1
|
Petroff R, Hendrix A, Shum S, Grant KS, Lefebvre KA, Burbacher TM. Public health risks associated with chronic, low-level domoic acid exposure: A review of the evidence. Pharmacol Ther 2021; 227:107865. [PMID: 33930455 DOI: 10.1016/j.pharmthera.2021.107865] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022]
Abstract
Domoic acid (DA), the causative agent for the human syndrome Amnesic Shellfish Poisoning (ASP), is a potent, naturally occurring neurotoxin produced by common marine algae. DA accumulates in seafood, and humans and wildlife alike can subsequently be exposed when consuming DA-contaminated shellfish or finfish. While strong regulatory limits protect people from the acute effects associated with ASP, DA is an increasingly significant public health concern, particularly for coastal dwelling populations, and there is a growing body of evidence suggesting that there are significant health consequences following repeated exposures to levels of the toxin below current safety guidelines. However, gaps in scientific knowledge make it difficult to precisely determine the risks of contemporary low-level exposure scenarios. The present review characterizes the toxicokinetics and neurotoxicology of DA, discussing results from clinical and preclinical studies after both adult and developmental DA exposure. The review also highlights crucial areas for future DA research and makes the case that DA safety limits need to be reassessed to best protect public health from deleterious effects of this widespread marine toxin.
Collapse
Affiliation(s)
- Rebekah Petroff
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Alicia Hendrix
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Sara Shum
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Kimberly S Grant
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Kathi A Lefebvre
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. East, Seattle, WA, USA
| | - Thomas M Burbacher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA; Infant Primate Research Laboratory, Washington National Primate Research Center, Seattle,WA, USA.
| |
Collapse
|
2
|
Moyer CE, Hiolski EM, Marcinek DJ, Lefebvre KA, Smith DR, Zuo Y. Repeated low level domoic acid exposure increases CA1 VGluT1 levels, but not bouton density, VGluT2 or VGAT levels in the hippocampus of adult mice. HARMFUL ALGAE 2018; 79:74-86. [PMID: 30420019 PMCID: PMC6237202 DOI: 10.1016/j.hal.2018.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Domoic acid (DA) is a neurotoxin produced during harmful algal blooms that accumulates in marine organisms that serve as food resources for humans. While acute DA neurotoxicity can cause seizures and hippocampal lesions, less is known regarding how chronic, subacute DA exposure in adulthood impacts the hippocampus. With more frequent occurrences of harmful algal blooms, it is important to understand the potential impact of repeated, low-level DA exposure on human health. To model repeated, low-dose DA exposure, adult mice received a single low-dose (0.75 ± 0.05 μg/g) of DA or vehicle weekly for 22 consecutive weeks. Quantitative immunohistochemistry was performed to assess the effects of repeated, low-level DA exposure on hippocampal cells and synapses. Vesicular glutamate transporter 1 (VGluT1) immunoreactivity within excitatory boutons in CA1 of DA-exposed mice was increased. Levels of other vesicular transporter proteins (i.e., VGluT2 and the vesicular GABA transporter (VGAT)) within boutons, and corresponding bouton densities, were not significantly altered in CA1, CA3, or dentate gyrus. There were no significant changes in neuron density or glial fibrillary acidic protein (GFAP) immunoreactivity following chronic, low-dose exposure. This suggests that repeated low doses of DA, unlike high doses of DA, do not cause neuronal loss or astrocyte activation in hippocampus in adult mice. Instead, these findings demonstrate that repeated exposure to low levels of DA leads to subtle changes in VGluT1 expression within CA1 excitatory boutons, which may alter glutamatergic transmission in CA1 and disrupt behaviors dependent on spatial memory.
