1
|
Ahn SY, Chang YS, Park WS. Stem cells for neonatal brain injury - Lessons from the bench. Semin Perinatol 2023; 47:151726. [PMID: 37003920 DOI: 10.1016/j.semperi.2023.151726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Neonatal brain injury resulting from various intractable disorders including intraventricular hemorrhage and hypoxic ischemic encephalopathy still remains a major cause of mortality and morbidities with few effective treatments. Recent preclinical research results showing the pleiotropic neuroprotective effects of stem cell therapy, specifically mesenchymal stem cells (MSCs), suggest that MSCs transplantation might be a promising new therapeutic modality for neuroprotection against the currently intractable and devastating neonatal brain injury with complex multifactorial etiology. This review summarizes recent advances in preclinical stem cell research for treating neonatal brain injury with a focus on the important issues including the mechanism of neuroprotection, and determining the ideal cell source, route, timing and dose of MSCs transplantation.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea; Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, South Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea; Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, South Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAHIST), Samsung Medical Center, Seoul 06351, South Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea; Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, South Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAHIST), Samsung Medical Center, Seoul 06351, South Korea.
| |
Collapse
|
2
|
Ahn SY, Chang YS, Sung DK, Kim YE, Park WS. Developing a newborn rat model of ventriculitis without concomitant bacteremia by intraventricular injection of K1 (-) Escherichia coli. Pediatr Int 2020; 62:347-356. [PMID: 31846163 PMCID: PMC7187168 DOI: 10.1111/ped.14108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 01/30/2023]
Abstract
BACKGROUND Neonatal meningitis caused by Escherichia coli results in high mortality and neurological disabilities, and the concomitant systemic bacteremia confounds its mortality and brain injury. This study developed an experimental model of neonatal ventriculitis without concomitant systemic bacteremia by determining the bacterial inoculum of K1 capsule-negative E. coli by intraventricular injection in newborn rats. METHODS We carried out intraventricular injections 1 × 102 (low dose), 5 × 102 (medium dose), or 1 × 103 (high dose) colony-forming units (CFU) of K1 (-) E. coli (EC5ME) in Sprague-Dawley rats at postnatal day (P) 11. Ampicillin was started at P12. Blood and cerebrospinal fluid (CSF) cultures were performed at 6 h, 1 day, and 6 days after inoculation. Brain magnetic resonance imaging (MRI) was performed at P12 and P17. Survival was monitored, and brain tissue was obtained for histological and biochemical analyses at P12 and P17. RESULTS Survival was inoculum dose-dependent, with the lowest survival in the high-dose group (20%) compared with the medium- (67%) or low- (73%) dose groups. CSF bacterial counts in the low- and medium-dose groups were significantly lower than that in the high-dose group at 6 h, but not at 24 h after inoculation. No bacteria were isolated from the blood throughout the experiment or from the CSF at P17. Brain MRI showed an inoculum dose-dependent increase in the extent of brain injury and inflammatory responses. CONCLUSIONS We developed a newborn rat model of bacterial ventriculitis without concomitant systemic bacteremia by intraventricular injection of EC5ME.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong Kyung Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Eun Kim
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Chauzy A, Nadji A, Combes JC, Defrance N, Bouhemad B, Couet W, Chavanet P. Cerebrospinal fluid pharmacokinetics of ceftaroline in neurosurgical patients with an external ventricular drain. J Antimicrob Chemother 2019; 74:675-681. [PMID: 30535190 DOI: 10.1093/jac/dky489] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/30/2018] [Accepted: 11/03/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Owing to its antibacterial properties, ceftaroline could be attractive for prevention or treatment of bacterial post-neurosurgical meningitis/ventriculitis. However, few data are available concerning its meningeal concentrations. OBJECTIVES To investigate ceftaroline CSF pharmacokinetics in ICU patients with an external ventricular drain (EVD). METHODS Patients received a single 600 mg dose of ceftaroline as a 1 h intravenous infusion. Blood and CSF samples were collected before and 0.5, 1, 3, 6, 12 and 24 h after the end of the infusion. Concentrations were assayed in plasma and CSF by LC-MS/MS. A two-step compartmental pharmacokinetic analysis was conducted. Ceftaroline plasma data were first analysed, and thereafter plasma parameters estimated and corrected for protein binding of 20% were fixed to fit unbound CSF concentrations. In the final model, parameters for both plasma and CSF data were simultaneously estimated. RESULTS Nine patients with an EVD were included. The Cmax was 18.29 ± 3.33 mg/L in plasma (total concentrations) and at 0.22 ± 0.17 mg/L in CSF (unbound concentration). The model-estimated CSF input/CSF output clearance ratio was 9.4%, attesting to extensive efflux transport at the blood-CSF barrier. CONCLUSIONS Ceftaroline CSF concentrations are too low to ensure prophylactic protection against most pathogens with MICs between 1 and 2 mg/L, owing to its limited central distribution.
