokines were analysed. Mid brain glial fibrillary acidic protein (GFAP) expression was assessed by immunohistochemistry and western blotting. Also mid brain histopathological analysis was performed. VWE treatment significantly recuperated the altered behavioural test scores, striatal dopamine levels, mid brain TH(+) cell count and TH protein levels, increased GFAP expression and the histopathological changes observed in PD mice. Similarly, diminished levels of antioxidants, elevated levels of ROS, LPO and inflammatory cytokines were also significantly ameliorated following VWE treatment. The effective dose of VWE was found to be 200mg/kg BW. Conclusively, V. wallichii rhizome extract has the potential to mitigate oxidative stress and inflammatory damage in PD.
Collapse
Affiliation(s)
- Subhashree Sridharan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Kumaravel Mohankumar
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Syam Praveen Kumar Jeepipalli
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Divya Sankaramourthy
- Department of Pharmacology, Mother Theresa Post Graduate and Research Institute of Health Sciences, Puducherry 605006, India
| | - Larance Ronsard
- Virology Laboratory-II, National Institute of Immunology, New Delhi, Delhi 110067, India
| | - Kavimani Subramanian
- Department of Pharmacology, Mother Theresa Post Graduate and Research Institute of Health Sciences, Puducherry 605006, India
| | - Manivasagam Thamilarasan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar 608002, India
| | - Kumar Raja
- Department of Pathology, Rajiv Gandhi Institute of Veterinary Education and Research, Puducherry 605009, India
| | - Varshney Khub Chandra
- Department of Pathology, Rajiv Gandhi Institute of Veterinary Education and Research, Puducherry 605009, India
| | - Sudha Rani Sadras
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
33
|
He H, Wang S, Tian J, Chen L, Zhang W, Zhao J, Tang H, Zhang X, Chen J. Protective effects of 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside in the MPTP-induced mouse model of Parkinson's disease: Involvement of reactive oxygen species-mediated JNK, P38 and mitochondrial pathways. Eur J Pharmacol 2015; 767:175-82. [PMID: 26477638 DOI: 10.1016/j.ejphar.2015.10.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 01/02/2023]
Abstract
Parkinson's disease (PD) is characterized by the selective death of dopaminergic neurons in the substantia nigra pars compacta. Oxidative stress-induced neuron loss is thought to play a crucial role in the pathogenesis of PD. Previous work from our group suggests that 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an active component extracted from a traditional Chinese herb, Polygonum multiflorum thunb, can attenuate 1-methyl-4-phenyl pyridium-induced apoptosis in the neuronal cell line PC12, by inhibiting reactive oxygen species generation and modulating c-Jun N-terminal kinases (JNK) activation. Here, we investigated the protective effects of TSG against 1-methyl-4-phenyl-1,2,3,6-tetrahydropypridine (MPTP)-induced loss of tyrosine hydroxylase positive cells in mice and the underlying mechanisms. The results showed that MPTP-induced loss of tyrosine hydroxylase positive cells and reactive oxygen species generation were prevented by TSG in a dose-dependent manner. The reactive oxygen species scavenger N-acetylcysteine could also mitigate reactive oxygen species generation. Moreover, JNK and P38 were activated by MPTP, but extracellular signal-regulated protein kinases phosphorylation did not change after MPTP treatment. TSG at different doses blocked the activation of JNK and P38. The protective effect of TSG was also associated with downregulation of the bax/bcl-2 ratio, reversed the release of cytochrome c and smac, and inhibited the activation of caspase-3, -6, and -9 induced by MPTP. In conclusion, our studies demonstrated that the protective effects of TSG in the MPTP-induced mouse model of PD are involved, at least in part, in controlling reactive oxygen species-mediated JNK, P38, and mitochondrial pathways.