Collapse
Affiliation(s)
- Caitlin E Moyer
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, United States
| | - Emma M Hiolski
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, United States
| | - David J Marcinek
- Departments of Radiology, Pathology, and Bioengineering, University of Washington, South Lake Union Campus, 850 Republican St., Brotman 142, Box 358050, Seattle, WA, 98109, United States
| | - Kathi A Lefebvre
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. East, Seattle, WA 98112, United States
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, United States
| | - Yi Zuo
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, United States.
| |
Collapse
|
3
|
Differential effects of domoic acid and E. coli lipopolysaccharide on tumor necrosis factor-alpha, transforming growth factor-beta1 and matrix metalloproteinase-9 release by rat neonatal microglia: evaluation of the direct activation hypothesis. Mar Drugs 2012; 5:113-35. [PMID: 18458762 PMCID: PMC2367328 DOI: 10.3390/md503113] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The excitatory amino acid domoic acid is the causative agent of amnesic shellfish poisoning in humans. The in vitro effects of domoic acid on rat neonatal brain microglia were compared with E. coli lipopolysaccharide (LPS), a known activator of microglia mediator release over a 4 to 24 hour observation period. LPS [3 ng/mL] but not domoic acid [1mM] stimulated a statistically significant increase in TNF-α mRNA and protein generation. Furthermore, both LPS and domoic acid did not significantly affect TGF-β1 gene expression and protein release. Finally, an in vitro exposure of microglia to LPS resulted in statistically significant MMP-9 expression and release, thus extending and confirming our previous observations. However, in contrast, no statistically significant increase in MMP-9 expression and release was observed after domoic acid treatment. Taken together our observations do not support the hypothesis that a short term (4 to 24 hours) in vitro exposure to domoic acid, at a concentration toxic to neuronal cells, activates rat neonatal microglia and the concomitant release of the pro-inflammatory mediators tumor necrosis factor-α (TNF-α) and matrix metalloproteinases-9 (MMP-9), as well as the anti-inflammatory cytokine transforming growth factor β1 (TGF-β1).
Collapse
|
4
|
Pérez-Gómez A, Tasker RA. Enhanced neurogenesis in organotypic cultures of rat hippocampus after transient subfield-selective excitotoxic insult induced by domoic acid. Neuroscience 2012; 208:97-108. [PMID: 22366222 DOI: 10.1016/j.neuroscience.2012.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/27/2012] [Accepted: 02/01/2012] [Indexed: 01/19/2023]
Abstract
New neurons are continuously generated in the hippocampus and may play an important role in many physiological and pathological conditions. Here we present evidence of cell proliferation and neurogenesis after a selective and transient excitotoxic injury to the hippocampal cornu ammonis 1 (CA1) area induced by low concentrations of domoic acid (DOM) in rat organotypic hippocampal slice cultures (OHSC). DOM is an excitatory amino acid analog to kainic acid that acts through glutamate receptors to elicit a rapid and potent excitotoxic response. Exposure of slice cultures to varying concentrations of DOM for 24 h induced dose-dependent neuronal toxicity that was independent of activation of classic apoptotic markers. Treatment with 2 μM DOM for 24 h caused a selective yet transient neurotoxic injury in the CA1 subfield of the hippocampus that appeared recovered after 7 days of incubation in a DOM-free medium and showed significant microgliosis but no sign of astrogliosis. The DOM insult (2 μM, 24 h) resulted in a significant upregulation of cell proliferation, as assessed by 5-bromo-2-deoxyuridine (BrdU) incorporation, and a concurrent increase of the neuronal precursor cell marker doublecortin (DCX) within the subgranular zone of the dentate gyrus and area CA1. Neurogenesis occurred primarily during the first week after termination of the DOM exposure. Our study shows that exposure of OHSC to concentrations of DOM below those required to induce permanent neurotoxicity can induce proliferation and differentiation of neural progenitor cells that may contribute to recovery from mild injury and to develop abnormal circuits relevant to disease.