Collapse
Affiliation(s)
- Alexia Chauzy
- Université de Poitiers, INSERM U1070, CHU Poitiers, Poitiers, France
| | | | | | - Nadine Defrance
- Neuroréanimation, Hôpital du Bocage, CHU Dijon, Dijon, France
| | - Belaid Bouhemad
- Neuroréanimation, Hôpital du Bocage, CHU Dijon, Dijon, France
| | - William Couet
- Université de Poitiers, INSERM U1070, CHU Poitiers, Poitiers, France
| | - Pascal Chavanet
- Département d'Infectiologie, CHU and INSERM CIC1432, Université de Bourgogne, Dijon, France
| |
Collapse
|
4
|
Buch K, Bodilsen J, Knudsen A, Larsen L, Helweg-Larsen J, Storgaard M, Brandt C, Wiese L, Østergaard C, Nielsen H, Lebech AM. Cerebrospinal fluid lactate as a marker to differentiate between community-acquired acute bacterial meningitis and aseptic meningitis/encephalitis in adults: a Danish prospective observational cohort study. Infect Dis (Lond) 2018; 50:514-521. [PMID: 29490540 DOI: 10.1080/23744235.2018.1441539] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND The ability of cerebrospinal fluid (CSF) lactate to distinguish between acute bacterial meningitis (ABM) and aseptic meningitis/encephalitis (AME) is debated. We assessed the diagnostic value of CSF lactate to discriminate between ABM and AME. METHODS We included 176 patients from a prospective adult cohort with neuroinfections. In total, 51 ABM and 125 AME patients with clinically and/or microbiologically diagnosed acute meningitis were examined with CSF-lactate and traditional markers for infection. Receiver operating characteristic (ROC) curves were used to assess diagnostic performance. RESULTS In CSF, lactate, leukocytes, fraction of neutrophils, protein and glucose ratio, were significantly different between the ABM and AME groups. CSF lactate had the best diagnostic value, with an area under the curve (AUC) of 0.976 (95%CI 0.966-0.997) and using a cut-off of 3.5 mmol/L a sensitivity of 96% and specificity of 85%. Antibiotic treatment before lumbar puncture had no significant effect on the AUC of CSF lactate. CONCLUSIONS Compared to traditional CSF-markers, CSF lactate is more accurate to distinguish between ABM and AME.