Collapse
Affiliation(s)
- Hong He
- Research Center of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, 169 West Changle Road, Xi'an 710032, PR China
| | - Songhai Wang
- Research Center of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, 169 West Changle Road, Xi'an 710032, PR China
| | - Jiyu Tian
- Department of Internal Medicine, 518 Hospital of PLA, 11 South Park Road, Xi'an 710043, PR China
| | - Lei Chen
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, PR China
| | - Wei Zhang
- Research Center of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, 169 West Changle Road, Xi'an 710032, PR China
| | - Junjie Zhao
- Research Center of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, 169 West Changle Road, Xi'an 710032, PR China
| | - Haifeng Tang
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, 169 West Changle Road, Xi'an 710032, PR China.
| | - Xiaojun Zhang
- Department of Physics and Mathematics, Fourth Military Medical University, 169 West Changle Road, Xi'an 710032, PR China.
| | - Jianzong Chen
- Research Center of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, 169 West Changle Road, Xi'an 710032, PR China.
| |
Collapse
|
34
|
Ray A, Sehgal N, Karunakaran S, Rangarajan G, Ravindranath V. MPTP activates ASK1-p38 MAPK signaling pathway through TNF-dependent Trx1 oxidation in parkinsonism mouse model. Free Radic Biol Med 2015; 87:312-25. [PMID: 26164633 DOI: 10.1016/j.freeradbiomed.2015.06.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/16/2015] [Accepted: 06/28/2015] [Indexed: 10/23/2022]
Abstract
Activation of apoptosis signal-regulating kinase 1 (ASK1)-p38 MAPK death signaling cascade is implicated in the death of dopaminergic neurons in substantia nigra in Parkinson's disease (PD). We investigated upstream activators of ASK1 using an MPTP mouse model of parkinsonism and assessed the temporal cascade of death signaling in ventral midbrain (VMB) and striatum (ST). MPTP selectively activated ASK1 and downstream p38 MAPK in a time-dependent manner in VMB alone. This occurred through selective protein thiol oxidation of the redox-sensitive thiol disulfide oxidoreductase, thioredoxin (Trx1), resulting in release of its inhibitory association with ASK1, while glutathione-S-transferase µ 1 (GSTM1) remained in reduced form in association with ASK1. Levels of tumor necrosis factor (TNF), a known activator of ASK1, increased early after MPTP in VMB. Protein covariation network analysis (PCNA) using protein states as nodes revealed TNF to be an important node regulating the ASK1 signaling cascade. In confirmation, blocking MPTP-mediated TNF signaling through intrathecal administration of TNF-neutralizing antibody prevented Trx1 oxidation and downstream ASK1-p38 MAPK activation. Averting an early increase in TNF, which leads to protein thiol oxidation resulting in activation of ASK1-p38 signaling, may be critical for neuroprotection in PD. Importantly, network analysis can help in understanding the cause/effect relationship within protein networks in complex disease states.
Collapse
Affiliation(s)
- Ajit Ray
- National Brain Research Centre, Nainwal Mode, Manesar-122051, India; Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Neha Sehgal
- National Brain Research Centre, Nainwal Mode, Manesar-122051, India
| | | | - Govindan Rangarajan
- Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
35
|
Mitochondrial and Oxidative Stress Aspects in Hippocampus of Rats Submitted to Dietary n-3 Polyunsaturated Fatty Acid Deficiency After Exposure to Early Stress. Neurochem Res 2015; 40:1870-81. [DOI: 10.1007/s11064-015-1679-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 07/05/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022]
|
36
|
Leão AH, Sarmento‐Silva AJ, Santos JR, Ribeiro AM, Silva RH. Molecular, Neurochemical, and Behavioral Hallmarks of Reserpine as a Model for Parkinson's Disease: New Perspectives to a Long-Standing Model. Brain Pathol 2015; 25:377-90. [PMID: 25726735 PMCID: PMC8029054 DOI: 10.1111/bpa.12253] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/23/2015] [Indexed: 12/12/2022] Open
Abstract
The administration of reserpine to rodents was one of the first models used to investigate the pathophysiology and screening for potential treatments of Parkinson's disease (PD). The reserpine model was critical to the understanding of the role of monoamine system in the regulation of motor and affective disorders, as well as the efficacy of current PD treatments, such as L-DOPA and dopamine agonists. Nevertheless, with the introduction of toxin-induced and genetic models of PD, reserpine became underused. The main rationale to this drawback was the supposed absence of reserpine construct validity with PD. Here, we highlight classical and recent experimental findings that support the face, pharmacological, and construct validity of reserpine PD model and reason against the current rationale for its underuse. We also aim to shed a new perspective upon the model by discussing the main challenges and potentials for the reserpine model of PD.