Collapse
Affiliation(s)
- A Pérez-Gómez
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PEI, Canada
| | | |
Collapse
|
5
|
Drago A, Crisafulli C, Sidoti A, Serretti A. The molecular interaction between the glutamatergic, noradrenergic, dopaminergic and serotoninergic systems informs a detailed genetic perspective on depressive phenotypes. Prog Neurobiol 2011; 94:418-60. [DOI: 10.1016/j.pneurobio.2011.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 05/28/2011] [Accepted: 05/31/2011] [Indexed: 12/12/2022]
|
6
|
|
7
|
|
8
|
Domoic acid toxicologic pathology: a review. Mar Drugs 2008; 6:180-219. [PMID: 18728725 PMCID: PMC2525487 DOI: 10.3390/md20080010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 05/16/2008] [Accepted: 05/16/2008] [Indexed: 12/29/2022] Open
Abstract
Domoic acid was identified as the toxin responsible for an outbreak of human poisoning that occurred in Canada in 1987 following consumption of contaminated blue mussels [Mytilus edulis]. The poisoning was characterized by a constellation of clinical symptoms and signs. Among the most prominent features described was memory impairment which led to the name Amnesic Shellfish Poisoning [ASP]. Domoic acid is produced by certain marine organisms, such as the red alga Chondria armata and planktonic diatom of the genus Pseudo-nitzschia. Since 1987, monitoring programs have been successful in preventing other human incidents of ASP. However, there are documented cases of domoic acid intoxication in wild animals and outbreaks of coastal water contamination in many regions world-wide. Hence domoic acid continues to pose a global risk to the health and safety of humans and wildlife. Several mechanisms have been implicated as mediators for the effects of domoic acid. Of particular importance is the role played by glutamate receptors as mediators of excitatory neurotransmission and the demonstration of a wide distribution of these receptors outside the central nervous system, prompting the attention to other tissues as potential target sites. The aim of this document is to provide a comprehensive review of ASP, DOM induced pathology including ultrastructural changes associated to subchronic oral exposure, and discussion of key proposed mechanisms of cell/tissue injury involved in DOM induced brain pathology and considerations relevant to food safety and human health.
Collapse
|
9
|
Benkovic SA, O'Callaghan JP, Miller DB. Sensitive indicators of injury reveal hippocampal damage in C57BL/6J mice treated with kainic acid in the absence of tonic-clonic seizures. Brain Res 2005; 1024:59-76. [PMID: 15451367 DOI: 10.1016/j.brainres.2004.07.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2004] [Indexed: 10/26/2022]
Abstract
Sensitive indices of neural injury were used to evaluate the time course of kainic acid (KA)-induced hippocampal damage in adult C57BL/6J mice (4 months), a strain previously reported to be resistant to kainate-induced neurotoxicity. Mice were injected systemically with saline or kainate, scored for seizure severity (Racine scale), and allowed to survive 12 h, one, three, or seven days following which they were evaluated for neuropathological changes using histological or biochemical endpoints. Most kainate-treated mice exhibited limited seizure activity (stage 1); however, cupric-silver and Fluoro-Jade B stains revealed significant damage by 12 h post-treatment. Immunohistochemistry and immunoassay of glial fibrillary acidic protein and lectin staining revealed a strong treatment-induced reactive gliosis and microglial activation. Immunostaining for immunoglobulin G revealed a kainate-induced breach in the blood-brain barrier. Nissl and hematoxylin stains provided little information regarding neuronal damage, but revealed the identity of non-resident cells which infiltrated the pyramidal layer. Our data suggest sensitive indicators of neural injury evaluated over a time course, both proximal and distal to treatment, are necessary to reveal the full extent of neuropathological changes which may be underestimated by traditional histological stains. The battery of neuropathological indices reported here reveals the C57BL/6J mouse is sensitive to excitotoxic neural damage caused by kainic acid, in the absence of tonic-clonic seizures.
Collapse
Affiliation(s)
- Stanley Anthony Benkovic
- Toxicology and Molecular Biology Branch, Centers for Disease Control and Prevention-National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop 3014, Morgantown, WV 26505, USA
| | | | | |
Collapse
|
10
|
Hesp BR, Wrightson T, Mullaney I, Kerr DS. Kainate receptor agonists and antagonists mediate tolerance to kainic acid and reduce high-affinity GTPase activity in young, but not aged, rat hippocampus. J Neurochem 2004; 90:70-9. [PMID: 15198668 DOI: 10.1111/j.1471-4159.2004.02469.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Domoic acid acts at both kainic acid (KA) and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-sensitive glutamate receptors and induces tolerance against subsequent domoic acid insult in young but not aged rat hippocampus. To determine the receptor specificity of this effect, tolerance induction was examined in hippocampal slices from young and aged rats. Slices were preconditioned by exposure to low-dose KA to activate kainate receptors, or the AMPA-receptor selective agonist (S)-5-fluorowillardiine (FW), and following washout, tolerance induction was assessed by administration of high concentrations of KA or FW (respectively). FW preconditioning failed to induce tolerance to subsequent FW challenges, while KA-preconditioned slices were significantly resistant to the effects of high-dose KA. KA preconditioning failed to induce tolerance in aged CA1. Given the lasting nature of the tolerance effect, we examined G-protein-coupled receptor function. A number of ionotropic KA receptor agonists and antagonists significantly reduced constitutive GTPase activity in hippocampal membranes from young but not aged rats. Furthermore, in young CA1, low concentrations of the AMPA/KA blocker GYKI-52466 also induced tolerance to high-dose KA. Our findings suggest that tolerance is triggered by a selective reduction in constitutive KA-sensitive G-protein activity, and that this potential neuroprotective mechanism is lost with age.