Collapse
Affiliation(s)
- Kristian Buch
- a Department of Infectious Diseases , Hvidovre University Hospital , Copenhagen , Denmark
| | - Jacob Bodilsen
- b Department of Infectious Diseases , Aalborg University Hospital , Aalborg , Denmark
| | - Andreas Knudsen
- a Department of Infectious Diseases , Hvidovre University Hospital , Copenhagen , Denmark
| | - Lykke Larsen
- c Department of Infectious Diseases , Odense University Hospital , Odense , Denmark
| | - Jannik Helweg-Larsen
- d Department of Infectious Diseases , Copenhagen University Hospital, Rigshospitalet , Copenhagen , Denmark
| | - Merete Storgaard
- e Department of Infectious Diseases , Aarhus University Hospital , Aarhus , Denmark
| | - Christian Brandt
- f Department of Pulmonary and Infectious Diseases , Nordsjaellands University Hospital , Hillerød , Denmark
| | - Lothar Wiese
- g Department of Infectious Diseases , Sjællands University Hospital , Roskilde , Denmark
| | - Christian Østergaard
- h Department of Clinical Microbiology , Hvidovre University Hospital , Copenhagen , Denmark
| | - Henrik Nielsen
- b Department of Infectious Diseases , Aalborg University Hospital , Aalborg , Denmark
| | - Anne-Mette Lebech
- a Department of Infectious Diseases , Hvidovre University Hospital , Copenhagen , Denmark
| | | |
Collapse
|
5
|
Hwang JH, Lee JH, Lee KH, Bae EJ, Sung DK, Chang YS, Park WS. Cyclosporine A attenuates hypoxic–ischemic brain injury in newborn rats. Brain Res 2010; 1359:208-15. [DOI: 10.1016/j.brainres.2010.08.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 08/16/2010] [Accepted: 08/17/2010] [Indexed: 11/28/2022]
|
6
|
Abstract
The clinical outcome of central nervous system infection is determined by the characteristics of the pathogen and the brain's response to the invading bacteria. How infection leads to brain injury remains unresolved. An impediment to progress is the complexity of pathophysiologic processes. Some of the mechanisms involved have been identified in experimental models, providing insights into the molecular basis of brain injury and regeneration, and hinting at targets for therapy. Adjuvant therapies have been proposed. Interventions that protect the brain are evaluated for their potential to preserve neuro-integrative functions in long-term survivors of bacterial meningitis. This article summarizes current studies evaluating pharmacologic interventions in experimental models of bacterial meningitis and discusses how the knowledge gathered could translate into more effective therapies.
Collapse
|
7
|
Abstract
The interaction between glycemic control and critical neurologic illness and injury is complex. Hyperglycemia can be either the cause or the result of severe brain injury. Hyperglycemia in acute neurologic injury is associated with worse neurologic outcomes. Demographic patterns, including an aging population and shifts in racial and ethnic representation, contribute to the increasing prevalence of hyperglycemia and diabetes among victims of the most common neurologic emergencies. This article reviews the epidemiology of the problem, relevant pathophysiology, the use of tight glycemic control therapy in other populations, and the potential for tight glycemic control as a way to improve outcomes after acute neurologic illness and injury.
Collapse
|
8
|
Abstract
OBJECTIVE The purpose of this study was to determine whether oxygen treatment could attenuate the alterations in cerebral energy metabolism found in the brain following hypoxia-ischemia. DESIGN Seven-day-old rat pups were subjected to unilateral carotid artery ligation followed by 2 hrs of hypoxia (8% oxygen at 37 degrees C). The concentrations of high-energy phosphate compounds and glycolytic intermediates and the activity of Na+/K+-adenosine triphosphatase were measured at 4-72 hrs of recovery. Brain weight was used to determine the severity of the brain injury at 2 wks after insult. SETTING Experimental setting. SUBJECTS Rat pups. INTERVENTIONS Pups were treated with 100% oxygen 1 hr after the insult at 2.5 atmospheres absolute (hyperbaric oxygen) or at normobaric pressure for a duration of 2 hrs. MEASUREMENTS AND MAIN RESULTS During the initial period of recovery from hypoxia-ischemia, values of adenosine triphosphate and phosphocreatine remained at levels below normal, whereas the levels of glucose and other glycolytic intermediates were elevated. Hyperbaric oxygen and normobaric oxygen both attenuated brain injury, restored the levels of adenosine triphosphate and phosphocreatine, decreased the levels of the glycolytic intermediates, and increased the utilization of energy. CONCLUSIONS These results suggest that oxygen treatment during the initial period of recovery from a hypoxia-ischemic insult is able to attenuate energy deficits in the brain, which ultimately leads to a reduction in brain injury.
