1
|
Byun YS, Mok JW, Chung SH, Kim HS, Joo CK. Ocular surface inflammation induces de novo expression of substance P in the trigeminal primary afferents with large cell bodies. Sci Rep 2020; 10:15210. [PMID: 32939029 PMCID: PMC7494893 DOI: 10.1038/s41598-020-72295-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/26/2020] [Indexed: 01/05/2023] Open
Abstract
We evaluated the changes in substance P (SP)-expressing trigeminal neurons (TNs) innervating the cornea following ocular surface inflammation. Ocular surface inflammation was induced in Sprague-Dawley rats using 0.1% benzalkonium chloride (BAK). The corneal staining score, corneal epithelial apoptosis, conjunctival goblet cells, and density of corneal subbasal nerve plexus (SNP) were assessed, and the mRNA levels of SP, interleukin (IL)-1β, IL-6, and tumour necrosis factor-α were measured in corneas and ipsilateral trigeminal ganglia (TG). SP-immunoreactivity (IR) was measured in corneal intraepithelial nerves and TNs. The cell size of corneal TNs in the TG was calculated. All parameters were observed immediately (BAK group), at 1 week (1 w group), and 2 months (2 m group) after 2 weeks of BAK application. BAK caused an increase in the corneal staining score and the number of apoptotic cells, loss of conjunctival goblet cells, reduced density of corneal SNP, and upregulated expression of SP and inflammatory cytokines in both the cornea and TG in the BAK group but those changes were not observed in the 2 m group. On the other hand, SP-IR% and mean cell size of corneal TNs increased significantly in the BAK, 1 w, and 2 m groups, compared to the control. Our data suggest that following ocular surface inflammation, large-sized corneal TNs which normally do not express SP, expressed it and this phenotype switching lasted even after the inflammation disappeared. Long-lasting phenotypic switch, as well as changes in the expression level of certain molecules should be addressed in future studies on the mechanism of corneal neuropathic pain.
Collapse
Affiliation(s)
- Yong-Soo Byun
- Department of Ophthalmology and Visual Science, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea.
- Catholic Institute of Visual Science, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Jee-Won Mok
- CK St. Mary's Eye Center, Seoul, Republic of Korea
| | - So-Hyang Chung
- Department of Ophthalmology and Visual Science, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea
- Catholic Institute of Visual Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun-Seung Kim
- Department of Ophthalmology and Visual Science, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea
- Catholic Institute of Visual Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - Choun-Ki Joo
- CK St. Mary's Eye Center, Seoul, Republic of Korea
| |
Collapse
|
2
|
Abstract
Substance P (SP) is a highly conserved member of the tachykinin peptide family that is widely expressed throughout the animal kingdom. The numerous members of the tachykinin peptide family are involved in a multitude of neuronal signaling pathways, mediating sensations and emotional responses (Steinhoff et al. in Physiol Rev 94:265–301, 2014). In contrast to receptors for classical transmitters, such as glutamate (Parsons et al. in Handb Exp Pharmacol 249–303, 2005), only a minority of neurons in certain brain areas express neurokinin receptors (NKRs) (Mantyh in J Clin Psychiatry 63:6–10, 2002). SP is also expressed by a variety of non-neuronal cell types such as microglia, as well as immune cells (Mashaghi et al. in Cell Mol Life Sci 73:4249–4264, 2016). SP is an 11-amino acid neuropeptide that preferentially activates the neurokinin-1 receptor (NK1R). It transmits nociceptive signals via primary afferent fibers to spinal and brainstem second-order neurons (Cao et al. in Nature 392:390–394, 1998). Compounds that inhibit SP’s action are being investigated as potential drugs to relieve pain. More recently, SP and NKR have gained attention for their role in complex psychiatric processes. It is a key goal in the field of pain research to understand mechanisms involved in the transition between acute pain and chronic pain. The influence of emotional and cognitive inputs and feedbacks from different brain areas makes pain not only a perception but an experience (Zieglgänsberger et al. in CNS Spectr 10:298–308, 2005; Trenkwaldner et al. Sleep Med 31:78–85, 2017). This review focuses on functional neuronal plasticity in spinal dorsal horn neurons as a major relay for nociceptive information.