Collapse
Affiliation(s)
- Blair R Hesp
- Department of Pharmacology and Toxicology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | | | | | | |
Collapse
|
11
|
Mayer AMS, Hall M, Fay MJ, Lamar P, Pearson C, Prozialeck WC, Lehmann VKB, Jacobson PB, Romanic AM, Uz T, Manev H. Effect of a short-term in vitro exposure to the marine toxin domoic acid on viability, tumor necrosis factor-alpha, matrix metalloproteinase-9 and superoxide anion release by rat neonatal microglia. BMC Pharmacol 2004; 1:7. [PMID: 11686853 PMCID: PMC59507 DOI: 10.1186/1471-2210-1-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2001] [Accepted: 10/02/2001] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The excitatory amino acid domoic acid, a glutamate and kainic acid analog, is the causative agent of amnesic shellfish poisoning in humans. No studies to our knowledge have investigated the potential contribution to short-term neurotoxicity of the brain microglia, a cell type that constitutes circa 10% of the total glial population in the brain. We tested the hypothesis that a short-term in vitro exposure to domoic acid, might lead to the activation of rat neonatal microglia and the concomitant release of the putative neurotoxic mediators tumor necrosis factor-alpha (TNF-alpha), matrix metalloproteinases-2 and-9 (MMP-2 and -9) and superoxide anion (O2-). RESULTS In vitro, domoic acid [10 microM-1 mM] was significantly neurotoxic to primary cerebellar granule neurons. Although neonatal rat microglia expressed ionotropic glutamate GluR4 receptors, exposure during 6 hours to domoic acid [10 microM-1 mM] had no significant effect on viability. By four hours, LPS (10 ng/mL) stimulated an increase in TNF-alpha mRNA and a 2,233 % increase in TNF-alpha protein In contrast, domoic acid (1 mM) induced a slight rise in TNF-alpha expression and a 53 % increase (p < 0.01) of immunoreactive TNF-alpha protein. Furthermore, though less potent than LPS, a 4-hour treatment with domoic acid (1 mM) yielded a 757% (p < 0.01) increase in MMP-9 release, but had no effect on MMP-2. Finally, while PMA (phorbol 12-myristate 13-acetate) stimulated O2- generation was elevated in 6 hour LPS-primed microglia, a similar pretreatment with domoic acid (1 mM) did not prime O2- release. CONCLUSIONS To our knowledge this is the first experimental evidence that domoic acid, at in vitro concentrations that are toxic to neuronal cells, can trigger a release of statistically significant amounts of TNF-alpha and MMP-9 by brain microglia. These observations are of considerable pathophysiological significance because domoic acid activates rat microglia several days after in vivo administration.