Collapse
Affiliation(s)
- John W Calvert
- Department of Physiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | | |
Collapse
|
9
|
Choi CW, Hwang JH, Chang YS, Park WS, Kim BI, Choi JH, Lee M. Effects of hypertonic (7%) saline on brain injury in experimental Escherichia coli meningitis. J Korean Med Sci 2005; 20:870-6. [PMID: 16224165 PMCID: PMC2779288 DOI: 10.3346/jkms.2005.20.5.870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
We sought to know whether hypertonic (7%) saline (HTS) attenuates brain injury by improving cerebral perfusion pressure (CPP) and down-modulating acute inflammatory responses in experimental bacterial meningitis in the newborn piglet. Twenty-five newborn piglets were assorted into three groups: 6 in the control group (C), 10 in the meningitis group (M), and 9 in the meningitis with HTS infusion group (H). Meningitis was induced by intracisternal injection of 10(8) colony forming units of Escherichia coli in 100 microL of saline. 10 mL/kg of HTS was given intravenously as a bolus 6 hr after induction of meningitis, thereafter the infusion rate was adjusted to maintain the serum sodium level between 150 and 160 mEq/L. HTS significantly attenuated meningitis-induced brain cell membrane disintegration and dysfunction, as indicated by increased lipid peroxidation products and decreased Na+, K+-ATPase activity in the cerebral cortex in M. HTS significantly attenuated acute inflammatory markers such as increased intracranial pressure, elevated lactate level and pleocytosis in the cerebrospinal fluid observed in M. Reduced CPP observed in M was also significantly improved with HTS infusion. These findings implicate some attenuation of the meningitis-induced alterations in cerebral cortical cell membrane structure and function with HTS, possibly by improving CPP and attenuating acute inflammatory responses.
Collapse
Affiliation(s)
- Chang Won Choi
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong Hee Hwang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Beyong Il Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Hwan Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Munhyang Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Erecinska M, Cherian S, Silver IA. Energy metabolism in mammalian brain during development. Prog Neurobiol 2004; 73:397-445. [PMID: 15313334 DOI: 10.1016/j.pneurobio.2004.06.003] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Accepted: 06/09/2004] [Indexed: 12/28/2022]
Abstract
Production of energy for the maintenance of ionic disequilibria necessary for generation and transmission of nerve impulses is one of the primary functions of the brain. This review attempts to link the plethora of information on the maturation of the central nervous system with the ontogeny of ATP metabolism, placing special emphasis on variations that occur during development in different brain regions and across the mammalian species. It correlates morphological events and markers with biochemical changes in activities of enzymes and pathways that participate in the production of ATP. The paper also evaluates alterations in energy levels as a function of age and, based on the tenet that ATP synthesis and utilization cannot be considered in isolation, investigates maturational profiles of the key processes that utilize energy. Finally, an attempt is made to assess the relevance of currently available animal models to improvement of our understanding of the etiopathology of various disease states in the human infant. This is deemed essential for the development and testing of novel strategies for prevention and treatment of several severe neurological deficits.
Collapse
Affiliation(s)
- Maria Erecinska
- Department of Anatomy, School of Veterinary Science, Southwell Street, Bristol BS2 8EJ, UK.
| | | | | |
Collapse
|
11
|
Ghielmetti M, Ren H, Leib SL, Täuber MG, Christen S. Impaired cortical energy metabolism but not major antioxidant defenses in experimental bacterial meningitis. Brain Res 2003; 976:139-48. [PMID: 12763248 DOI: 10.1016/s0006-8993(03)02557-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The loss of soluble brain antioxidants and protective effects of radical scavengers implicate reactive oxygen species in cortical neuronal injury caused by bacterial meningitis. However, the lack of significant oxidative damage in cortex [J. Neuropathol. Exp. Neurol. 61 (2002) 605-613] suggests that cortical neuronal injury may not be due to excessive parenchymal oxidant production. To see whether this tissue region exhibits a prooxidant state in bacterial meningitis, we examined the state of the major cortical antioxidant defenses in infant rats infected with Streptococcus pneumoniae. Adenine nucleotides were co-determined to assess possible changes in energy metabolism. Arguing against heightened parenchymal oxidant production, the high NADPH/NADP(+) ratio ( approximately 3:1) and activities of the major antioxidant defense and pentose phosphate pathway enzymes remained unchanged at the time of fulminant meningitis. In contrast, cortical ATP, ADP and total adenine nucleotides were on average decreased by approximately 25%. However, energy depletion did not lead to a significant decrease in adenylate energy charge (AEC). ATP depletion was likely a consequence of metabolic degradation, since it correlated with both the loss of total adenine nucleotides and accumulation of purine degradation products. Furthermore, the loss of ATP and decrease in AEC correlated significantly with the extent of neuronal injury. These results strongly suggest that energy depletion rather than parenchymal oxidative damage is involved in the observed cortical neuronal injury.
