1
|
Schiaveto-de-Souza A, da-Silva CA, Defino HLA, Del Bel EA. Effect of melatonin on the functional recovery from experimental traumatic compression of the spinal cord. Braz J Med Biol Res 2013; 46:348-58. [PMID: 23579633 PMCID: PMC3854406 DOI: 10.1590/1414-431x20132322] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 01/21/2013] [Indexed: 01/27/2024] Open
Abstract
Spinal cord injury is an extremely severe condition with no available effective therapies. We examined the effect of melatonin on traumatic compression of the spinal cord. Sixty male adult Wistar rats were divided into three groups: sham-operated animals and animals with 35 and 50% spinal cord compression with a polycarbonate rod spacer. Each group was divided into two subgroups, each receiving an injection of vehicle or melatonin (2.5 mg/kg, intraperitoneal) 5 min prior to and 1, 2, 3, and 4 h after injury. Functional recovery was monitored weekly by the open-field test, the Basso, Beattie and Bresnahan locomotor scale and the inclined plane test. Histological changes of the spinal cord were examined 35 days after injury. Motor scores were progressively lower as spacer size increased according to the motor scale and inclined plane test evaluation at all times of assessment. The results of the two tests were correlated. The open-field test presented similar results with a less pronounced difference between the 35 and 50% compression groups. The injured groups presented functional recovery that was more evident in the first and second weeks. Animals receiving melatonin treatment presented more pronounced functional recovery than vehicle-treated animals as measured by the motor scale or inclined plane. NADPH-d histochemistry revealed integrity of the spinal cord thoracic segment in sham-operated animals and confirmed the severity of the lesion after spinal cord narrowing. The results obtained after experimental compression of the spinal cord support the hypothesis that melatonin may be considered for use in clinical practice because of its protective effect on the secondary wave of neuronal death following the primary wave after spinal cord injury.
Collapse
Affiliation(s)
- A Schiaveto-de-Souza
- Departamento de Morfofisiologia, Universidade Federal do Mato Grosso do Sul, Campo Grande, MS, Brasil
| | | | | | | |
Collapse
|
2
|
Faller EM, Brown DL. Modulation of microtubule dynamics by the microtubule-associated protein 1a. J Neurosci Res 2009; 87:1080-9. [DOI: 10.1002/jnr.21920] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Pietrucha-Dutczak M, Marcol W, Gołka B, Lewin-Kowalik J. Neurotrophic activity of extracts from distal stumps of pre-degenerated peripheral rat nerves varies according to molecular mass spectrum. Neurol Res 2008; 30:845-51. [PMID: 18691445 DOI: 10.1179/174313208x289561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE We investigated neurotrophic activity of extracts from pre-degenerated and non-pre-degenerated peripheral nerves (complete extracts and extracts with fractions of narrower range of molecular weight) on the injured hippocampus. METHODS The experiment was carried out on male Wistar C rats. The complete extracts or fractions with different ranges of molecular weight were introduced to the site of injury with the autologous connective tissue chambers. We examined DiI-labeled hippocampal cell and AChE-positive nerve endings to assess the regeneration intensity. RESULTS The highest number of labeled hippocampal cells was observed in the group treated with fraction of molecular weight 10-100 kDa (72.5 +/- 13.7) obtained from pre-degenerated nerves. We observed the presence of AChE-positive fibers inside all examined chambers. DISCUSSION These results demonstrate that suitable modification of CNS environments by introducing the protein fractions obtained from peripheral nerves can initiate the regeneration of the damaged hippocampal structure in adult rats. Moreover, it is possible to intensify their neurotrophic effect by former pre-degeneration of peripheral nerves and extraction from the entire extract proteins of molecular weight of 10-100 kDa.