Collapse
Affiliation(s)
- Anderson H.F.F. Leão
- Memory Studies LaboratoryDepartment of PhysiologyUniversidade Federal do Rio Grande do NorteNatalRNBrazil
| | - Aldair J. Sarmento‐Silva
- Memory Studies LaboratoryDepartment of PhysiologyUniversidade Federal do Rio Grande do NorteNatalRNBrazil
| | - José R. Santos
- Biology DepartmentUniversidade Federal de SergipeSão CristóvãoSEBrazil
| | - Alessandra M. Ribeiro
- Memory Studies LaboratoryDepartment of PhysiologyUniversidade Federal do Rio Grande do NorteNatalRNBrazil
- Department of BiosciencesUniversidade Federal de São PauloSantosSPBrazil
| | - Regina H. Silva
- Memory Studies LaboratoryDepartment of PhysiologyUniversidade Federal do Rio Grande do NorteNatalRNBrazil
- Behavioral Neuroscience LaboratoryDepartment of PharmacologyUniversidade Federal de São PauloSão PauloSPBrazil
| |
Collapse
|
37
|
Therapeutic potentials of human adipose-derived stem cells on the mouse model of Parkinson's disease. Neurobiol Aging 2015; 36:2885-92. [PMID: 26242706 DOI: 10.1016/j.neurobiolaging.2015.06.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 01/01/2023]
Abstract
The treatment of Parkinson's disease (PD) using stem cells has long been the focus of many researchers, but the ideal therapeutic strategy has not yet been developed. The consistency and high reliability of the experimental results confirmed by animal models are considered to be a critical factor in the stability of stem cell transplantation for PD. Therefore, the aim of this study was to investigate the preventive and therapeutic potential of human adipose-derived stem cells (hASC) for PD and was to identify the related factors to this therapeutic effect. The hASC were intravenously injected into the tail vein of a PD mouse model induced by 6-hydroxydopamine. Consequently, the behavioral performances were significantly improved at 3 weeks after the injection of hASC. Additionally, dopaminergic neurons were rescued, the number of structure-modified mitochondria was decreased, and mitochondrial complex I activity was restored in the brains of the hASC-injected PD mouse model. Overall, this study underscores that intravenously transplanted hASC may have therapeutic potential for PD by recovering mitochondrial functions.