Collapse
Affiliation(s)
- Marco Ghielmetti
- Institute for Infectious Diseases, University of Berne, Friedbuehlstrasse 51, CH-3010, Berne, Switzerland
| | | | | | | | | |
Collapse
|
12
|
Garthoff LH, Sobotka TJ. From farm to table to brain: foodborne pathogen infection and the potential role of the neuro-immune-endocrine system in neurotoxic sequelae. Nutr Neurosci 2002; 4:333-74. [PMID: 11845817 DOI: 10.1080/1028415x.2001.11747373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The American diet is among the safest in the world; however, diseases transmitted by foodborne pathogens (FBPs) still pose a public health hazard. FBPs are the second most frequent cause of all infectious illnesses in the United States. Numerous anecdotal and clinical reports have demonstrated that central nervous system inflammation, infection, and adverse neurological effects occur as complications of foodborne gastroenteritis. Only a few well-controlled clinical or experimental studies, however, have investigated the neuropathogenesis. The full nature and extent of neurological involvement in foodborne illness is therefore unclear. To our knowledge, this review and commentary is the first effort to comprehensively discuss the issue of FBP induced neurotoxicity. We suggest that much of this information supports the role of a theoretical model, the neuro-immune-endocrine system, in organizing and helping to explain the complex pathogenesis of FBP neurotoxicity.
Collapse
Affiliation(s)
- L H Garthoff
- United States FDA, Center for Food Safety & Applied Nutrition, Office of Applied Research and Safety Assessment, Division of Toxicology and Nutrition Product Studies, Neurotoxicology Branch, Laurel, MD 20708, USA.
| | | |
Collapse
|
13
|
Park WS, Chang YS, Chung SH, Seo DW, Hong SH, Lee M. Effect of hypothermia on bilirubin-induced alterations in brain cell membrane function and energy metabolism in newborn piglets. Brain Res 2001; 922:276-81. [PMID: 11743960 DOI: 10.1016/s0006-8993(01)03186-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of this study was to evaluate the effects of hypothermia on bilirubin-induced alterations in brain cell membrane function and energy metabolism in the developing brain. Thirty-seven newborn piglets were divided randomly into four groups: normothermic control (NC, n=9); hypothermic control (HC, n=7); normothermic bilirubin infusion (NB, n=11); and hypothermic bilirubin infusion (HB, n=10) groups. In bilirubin infusion groups (NB and HB), a loading dose of bilirubin (35 mg/kg) was given over 5 min, followed by a continuous infusion (25 mg/kg/h) for 4 h. The control groups (NC, HC) received a bilirubin-free buffer solution. Sulfadimethoxine was administered to animals in all experimental groups. Rectal temperature was maintained between 38.0 and 39.0 degrees C in normothermic groups, and between 34.0 and 35.0 degrees C in hypothermic groups for 4 h after the start of bilirubin infusion. The final blood and brain bilirubin concentrations in the bilirubin infusion groups (NB and HB) were not significantly different. Decreased cerebral cortical cell membrane Na(+),K(+)-ATPase activity and increased lipid peroxidation products observed in the NB group, indicative of bilirubin-induced brain damage, were significantly attenuated in the HB group. Hypothermia also significantly improved the bilirubin-induced reduction in brain ATP and phosphocreatine levels and increase in blood and brain lactate levels. In summary, hypothermia significantly attenuated the bilirubin-induced alterations in brain cell membrane function and energy metabolism in the newborn piglet. These findings suggest the possibility that hypothermia could be a good neuroprotective therapeutic modality in neonatal bilirubin encephalopathy.