Collapse
|
3
|
Budai D, Khasabov SG, Mantyh PW, Simone DA. NK-1 Receptors Modulate the Excitability of on Cells in the Rostral Ventromedial Medulla. J Neurophysiol 2007; 97:1388-95. [PMID: 17182914 DOI: 10.1152/jn.00450.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The role of neurokinin-1 (NK-1) receptors in the rostral ventromedial medulla (RVM) was studied using extracellular single-unit recording combined with microiontophoresis. In rats, on- and off-type neurons were identified using noxious heat or mechanical stimuli applied to the tail. Responses evoked by iontophoretic application of N-methyl-d-aspartate (NMDA) were determined before and after intraplantar injection of capsaicin or iontophoretic application of substance P. In off cells, capsaicin produced an extended pause in ongoing activity but did not alter the subsequent spontaneous discharge rate or NMDA-evoked responses. In contrast, spontaneous discharge rates of on cells increased after capsaicin, and their responses to NMDA increased >100% above control values. The increased responses to NMDA after capsaicin were attenuated by iontophoretic application of the selective NK-1 receptor antagonist L-733,060. Similarly to capsaicin, iontophoretic application of the selective NK-1 receptor agonist, [Sar9,Met(O2)11]-substance P (SM-SP), increased the spontaneous discharge rate and NMDA-evoked responses of on cells by >100% of control values. These effects were antagonized by L-733,060. Immunohistochemical studies showed that a subset of neurons in the RVM labeled NK-1 receptors and that nearly all of these neurons were immunoreactive for the NMDAR1 subunit of the NMDA receptor. These results demonstrate that activation of NK-1 receptors in the RVM enhances responses of on cells evoked by NMDA. It is suggested that activation of NK-1 receptors in the RVM and the ensuing sensitization of on cells may contribute to the development of central sensitization and hyperalgesia after tissue injury and inflammation.
Collapse
Affiliation(s)
- Dénes Budai
- Department of Diagnostic and Biological Sciences, University of Minnesota, 515 Delaware Street SE, 17-252 Moos Tower, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
4
|
Jeong YG, Chung SH, Kim CT, Kim KH, Han SY, Hyun BH, Lee NS, Sawada K, Won MH, Fukui Y. Corticotropin-Releasing Factor Immunoreactivity Increases in the Cerebellar Climbing Fibers in the Novel Ataxic Mutant Mouse, Pogo. Anat Histol Embryol 2006; 35:111-5. [PMID: 16542176 DOI: 10.1111/j.1439-0264.2005.00646.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ataxic pogo mouse (pogo/pogo) is a novel neurological mutant, which was derived as an inbred strain (KJR/MsKist) from a Korean wild mouse. The pathological manifestations include a difficulty in maintaining a normal posture, the failure of inter-limb coordination and an inability to walk straight. In this study, we examined the distribution of corticotropin-releasing factor (CRF) immunoreactive cerebellar climbing fibres and their projections to tyrosine hydroxylase (TH) immunoreactive Purkinje cells in the cerebellum of the pogo mutant mouse using immunohistochemistry. In the pogo/pogo mouse, a subset of climbing fibres was stained more intensely for CRF than in the control. Moreover, ataxic pogo mouse, neurons of the inferior olivary nucleus projecting climbing fibres were also more intensely stained for CRF than in the control. In the pogo/pogo mouse, TH immunoreactivity was located in the Purkinje cells, whereas no TH expression was found in the control. Double immunostaining for CRF and TH in the pogo/pogo cerebellum revealed that the distribution of TH-immunoreactive Purkinje cells corresponded to terminal fields of CRF-immunoreactive climbing fibres but not to the CRF-immunoreactive mossy fibres. Therefore, we suggest that an increase of CRF level may alter the function of targeted Purkinje cells and that it is related to the ataxic phenotype in the pogo mutant mouse.