Collapse
|
38
|
Nataraj J, Manivasagam T, Thenmozhi AJ, Essa MM. Lutein protects dopaminergic neurons against MPTP-induced apoptotic death and motor dysfunction by ameliorating mitochondrial disruption and oxidative stress. Nutr Neurosci 2015; 19:237-46. [DOI: 10.1179/1476830515y.0000000010] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
39
|
Coelho VR, Vieira CG, de Souza LP, Moysés F, Basso C, Papke DKM, Pires TR, Siqueira IR, Picada JN, Pereira P. Antiepileptogenic, antioxidant and genotoxic evaluation of rosmarinic acid and its metabolite caffeic acid in mice. Life Sci 2015; 122:65-71. [PMID: 25498895 DOI: 10.1016/j.lfs.2014.11.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/01/2014] [Accepted: 11/17/2014] [Indexed: 12/30/2022]
Abstract
AIMS Antioxidant compounds have been extensively investigated as a pharmacological alternatives to prevent epileptogenesis. Rosmarinic acid (RA) and caffeic acid (CA) are compounds with antioxidant properties, and RA has been shown to inhibit GABA transaminase activity (in vitro). Our aim was to evaluate the effect of RA and CA on seizures induced by pentylenotetrazole (PTZ) using the kindling model in mice. MAIN METHODS Male CF-1 mice were treated once every three days during 16days with RA (1, 2 or 4mg/kg; i.p.), or CA (1, 4 or 8mg/kg; i.p.), or positive controls diazepam (1mg/kg; i.p.) or vigabatrin (600mg/kg; p.o.), 30min before PTZ administration (50mg/kg; s.c.). After the last treatment, animals were sacrificed and the cortex was collected to evaluate free radicals (determined by 2',7'-dichlorofluorescein diacetate probe), superoxide dismutase (SOD) and genotoxic activity (Alkaline Comet Assay). KEY FINDINGS Rosmarinic acid 2mg/kg increased latency and decreased percentage of seizures, only on the 4th day of observation. The other tested doses of RA and CA did not show any effect. Rosmarinic acid 1mg/kg, CA 4mg/kg and CA 8mg/kg decreased free radicals, but no dose altered the levels of enzyme SOD. In the comet assay, RA 4mg/kg and CA 4mg/kg reduced the DNA damage index. SIGNIFICANCE Some doses of rosmarinic acid and CA tested showed neuroprotective action against oxidative and DNA damage produced in the kindling epilepsy model, although they did not produce antiepileptogenic effect in vivo.
Collapse
Affiliation(s)
- Vanessa Rodrigues Coelho
- Laboratório de Neurofarmacologia e Toxicologia Pré-Clínica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Caroline Gonçalves Vieira
- Laboratório de Neurofarmacologia e Toxicologia Pré-Clínica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luana Pereira de Souza
- Laboratório de Neurofarmacologia e Toxicologia Pré-Clínica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felipe Moysés
- Laboratório de Neuropsicofarmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Basso
- Laboratório de Neuropsicofarmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Thienne Rocha Pires
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil, Canoas, RS, Brazil
| | - Ionara Rodrigues Siqueira
- Laboratório de Neuropsicofarmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Patrícia Pereira
- Laboratório de Neurofarmacologia e Toxicologia Pré-Clínica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
40
|
Decreased expression of organic cation transporters, Oct1 and Oct2, in brain microvessels and its implication to MPTP-induced dopaminergic toxicity in aged mice. J Cereb Blood Flow Metab 2015; 35:37-47. [PMID: 25248837 PMCID: PMC4294392 DOI: 10.1038/jcbfm.2014.162] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 12/15/2022]
Abstract
This study was to investigate the influence of age on the expression of organic cation transporters (OCTs) that belong to the SLC22 family in brain microvessels (BMVs) and its implications for 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic toxicity in mice. Here, we showed that Oct1 and Oct2, but not Oct3, mRNAs were detected and enriched (compared with cerebral cortex) in BMVs of C57BL/6 (B6) mice using reverse transcription-quantitative PCR (RT-qPCR), and immunofluorescence analysis further revealed that Oct1 and Oct2 proteins were colocalized with endothelial markers. Both the mRNA and protein levels of Oct1 and Oct2 were reduced in aged mice. After an intraperitoneal administration of MPTP, brain extracellular levels of MPTP and 1-methyl-4-phenyl-pyridinium (MPP(+)) were much lower in aged mice and in Oct1/2(-/-) mice compared with younger mice and wild-type control mice, respectively. Knockout of Oct1/Oct2 protected Oct1/2(-/-) mice from MPTP-induced neurotoxicity, whereas the loss of tyrosine hydroxylase (TH)-positive neurons was slightly greater in aged than in younger mice. However, intrastriatal infusion of low-dose MPTP caused more severe dopaminergic toxicity in the substantia nigra of both aged mice and Oct1/2(-/-) mice. These findings show that age-dependent downregulation or knockout of Oct1/Oct2 in BMVs may reduce the transport of MPTP, which, in part, affects its dopaminergic toxicity.