Collapse
Affiliation(s)
- W S Park
- Department of Pediatrics, Samsung Medical Center, 50 Ilwon-Dong, Kangnam-Gu, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
14
|
Cabeça HL, Gomes HR, Machado LR, Livramento JA. Dosage of lactate in the cerebrospinal fluid in infectious diseases of the central nervous system. ARQUIVOS DE NEURO-PSIQUIATRIA 2001; 59:843-8. [PMID: 11733825 DOI: 10.1590/s0004-282x2001000600002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This paper analyzes the diagnosis aid of the dosage of lactate in the cerebrospinal fluid (CSF) in infectious diseases of the central nervous system (CNS). We analyzed prospectively 130 samples of CSF of 116 patients with diagnoses of infectious processes in the CNS. The 130 samples of CSF were divided into five groups: 28 samples of the control group, 40 of bacterial meningitis, 22 of viral meningitis, 16 of fungal meningitis and 24 of patients presenting acquired immune deficiency syndrome (AIDS). The concentration of lactate in the CSF was elevated in the group of patients with bacterial meningitis (average = 46.2 mg/dL), fungal meningitis (average = 27.3 mg/dL) and in the AIDS group (average = 23.5 mg/dL). In the control group and viral meningitis group the lactate content in the CSF presented the reference rates according to the employed method. The lactate dosage in the CSF presented a negative correlation with glycorrhachia and positive correlation with the cellularity and total proteins of the CSF. We conclude that the lactate dosage in the CSF, although unspecific, helps to distinguish the infectious processes of the CNS.
Collapse
Affiliation(s)
- H L Cabeça
- Centro de Investigações em Neurologia, LIM15, Departamento de Neurologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil.
| | | | | | | |
Collapse
|
15
|
Park WS, Chang YS, Lee M. N(omega) -nitro-L-arginine methyl ester (L-NAME) attenuates the acute inflammatory responses and brain injury during the early phase of experimental Escherichia coli meningitis in the newborn piglet. Neurol Res 2001; 23:862-8. [PMID: 11760879 DOI: 10.1179/016164101101199315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
We evaluated the anti-inflammatory and neuroprotective effect of nonselective NOS inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME), in experimental bacterial meningitis in the newborn piglet. Meningitis was induced by intracisternal injection of 10(8) colony forming units of Escherichia coli. L-NAME 10 mg kg(-1) was given intravenously 30 min before induction of meningitis. L-NAME significantly attenuated the increase in intracranial pressure and decrease in cerebrospinal fluid glucose concentration observed in the meningitis group. Systemic and cerebral perfusion pressure were even higher compared to the control and meningitis groups. However, the meningitis-induced increase in tumor necrosis factor-alpha level, leukocyte numbers and lactate level in the cerebrospinal fluid was not significantly attenuated with L-NAME administration. Reduced cerebral cortical cell membrane Na+, K+ -ATPase activity and increased lipid peroxidation products, indicative of meningitis-induced brain cell membrane dysfunction, were significantly improved with L-NAME treatment. Decreased brain glucose and ATP levels were also significantly improved with L-NAME treatment. These findings suggest that L-NAME was effective in attenuating the acute inflammatory responses and brain injury in neonatal bacterial meningitis.