Collapse
Affiliation(s)
- Alejandro MS Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, Illinois 60515, USA
| | - Mary Hall
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, Illinois 60515, USA
| | - Michael J Fay
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, Illinois 60515, USA
| | - Peter Lamar
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, Illinois 60515, USA
| | - Celeste Pearson
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, Illinois 60515, USA
| | - Walter C Prozialeck
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, Illinois 60515, USA
| | - Virginia KB Lehmann
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | - Anne M Romanic
- GlaxoSmithKline Pharmaceuticals, Department of Cardiovascular Pharmacology, King of Prussia, Pennsylvania 19406, USA
| | - Tolga Uz
- The Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Hari Manev
- The Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| |
Collapse
|
12
|
Mayer AM. The marine toxin domoic acid may affect the developing brain by activation of neonatal brain microglia and subsequent neurotoxic mediator generation. Med Hypotheses 2000; 54:837-41. [PMID: 10859697 DOI: 10.1054/mehy.1999.0962] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Amnesic shellfish poisoning, one of the shellfish poisoning syndromes, is caused by the marine diatom toxin domoic acid (DOM). While in adult rats, mice, monkeys and humans DOM poorly penetrates the blood-brain barrier, DOM has been shown to be very toxic to fetal in newborn mice, because the blood-brain barrier is incomplete during neurodevelopment. This fact may explain why neonates show a higher sensitivity to neurotoxins like DOM as compared to adult animals. Mechanistic studies on DOM's neurotoxicity have mainly concentrated on the investigation of DOM's effect on neuronal tissue. Recent studies have shown that glia is also involved in DOM's neurotoxicity to the adult as well as the developing nervous system. The scientific literature strongly supports the hypothesis that the microglia may play a critical role in mediating DOM's neurotoxic effects. However, the effect of DOM on microglia has not been systematically investigated. The literature supporting our hypothesis is presented and discussed.
Collapse
Affiliation(s)
- A M Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois, USA.
| |
Collapse
|
13
|
Kerr DS, Briggs DM, Saba HI. A neurophysiological method of rapid detection and analysis of marine algal toxins. Toxicon 1999; 37:1803-25. [PMID: 10519657 DOI: 10.1016/s0041-0101(99)00124-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have examined the effectiveness of the in vitro rat hippocampal slice preparation as a means of rapidly and specifically detecting the marine algal toxins saxitoxin, brevetoxin, and domoic acid and have identified toxin-specific electrophysiological signatures for each. Brevetoxin (PbTX3, 50-200 nM) produced a significant reduction in orthodromic population spike amplitude which was quick to reverse during a 50 min wash-out, while antidromic population spikes and field EPSPs exhibited only slight reductions, and fibre spiof orthodrokes showed no change at all. Domoic acid (100 nM) produced a robust, reversible increase in amplitude mic spikes, and the appearance of multiple spikes (i.e., epileptiform activity) within minutes of toxin wash-in. Other notable features of the domoic acid signature included a significant decrease in amplitude of the field EPSPs, and a complete absence of effect on either antidromic or fibre spikes. Fifty nanomolar saxitoxin (PSP) abolished all responses in all slices. Only antidromic spikes showed any recovery during wash-out. Field EPSP and fiber spike analysis further demonstrated that the preparation is capable of reliably detecting saxitoxin in a linearly responsive fashion at toxin concentrations of 25-200 nM, and tests of naturally contaminated shellfish confirmed the utility of this assay as a screening method for PSP. Our findings suggest that the in vitro hippocampal slice preparation has potential in the detection and analysis of three marine algal toxins important to the shellfish industry.
Collapse
Affiliation(s)
- D S Kerr
- Department of Pharmacology, University of Otago School of Medicine, Dunedin, New Zealand.
| | | | | |
Collapse
|
14
|
Hayakawa T, Chang MC, Bell JM, Seeman R, Rapoport SI, Appel NM. Fatty acid incorporation depicts brain activity in a rat model of Parkinson's disease. Brain Res 1998; 807:177-81. [PMID: 9757030 DOI: 10.1016/s0006-8993(98)00751-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Following pulse labeling with [3H]arachidonic acid ([3H]AA), its incorporation pattern in brain reflects regional changes in neurotransmitter signal transduction using phospholipase A2, that is, functional activity. In a rat model of Parkinson's disease, unilateral 6-hydroxydopamine lesion in the substantia nigra, [3H]AA acid incorporation from blood was increased in cerebral cortex, caudate putamen, globus pallidus, entopeduncular nucleus, subthalamic nucleus and substantia nigra pars reticulata ipsilateral to the lesion. This increased [3H]AA incorporation likely reflects disinhibition of basal ganglia and cortical circuits secondary to absent inhibitory nigrostriatal dopaminergic input.
Collapse
Affiliation(s)
- T Hayakawa
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-1582, USA
| | | | | | | | | | | |
Collapse
|