Collapse
|
41
|
Modifying welding process parameters can reduce the neurotoxic potential of manganese-containing welding fumes. Toxicology 2014; 328:168-78. [PMID: 25549921 DOI: 10.1016/j.tox.2014.12.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/14/2014] [Indexed: 11/21/2022]
Abstract
Welding fumes (WF) are a complex mixture of toxic metals and gases, inhalation of which can lead to adverse health effects among welders. The presence of manganese (Mn) in welding electrodes is cause for concern about the potential development of Parkinson's disease (PD)-like neurological disorder. Consequently, from an occupational safety perspective, there is a critical need to prevent adverse exposures to WF. As the fume generation rate and physicochemical characteristics of welding aerosols are influenced by welding process parameters like voltage, current or shielding gas, we sought to determine if changing such parameters can alter the fume profile and consequently its neurotoxic potential. Specifically, we evaluated the influence of voltage on fume composition and neurotoxic outcome. Rats were exposed by whole-body inhalation (40 mg/m(3); 3h/day × 5 d/week × 2 weeks) to fumes generated by gas-metal arc welding using stainless steel electrodes (GMA-SS) at standard/regular voltage (25 V; RVSS) or high voltage (30 V; HVSS). Fumes generated under these conditions exhibited similar particulate morphology, appearing as chain-like aggregates; however, HVSS fumes comprised of a larger fraction of ultrafine particulates that are generally considered to be more toxic than their fine counterparts. Paradoxically, exposure to HVSS fumes did not elicit dopaminergic neurotoxicity, as monitored by the expression of dopaminergic and PD-related markers. We show that the lack of neurotoxicity is due to reduced solubility of Mn in HVSS fumes. Our findings show promise for process control procedures in developing prevention strategies for Mn-related neurotoxicity during welding; however, it warrants additional investigations to determine if such modifications can be suitably adapted at the workplace to avert or reduce adverse neurological risks.
Collapse
|
42
|
Protective Effects of Salidroside in the MPTP/MPP+-Induced Model of Parkinson's Disease through ROS–NO-Related Mitochondrion Pathway. Mol Neurobiol 2014; 51:718-28. [DOI: 10.1007/s12035-014-8755-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/15/2014] [Indexed: 11/26/2022]
|
43
|
Gautier C, Corti O, Brice A. Mitochondrial dysfunctions in Parkinson's disease. Rev Neurol (Paris) 2014; 170:339-43. [DOI: 10.1016/j.neurol.2013.06.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 12/21/2022]
|
44
|
Exposition to tannery wastewater did not alter behavioral and biochemical parameters in Wistar rats. Physiol Behav 2014; 129:160-6. [DOI: 10.1016/j.physbeh.2014.02.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 11/27/2022]
|
45
|
Ha JY, Kim JS, Kang YH, Bok E, Kim YS, Son JH. Tnfaip8 l1/Oxi-β binds to FBXW5, increasing autophagy through activation of TSC2 in a Parkinson's disease model. J Neurochem 2014; 129:527-38. [PMID: 24444419 DOI: 10.1111/jnc.12643] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/12/2013] [Accepted: 12/19/2013] [Indexed: 12/15/2022]
Abstract