Collapse
Affiliation(s)
- W S Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | | | | |
Collapse
|
16
|
Park WS, Chang YS, Lee M. Effects of hyperglycemia or hypoglycemia on brain cell membrane function and energy metabolism during the immediate reoxygenation-reperfusion period after acute transient global hypoxia-ischemia in the newborn piglet. Brain Res 2001; 901:102-8. [PMID: 11368956 DOI: 10.1016/s0006-8993(01)02295-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study was done to determine the effects of hyperglycemia or hypoglycemia on brain cell membrane function and energy metabolism during the immediate reoxygenation-reperfusion period after hypoxia-ischemia (HI). Forty-five newborn piglets were divided randomly into four experimental groups: normoxia control (NC, n=9); HI/reoxygenation-reperfusion (RR) control (HC, n=11); HI/RR hyperglycemia (HE, n=12); and HI/RR hypoglycemia (HO, n=13) group. Animals were subjected to transient HI for 30 min followed by 2 h of RR. Cerebral HI was induced by temporary but complete occlusion of bilateral common carotid arteries with surgical clips and simultaneous breathing with 8% oxygen. Glucose was unregulated in HC group, and controlled by modified glucose clamp technique immediately after HI in HE (350 mg/dl) and HO (50 mg/dl) groups. During HI, heart rate, base deficit, glucose and lactate level in the blood and cerebrospinal fluid increased, and arterial pH, oxygen saturation and blood pressure decreased significantly in HC, HE and HO groups. During RR, these abnormalities returned to normal values, but lactic acidosis persisted especially in HO group. Cerebral Na(+),K(+)-ATPase activity decreased, and lipid peroxidation products increased significantly in HC group than in NC group, and these abnormalities were significantly aggravated in HE, but not in HO, group. Brain ATP and phosphocreatine levels in HE group were significantly reduced compared to the corresponding values in NC, HC and HO groups. In summary, hyperglycemia, but not hypoglycemia immediately after HI interfered with the recovery of brain cell membrane function and energy metabolism. These findings suggest that post-hypoxic-ischemic hyperglycemia is not beneficial and might even be harmful in neonatal hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- W S Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | |
Collapse
|
17
|
Park WS, Chang YS, Lee M. 3-Aminobenzamide, a poly (ADP-ribose) synthetase inhibitor, attenuates the acute inflammatory responses and brain injury in experimental Escherichia coli meningitis in the newborn piglet. Neurol Res 2001; 23:410-6. [PMID: 11428523 DOI: 10.1179/016164101101198640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The aim of the present study was to evaluate the anti-inflammatory and neuroprotective effects of a poly (ADP-ribose) synthetase inhibitor 3-aminobenzamide during the early phase of experimental bacterial meningitis in the newborn piglet. Meningitis was induced by intracisternal injection of 10(8) colony forming units of Escherichia coli in 100 microl of saline. 3-Aminobenzamide, given 30 mg kg(-1) as a bolus i.v. injection 30 min before induction of meningitis, significantly attenuated the meningitis-induced acute inflammatory responses such as increased cerebrospinal fluid (CSF) lactate concentration, CSF leukocytosis and increased CSF tumor necrosis factor-alpha level. However, meningitis-induced increase in intracranial pressure and decrease in CSF glucose level were not significantly improved. Increased cerebral cortical cell membrane lipid peroxidation products (conjugated dienes) and decreased brain ATP/phosphocreatine levels observed in the meningitis group were also significantly improved with 3-aminobenzamide treatment. However, the improvement of reduced Na+, K+-ATPase activity did not reach a statistical significance (p = 0.06). In summary, 3-aminobenzamide significantly attenuated the acute inflammatory responses and the ensuing brain injury during the early phase of neonatal bacterial meningitis. These findings suggest that poly (ADP-ribose) synthetase inhibitors such as 3-aminobenzamide might be a promising novel anti-inflammatory and neuroprotective adjuvant therapy in neonatal bacterial meningitis.
Collapse
Affiliation(s)
- W S Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | | | | |
Collapse
|
18
|
Park WS, Chang YS, Lee M. Effect of hypothermia on brain cell membrane function and energy metabolism in experimental Escherichia coli meningitis in the newborn piglet. Neurochem Res 2001; 26:369-74. [PMID: 11495347 DOI: 10.1023/a:1010947030587] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We evaluated the anti-inflammatory and neuroprotective effects of hypothermia during the early phase of experimental Escherichia coli meningitis in the newborn piglet. Hypothermia significantly attenuated the meningitis-induced acute inflammatory responses such as increased intracranial pressure, decreased glucose level, increased lactate concentration, increased tumor necrosis factor-alpha level and leukocytosis in the cerebrospinal fluid. Decreased cerebral cortical cell membrane Na+,K+-ATPase activity and increased lipid peroxidation products, indicative of meningitis-induced brain damage, were significantly improved with hypothermia. Hypothermia also significantly improved the meningitis-induced reduction in brain ATP and phosphocreatine levels. In summary, hypothermia significantly attenuated the acute inflammatory responses and the ensuing brain injury in experimental neonatal bacterial meningitis.