Collapse
Affiliation(s)
- Y G Jeong
- Department of Anatomy, College of Medicine, Konyang University, Nonsan, Chungnam 320-711, South Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Hilton KJ, Bateson AN, King AE. A model of organotypic rat spinal slice culture and biolistic transfection to elucidate factors that drive the preprotachykinin-A promoter. ACTA ACUST UNITED AC 2004; 46:191-203. [PMID: 15464207 DOI: 10.1016/j.brainresrev.2004.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2004] [Indexed: 11/25/2022]
Abstract
The tachykinin substance P (SP) is a neuropeptide that is expressed in some nociceptive primary sensory afferents and in discrete populations of spinal cord neurons. Expression of spinal SP and the preprotachykinin-A (PPT-A) gene that encodes SP exhibits plasticity in response to conditions such as peripheral inflammation but the mechanisms that regulate expression are poorly understood. We have developed a spinal cord organotypic culture system that is suitable for the analysis of PPT-A gene promoter activity following biolistic transfection of recombinant DNA constructs. Spinal cord organotypic slices showed good viability over a 7-day culture period. Immunostaining for phenotypic markers such as NeuN and beta-III tubulin demonstrated preservation of neurons and their structure, although there was evidence of axotomy-induced down-regulation of NeuN in certain neuronal populations. Neurokinin-1 receptor (NK-1R) immunostaining in laminae I and III was similar to that seen in acute slices. Biolistic transfection was used to introduce DNA constructs into neurons of these organotypic cultures. Following transfection with a construct in which expression of enhanced green fluorescent protein (EGFP) is controlled by the PPT-A promoter, we showed that induction of neuronal activity by administration of a forskolin analogue/high K(+) (10 microM/10 mM) for 24 h resulted in a fourfold increase in the number of EGFP-positive cells. Similarly, a twofold increase was obtained after treatment with the NK-1R-specific agonist [Sar(9),Met (O(2))(11)]-substance P (10 microM). These data demonstrate the usefulness of this model to study physiological and pharmacological factors relevant to nociceptive processing that can modulate PPT-A promoter activity.
Collapse
Affiliation(s)
- Kathryn J Hilton
- School of Biomedical Sciences, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
| | | | | |
Collapse
|
6
|
Worsley MA, Todd AJ, King AE. Serotoninergic-mediated inhibition of substance P sensitive deep dorsal horn neurons: a combined electrophysiological and morphological study in vitro. Exp Brain Res 2004; 160:360-7. [PMID: 15448960 DOI: 10.1007/s00221-004-2018-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 06/03/2004] [Indexed: 12/19/2022]
Abstract
Dorsal horn neurons that express the neurokinin 1 receptor (NK-1R) play an important role in nociceptive processing. The targetting of NK-1R neurons by serotoninergic (5-hydroxytryptamine, 5-HT) axons would provide a straightforward means to exert an inhibitory analgesic effect at spinal level. This study used single cell electrophysiology to analyse and correlate the responses of rat deep DH neurons in vitro to both 5-HT and the NK-1R agonist [Sar9,Met(O2)11]-substance P (SP). Subsequently a combination of immunocytochemistry and confocal imaging was applied to biocytin-filled laminae III-VI neurons to reveal putative 5-HT innervation in this neuronal sample. A population of neurons was identified in which 5-HT (50 microM) significantly attenuated the dorsal root-evoked excitatory postsynaptic potential and [Sar9,Met(O2)11]-SP (2 microM) induced a direct tetrodotoxin-resistant depolarisation. Immunolabelling revealed that all of these neurons were inhibited by 5-HT, including those that were excited by [Sar9,Met(O2)11]-SP, were overlaid by a plexus of 5-HT immunoreactive fibres and in some instances, closely apposed putative contacts with somata and proximal dendrites identified although their incidence was low. Inhibition by 5-HT of deep DH neurons directly responsive to SP may account at least in part for monoamine-induced modulation of nociceptive processing in the spinal cord.