Abnormal autophagy may contribute to neurodegeneration in Parkinson's disease (PD). However, it is largely unknown how autophagy is dysregulated by oxidative stress (OS), one of major pathogenic causes of PD. We recently discovered the potential autophagy regulator gene family including Tnfaip8/Oxi-α, which is a mammalian target of rapamycin (mTOR) activator down-regulated by OS in dopaminergic neurons (J. Neurochem., 112, 2010, 366). Here, we demonstrate that the OS-induced Tnfaip8 l1/Oxi-β could increase autophagy by a unique mechanism that increases the stability of tuberous sclerosis complex 2 (TSC2), a critical negative regulator of mTOR. Tnfaip8 l1/Oxi-β and Tnfaip8/Oxi-α are the novel regulators of mTOR acting in opposition in dopaminergic (DA) neurons. Specifically, 6-hydroxydopamine (6-OHDA) treatment up-regulated Tnfaip8 l1/Oxi-β in DA neurons, thus inducing autophagy, while knockdown of Tnfaip8 l1/Oxi-β prevented significantly activation of autophagic markers by 6-OHDA. FBXW5 was identified as a novel binding protein for Tnfaip8 l1/Oxi-β. FBXW5 is a TSC2 binding receptor within CUL4 E3 ligase complex, and it promotes proteasomal degradation of TSC2. Thus, Tnfaip8 l1/Oxi-β competes with TSC2 to bind FBXW5, increasing TSC2 stability by preventing its ubiquitination. Our data show that the OS-induced Tnfaip8 l1/Oxi-β stabilizes TSC2 protein, decreases mTOR phosphorylation, and enhances autophagy. Therefore, altered regulation of Tnfaip8 l1/Oxi-β may contribute significantly to dysregulated autophagy observed in dopaminergic neurons under pathogenic OS condition. Dysfunctional autophagy is frequently observed in post-mortem brains of patients and animal models of Parkinson's disease. In dopaminergic neurons of the 6-hydroxydopamine (6-OHDA) model, oxidative stress induces Tnfaip8 l1/Oxi-β, which results in increased autophagy by its exclusive binding with FBXW5 to stabilize TSC2. Thus, altered regulation of Tnfaip8 l1/Oxi-β may contribute to dysregulated autophagy in dopaminergic neurons under pathogenic oxidative stress, implicating both Oxi-β and FBXW5 as potential intervention targets for dysfunctional autophagy in dopaminergic neurons under oxidative stress.
Collapse
Affiliation(s)
- Ji-Young Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
46
|
Pinocembrin protects SH-SY5Y cells against MPP+-induced neurotoxicity through the mitochondrial apoptotic pathway. J Mol Neurosci 2014; 53:537-45. [PMID: 24395092 DOI: 10.1007/s12031-013-0219-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 12/18/2013] [Indexed: 12/21/2022]
Abstract
Pinocembrin (PB), the most abundant flavonoid in propolis, has been proven to have neuroprotective property against neurotoxicity in vivo and in vitro. Our recent study demonstrated the neuroprotective effect of PB against Aβ25-35-induced SH-SY5Y neurotoxicity. However, the mechanism as how PB can induce neuroprotection is not known. In the present study, we demonstrate here that PB abrogates the effects of the neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) which mimics Parkinson's disease (PD) with elevation of intracellular reactive oxygen species (ROS) level and apoptotic death. We found that pretreatment of SH-SY5Y cells with PB significantly reduced the MPP(+)-induced loss of cell viability, the generation of intracellular ROS, apoptotic rate, and the cleavage of caspase-3. PB strikingly inhibited MPP(+)-induced mitochondrial dysfunctions, including lowered membrane potential, decreased Bcl-2/Bax ratio, and the release of cytochrome c. Overall, these results suggest that PB is intimately involved in inhibiting MPP(+)-induced loss of mitochondrial function and induction of apoptosis that contributes toward neuronal survival. These data indicated that PB might provide a valuable therapeutic strategy for the treatment of PD.