Collapse
Affiliation(s)
- W S Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | |
Collapse
|
19
|
Park WS, Chang YS, Lee M. Effect of alpha-phenyl-N-tert-butylnitrone on brain cell membrane function and energy metabolism in experimental Escherichia coli meningitis in the newborn piglet. J Neurochem 2000; 74:763-9. [PMID: 10646528 DOI: 10.1046/j.1471-4159.2000.740763.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We evaluated the efficacy of alpha-phenyl-N-tertbutylnitrone as an adjunctive therapy in experimental bacterial meningitis in the newborn piglet. Meningitis was induced by intracisternal injection of 10(8) colony-forming units of Escherichia coli in 100 microl of saline. Alpha-Phenyl-N-tert-butylnitrone 100 mg/kg was given as a bolus intravenous injection 30 min before induction of meningitis. Although it completely abolished the elevated CSF tumor necrosis factor-a level observed in the meningitis group, alpha-phenyl-N-tert-butylnitrone did not down-modulate parameters of inflammatory responses such as increased intracranial pressure, hypoglycorrhachia, elevated CSF lactate level, and CSF leukocytosis observed in this group. However, alpha-phenyl-N-tert-butylnitrone treatment mitigated alterations in brain cell membrane structure and function during meningitis, evidenced by amelioration of increased brain cell membrane lipid peroxidation products (conjugated dienes) and decreased Na+, K+-ATPase activity. Reduced mean arterial blood pressure, cerebral perfusion pressure, brain glucose concentration, and cerebral energy stores and marginally increased brain lactate level observed in the meningitis group were also ameliorated. These results suggest that although it failed to attenuate the inflammatory responses, alpha-phenyl-N-tert-butylnitrone was effective in ameliorating brain injury in neonatal bacterial meningitis.
Collapse
Affiliation(s)
- W S Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | | | | |
Collapse
|
20
|
Chang YS, Park WS, Ko SY, Kang MJ, Han JM, Lee M, Choi J. Effects of fasting and insulin-induced hypoglycemia on brain cell membrane function and energy metabolism during hypoxia-ischemia in newborn piglets. Brain Res 1999; 844:135-42. [PMID: 10536269 DOI: 10.1016/s0006-8993(99)01940-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study was done to determine the effects of 12 h fasting-induced mild hypoglycemia (blood glucose 60 mg/dl) and insulin-induced moderate hypoglycemia (blood glucose 35 mg/dl) on brain cell membrane function and energy metabolism during hypoxia-ischemia in newborn piglets. Sixty-three ventilated piglets were divided into six groups; normoglycemic control (NC, n=8), fasting-induced mildly hypoglycemic control (FC, n=10), insulin-induced moderately hypoglycemic control (IC, n=10), normoglycemic/hypoxic-ischemic (NH, n=11), fasting-induced mildly hypoglycemic/hypoxic-ischemic (FH, n=12) and insulin-induced moderately hypoglycemic/hypoxic-ischemic (IH, n=12) group. Cerebral hypoxia-ischemia was induced by occlusion of bilateral common carotid arteries and simultaneous breathing with 8% oxygen for 30 min. The brain lactate level was elevated in NH group and this change was attenuated in FH and IH groups. The extent of cerebral lactic acidosis during hypoxic-ischemic insult showed significant positive correlation with blood glucose level (r=0.55, p<0.001). Cerebral Na+, K+-ATPase activity and concentrations of high-energy phosphate compounds were reduced in NH group and these changes were not ameliorated in FH or IH group. Cortical levels of conjugated dienes, measured as an index of lipid peroxidation of brain cell membrane, were significantly elevated in NH, FH and IH groups compared with NC, FC and IC groups and these increases were more profound in FH and IH with respect to NH. Blood glucose concentration showed significant inverse correlation with levels of conjugated dienes (r=-0.35, p<0.05). These findings suggest that, unlike in adults, mild or moderate hypoglycemia, regardless of methods of induction such as fasting or insulin-induced, during cerebral hypoxia-ischemia is not beneficial and may even be harmful in neonates.
Collapse
Affiliation(s)
- Y S Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 ILWON-dong, Kangnam-ku, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|