Collapse
Affiliation(s)
- Matthew A Worsley
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9NQ, UK
| | | | | |
Collapse
|
7
|
Martin WJ, Cao Y, Basbaum AI. Characterization of wide dynamic range neurons in the deep dorsal horn of the spinal cord in preprotachykinin-a null mice in vivo. J Neurophysiol 2004; 91:1945-54. [PMID: 14711972 DOI: 10.1152/jn.00945.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously reported that mice with a deletion of the preprotachykinin-A (pptA) gene, from which substance P (SP) and neurokinin A (NKA) are derived, exhibit reduced behavioral responses to intense stimuli, but that behavioral hypersensitivity after injury is unaltered. To understand the contribution of SP and NKA to nociceptive transmission in the spinal cord, we recorded single-unit activity from wide dynamic range neurons in the lamina V region of the lumbar dorsal horn of urethane-anesthetized wild-type and ppt-A null mutant (-/-) mice. We found that intensity coding to thermal stimuli was largely preserved in the ppt-A -/- mice. Neither the peak stimulus-evoked firing nor the neuronal activity during the initial phase (0-4 s) of the 41-49 degrees C thermal stimuli differed between the genotypes. However, electrophysiological responses during the late phase of the stimulus (5-10 s) and poststimulus (11-25 s) were significantly reduced in ppt-A -/- mice. To activate C-fibers and to sensitize the dorsal horn neurons we applied mustard oil (MO) topically to the hindpaw. We found that neither total MO-evoked activity nor sensitization to subsequent stimuli differed between the wild-type and ppt-A -/- mice. However, the time course of the sensitization and the magnitude of the poststimulus discharges were reduced in ppt-A -/- mice. We conclude that SP and/or NKA are not required for intensity coding or sensitization of nociresponsive neurons in the spinal cord, but that these peptides prolong thermal stimulus-evoked responses. Thus whereas behavioral hypersensitivity after injury is preserved in ppt-A -/- mice, our results suggest that the magnitude and duration of these behavioral responses would be reduced in the absence of SP and/or NKA.
Collapse
Affiliation(s)
- William J Martin
- Department of Anatomy and the W.M. Keck Foundation Center for Integrative Neuroscience, University of California, San Francisco, California 94143, USA
| | | | | |
Collapse
|
8
|
Kombian SB, Ananthalakshmi KVV, Parvathy SS, Matowe WC. Dopamine and adenosine mediate substance P-induced depression of evoked IPSCs in the rat nucleus accumbens in vitro. Eur J Neurosci 2003; 18:303-11. [PMID: 12887412 DOI: 10.1046/j.1460-9568.2003.02753.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The major projection cells of the nucleus accumbens (NAc) are under a strong inhibitory influence from GABAergic afferents and depend on afferent excitation to produce their output. We have earlier reported that substance P (SP), a peptide which is colocalized with GABA in these neurons, depresses excitatory synaptic transmission in this nucleus (Kombian, S.B., Ananthalakshmi, K.V.V., Parvathy, S.S. & Matowe, W.C. (2003) J. Neurophysiol., 89, 728-738). In order to better understand the role of this peptide in the synaptic physiology of the NAc, it is important to determine its effects on inhibitory synaptic responses. Using whole-cell recording in rat forebrain slices, we show here that SP also depresses evoked inhibitory postsynaptic currents (IPSCs) in the NAc via intermediate neuromodulators. SP caused a partially reversible, dose-dependent decrease in evoked IPSC amplitude. This effect was present without measurable changes in the holding current, input resistance of recorded cells or decay rate (tau) of IPSCs. It was mimicked by a neurokinin-1 (NK1) receptor-selective agonist, [Sar9, Met (O2)11]-SP, and blocked by an NK1 receptor-selective antagonist, L 732 138. The SP-induced IPSC depression was prevented by SCH23390, a dopamine D1-like receptor antagonist and by 8-cyclopentyltheophylline, an adenosine A1 receptor blocker. Furthermore, the SP effect was also markedly attenuated by exogenous adenosine, dipyridamole, rolipram and barium. These data show that SP, acting on NK1 receptors, depresses inhibitory synaptic transmission indirectly by enhancing extracellular dopamine and adenosine levels. SP therefore acts in the NAc to modulate both excitatory and inhibitory afferent inputs using the same mechanism(s).
Collapse
Affiliation(s)
- Samuel B Kombian
- Department of Applied Therapeutics, Faculty of Pharmacy, Health Science Center, Kuwait University, PO Box 24923, Safat 13110, Kuwait.