Collapse
|
47
|
Arcego DM, Krolow R, Lampert C, Noschang C, Ferreira AG, Scherer E, Wyse AT, Dalmaz C. Isolation during the prepubertal period associated with chronic access to palatable diets: Effects on plasma lipid profile and liver oxidative stress. Physiol Behav 2014; 124:23-32. [DOI: 10.1016/j.physbeh.2013.10.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 10/04/2013] [Accepted: 10/22/2013] [Indexed: 01/12/2023]
|
48
|
Moon HE, Yoon SH, Hur YS, Park HW, Ha JY, Kim KH, Shim JH, Yoo SH, Son JH, Paek SL, Kim IK, Hwang JH, Kim DG, Kim HJ, Jeon BS, Park SS, Paek SH. Mitochondrial dysfunction of immortalized human adipose tissue-derived mesenchymal stromal cells from patients with Parkinson's disease. Exp Neurobiol 2013; 22:283-300. [PMID: 24465144 PMCID: PMC3897690 DOI: 10.5607/en.2013.22.4.283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 11/22/2013] [Accepted: 11/22/2013] [Indexed: 11/23/2022] Open
Abstract
Mitochondrial dysfunction in dopaminergic neurons of patients with idiopathic and familial Parkinson's disease (PD) is well known although the underlying mechanism is not clear. We established a homogeneous population of human adipose tissue-derived mesenchymal stromal cells (hAD-MSCs) from human adult patients with early-onset hereditary familial Parkin-defect PD as well as late-onset idiopathic PD by immortalizing cells with the hTERT gene to better understand the underlying mechanism of PD. The hAD-MSCs from patients with idiopathic PD were designated as "PD", from patients with Parkin-defect PD as "Parkin" and from patients with pituitary adenomas as "non-PD" in short. The pGRN145 plasmid containing hTERT was introduced to establish telomerase immortalized cells. The established hTERT-immortalized cell lines showed chromosomal aneuploidy sustained stably over two-years. The morphological study of mitochondria in the primary and immortalized hAD-MSCs showed that the mitochondria of the non-PD were normal; however, those of the PD and Parkin were gradually damaged. A striking decrease in mitochondrial complex I, II, and IV activities was observed in the hTERT-immortalized cells from the patients with idiopathic and Parkin-defect PD. Comparative Western blot analyses were performed to investigate the expressions of PD specific marker proteins in the hTERT-immortalized cell lines. This study suggests that the hTERT-immortalized hAD-MSC cell lines established from patients with idiopathic and familial Parkin-defect PD could be good cellular models to evaluate mitochondrial dysfunction to better understand the pathogenesis of PD and to develop early diagnostic markers and effective therapy targets for the treatment of PD.
Collapse
Affiliation(s)
- Hyo Eun Moon
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 110-744, Korea. ; Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-744, Korea. ; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Seung Hee Yoon
- Department of Brain & Cognitive Sciences, College of Pharmacy, Brain Disease Research Institute, Ewha Woman's University, Seoul 120-750, Korea
| | - Yong Suk Hur
- Department of Biochemistry, Inha University School of Medicine, Incheon 402-751, Korea
| | - Hyung Woo Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 110-744, Korea. ; Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-744, Korea. ; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Ji Young Ha
- Department of Brain & Cognitive Sciences, College of Pharmacy, Brain Disease Research Institute, Ewha Woman's University, Seoul 120-750, Korea
| | - Kyung-Hee Kim
- Department of Brain & Cognitive Sciences, College of Pharmacy, Brain Disease Research Institute, Ewha Woman's University, Seoul 120-750, Korea
| | - Jung Hee Shim
- Department of Brain & Cognitive Sciences, College of Pharmacy, Brain Disease Research Institute, Ewha Woman's University, Seoul 120-750, Korea
| | - Seung Hyun Yoo
- Department of Biochemistry, Inha University School of Medicine, Incheon 402-751, Korea
| | - Jin H Son
- Department of Brain & Cognitive Sciences, College of Pharmacy, Brain Disease Research Institute, Ewha Woman's University, Seoul 120-750, Korea
| | - Seung Leal Paek
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 110-744, Korea. ; Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-744, Korea. ; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-744, Korea. ; Department of Neurosurgery, Mayo Clinic, USA
| | - In Keyoung Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Jae Ha Hwang
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Dong Gyu Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Han-Joon Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Beom Seok Jeon
- Department of Neurology, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul 110-744, Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 110-744, Korea. ; Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-744, Korea. ; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-744, Korea
| |
Collapse
|
49
|
Stigger F, Lovatel G, Marques M, Bertoldi K, Moysés F, Elsner V, Siqueira IR, Achaval M, Marcuzzo S. Inflammatory response and oxidative stress in developing rat brain and its consequences on motor behavior following maternal administration of LPS and perinatal anoxia. Int J Dev Neurosci 2013; 31:820-7. [PMID: 24140242 DOI: 10.1016/j.ijdevneu.2013.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/20/2013] [Accepted: 10/05/2013] [Indexed: 11/15/2022] Open
Abstract
Cerebral palsy (CP) is a disorder of locomotion, posture and movement that can be caused by prenatal, perinatal or postnatal insults during brain development. An increased incidence of CP has been correlated to perinatal asphyxia and maternal infections during gestation. The effects of maternal exposure to low doses of bacterial endotoxin (lipopolysaccharide, LPS) associated or not with perinatal anoxia (PA) in oxidative and inflammatory parameters were examined in cerebral cortices of newborns pups. Concentrations of TNF-α, IL-1, IL-4, SOD, CAT and DCF were measured by the ELISA method. Other newborn rats were assessed for neonatal developmental milestones from day 1 to 21. Motor behavior was also tested at P29 using open-field and Rotarod. PA alone only increased IL-1 expression in cerebral cortex with no changes in oxidative measures. PA also induced a slight impact on development and motor performance. LPS alone was not able to delay motor development but resulted in changes in motor activity and coordination with increased levels of IL-1 and TNF-α expression associated with a high production of free radicals and elevated SOD activity. When LPS and PA were combined, changes on inflammatory and oxidative stress parameters were greater. In addition, greater motor development and coordination impairments were observed. Prenatal exposure of pups to LPS appeared to sensitize the developing brain to effects of a subsequent anoxia insult resulting in an increased expression of pro-inflammatory cytokines and increased free radical levels in the cerebral cortex. These outcomes suggest that oxidative and inflammatory parameters in the cerebral cortex are implicated in motor deficits following maternal infection and perinatal anoxia by acting in a synergistic manner during a critical period of development of the nervous system.
Collapse
Affiliation(s)
- Felipe Stigger
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Heimfarth L, Loureiro SO, Pierozan P, de Lima BO, Reis KP, Torres EB, Pessoa-Pureur R. Methylglyoxal-induced cytotoxicity in neonatal rat brain: a role for oxidative stress and MAP kinases. Metab Brain Dis 2013; 28:429-38. [PMID: 23378107 DOI: 10.1007/s11011-013-9379-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/08/2013] [Indexed: 01/22/2023]
Abstract
Carbonyl compounds such as methylglyoxal (MGO) seem to play an important role in complications resulting from diabetes mellitus, in aging and neurodegenerative disorders. In this study, we are showing, that MGO is able to suppress cell viability and induce apoptosis in the cerebral cortex and hippocampus of neonatal rats ex-vivo. These effects are partially related with ROS production, evaluated by DCFH-DA assay. Coincubation of MGO and reduced glutathione (GSH) or Trolox (vitamin E) totally prevented ROS production but only partially prevented the MGO-induced decreased cell viability in the two brain structures, as evaluated by the MTT assay. Otherwise, L-NAME, a nitric oxide (NO) inhibitor, partially prevented ROS production in the two structures but partially prevented cytotoxicity in the hippocampus. Pharmacological inhibition of Erk, has totally attenuated MGO-induced ROS production and cytotoxicity, suggesting that MEK/Erk pathway could be upstream of ROS generation and cell survival. Otherwise, p38MAPK and JNK failed to prevent ROS generation but induced decreased cell survival consistent with ROS-independent mechanisms. We can propose that Erk, p38MAPK and JNK are involved in the cytotoxicity induced by MGO through different signaling pathways. While Erk could be an upstream effector of ROS generation, p38MAPK and JNK seem to be associated with ROS-independent cytotoxicity in neonatal rat brain. The cytotoxic damage progressed to apoptotic cell death at MGO concentration higher than those described for adult brain, suggesting that the neonatal brain is resistant to MGO-induced cell death. The consequences of MGO-induced brain damage early in life, remains to be clarified. However, it is feasible that high MGO levels during cortical and hippocampal development could be, at least in part, responsible for the impairment of cognitive functions in adulthood.
Collapse
Affiliation(s)
- Luana Heimfarth
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 anexo, 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|