| | | | | | | |
Collapse
|
9
|
Kombian SB, Ananthalakshmi KVV, Parvathy SS, Matowe WC. Substance P depresses excitatory synaptic transmission in the nucleus accumbens through dopaminergic and purinergic mechanisms. J Neurophysiol 2003; 89:728-37. [PMID: 12574450 DOI: 10.1152/jn.00854.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Substance P (SP) is an undecapeptide that is co-localized with conventional transmitters in the nucleus accumbens (NAc). Its neurochemical and behavioral effects resemble those of cocaine and amphetamine. How SP accomplishes these effects is not known, partly because its cellular and synaptic effects are not well characterized. Using whole cell and nystatin-perforated patch recording in rat forebrain slices, we show here that SP, an excitatory neuropeptide, depresses evoked excitatory postsynaptic currents (EPSCs) and potentials (EPSPs) in NAc through intermediate neuromodulators. SP caused a partially reversible, dose-dependent decrease in evoked EPSCs. This effect was mimicked by a neurokinin-1 (NK1) receptor-selective agonist, [Sar(9), Met (O(2))(11)]-SP and blocked by a NK1 receptor-selective antagonist, L 732 138. Both the SP- and [Sar(9), Met (O(2))(11)]-SP-induced synaptic depressions were accompanied by increases in paired pulse ratio (PPR), effects that were also blocked by L 732 138. In contrast to its effect on PPR, SP did not produce significant changes in the holding current, input resistance, EPSC decay rate (tau), and steady-state I-V curves of the recorded cells. The SP-induced synaptic depressions were prevented by dopamine receptor blockade using SCH23390 and haloperidol, but not by sulpiride. In addition, the SP-induced synaptic depression was blocked by an adenosine A1 receptor blocker 8-cyclopentyltheophylline (8-CPT) but not the N-methyl-D-aspartate (NMDA) receptor antagonist D-APV. These data show that SP, by activating presynaptic NK1 receptors, depresses excitatory synaptic transmission indirectly by enhancing extracellular dopamine and adenosine levels. Since the cellular and synaptic effects of SP resemble those of cocaine and amphetamine, it may serve as an endogenous psychogenic peptide.
Collapse
Affiliation(s)
- Samuel B Kombian
- Department of Applied Therapeutics, Faculty of Pharmacy, Health Science Center, Kuwait University, Safat 13110, Kuwait.
| | | | | | | |
Collapse
|
10
|
Badie-Mahdavi H, Worsley MA, Ackley MA, Asghar AU, Slack JR, King AE. A role for protein kinase intracellular messengers in substance P- and nociceptor afferent-mediated excitation and expression of the transcription factor Fos in rat dorsal horn neurons in vitro. Eur J Neurosci 2001; 14:426-34. [PMID: 11553293 DOI: 10.1046/j.0953-816x.2001.01656.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of the inducible transcription factor Fos in the spinal dorsal horn in vivo is associated with nociceptive afferent activation, but the underlying stimulation-transcription pathway is less clear. This in vitro spinal cord study concerns the role of protein kinase A and C second messengers in substance P receptor (NK1R)-mediated or nociceptive afferent-evoked neuronal excitation and Fos expression. Nociceptive afferent (dorsal root) stimulation of isolated spinal cords (10-14 day old rats) evoked a 'prolonged' excitatory polysynaptic potential (DR-EPSP) that was attenuated (P < 0.05) by: the protein kinase A inhibitor, Rp-cAMP; the protein kinase C inhibitor, bisindolymaleimide I; and the selective NK1R antagonist, GR82334. Neuronal excitations induced by the NK1R agonist [Sar9,Met(O2)11]-SP were attenuated by Rp-cAMP, bisindolymaleimide I and GR82334. Effects of the protein kinase A and C inhibitors on the DR-EPSP or the [Sar9,Met(O2)11]-SP-induced depolarization were nonadditive, suggesting convergence of these intracellular signalling pathways onto a common final target. Nociceptor afferent-induced Fos, detected by immunohistochemistry in superficial and deep dorsal horn laminae, was attenuated by Rp-cAMP, bisindolymaleimide I and GR82334. In spinal cords pretreated with TTX to eliminate indirect neuronal activation, [Sar9,Met(O2)11]-SP (1-20 microM) elicited a dose-related expression of Fos that was reduced by Rp-cAMP, bisindolymaleimide I and GR82334. The effects of these inhibitors were most pronounced in the deep laminae. These data support a causal relationship between protein kinase A- or C-dependent signal transduction, nociceptive afferent- or NK1R-induced neuronal excitation and Fos expression in dorsal horn. Implications for short- versus long-term modulation of nociceptive circuitry are discussed.
Collapse
Affiliation(s)
- H Badie-Mahdavi
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9NQ, UK
| | | | | | | | | | | |
Collapse
|