Collapse
|
4
|
Pietrucha-Dutczak M, Marcol W, Gorka D, Golka B, Kotulska K, Lewin-Kowalik J. Quantitative and qualitative analysis of proteins in rat peripheral nerves predegenerated for 7 days. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2008; 150:249-54. [PMID: 17426787 DOI: 10.5507/bp.2006.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES In contrast to peripheral nerves, central neurons do not regrow spontaneously after injury. Our previous studies showed that transplantation of degenerating peripheral nerves or their extracts can induce regeneration in the injured central nervous system. Non-predegenerated nerves show much weaker neurotrophic activity. The aim of the present work was to examine quantitatively and qualitatively the protein composition of rat sciatic nerve extracts. MATERIAL AND METHODS The experiments were carried out on male Wistar C rats. Distal fragments were collected immediately after transection or after 7 day-long predegeneration. The nerves were homogenized, centrifuged and ultracetrifuged. Extracts were analyzed by means of two-dimensional electrophoresis. RESULTS The two-dimensional electrophoresis showed 69 protein subfractions with isoelectric points ranging from 4.2 to 7.0 pH and molecular weight ranging from 13.5 kDa to 335.4 kDa in extracts obtained from nonpredegenerated nerves. In predegenerated nerve extracts 114 subfractions with isoelectric points ranging from 4.2 to 7.4 pH and molecular weight from 21.1 kDa to 335.4 kDa were found. Fractions: 25.5 kDa, 31.6 kDa, 36 kDa, 38.4 kDa, 42.4 kDa, 46.6 kDa, and 50.5 kDa showed significant increase and two fractions: 68.5 kDa and 335.4 kDa demonstrated significant decrease in the number of subfractions in predegenerated nerves. Fractions 160.8 kDa, 236.1 kDa, and 5 fractions below 21.1 kDa were present only in extracts from non-predegenerated nerves. CONCLUSIONS In conclusion, the results of our study demonstrate that the most intense changes in protein composition in degenerating nerves take place in low molecular weight fractions.
Collapse
|
5
|
Riederer BM. Microtubule-associated protein 1B, a growth-associated and phosphorylated scaffold protein. Brain Res Bull 2006; 71:541-58. [PMID: 17292797 DOI: 10.1016/j.brainresbull.2006.11.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 11/28/2006] [Indexed: 11/25/2022]
Abstract
Microtubule-associated protein 1B, MAP1B, is one of the major growth associated and cytoskeletal proteins in neuronal and glial cells. It is present as a full length protein or may be fragmented into a heavy chain and a light chain. It is essential to stabilize microtubules during the elongation of dendrites and neurites and is involved in the dynamics of morphological structures such as microtubules, microfilaments and growth cones. MAP1B function is modulated by phosphorylation and influences microtubule stability, microfilaments and growth cone motility. Considering its large size, several interactions with a variety of other proteins have been reported and there is increasing evidence that MAP1B plays a crucial role in the stability of the cytoskeleton and may have other cellular functions. Here we review molecular and functional aspects of this protein, evoke its role as a scaffold protein and have a look at several pathologies where the protein may be involved.
Collapse
Affiliation(s)
- Beat M Riederer
- Département de Biologie Cellulaire et de Morphologi), Université de Lausanne, 9 rue du Bugnon, CH-1005 Lausanne, Switzerland.
| |
Collapse
|
6
|
Queiróz DBC, Silva AMD, Gutiérrez-Ospina G, Porto CS, Grossman G, Petrusz P, Avellar MCW. Cells positive for microtubule-associated protein 1B (MAP 1B) are present along rat and human efferent ductules and epididymis. Cell Tissue Res 2006; 325:125-33. [PMID: 16541288 DOI: 10.1007/s00441-005-0108-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2005] [Accepted: 10/21/2005] [Indexed: 11/29/2022]
Abstract
Microtubule-associated protein 1B (MAP 1B) is a neuronal cytoskeleton marker with predominant expression in the developing nervous system. The present study provides evidence for the expression of this cytoskeleton protein in non-neuronal and neuronal cells along rat and human efferent ductules and epididymis (initial segment, caput, and cauda). Reverse transcription/polymerase chain reaction and Western blot analysis were used to confirm the presence of MAP 1B (mRNA and protein) in rat tissues. Immunohistochemical studies revealed MAP-1B-positive staining in columnar ciliated cells present in efferent ductules and in narrow cells located in the initial segment, in both rat and human. MAP-1B-positive basal cells, located underneath the columnar cells, were only identified in the initial segment and caput epididymidis of the rat. Qualitative analysis of tissues from 40-day-old and 120-day-old rats indicated that the number of MAP-1B-positive ciliated, narrow, and basal cells per tubule increased with sexual maturation. These immunoreactive cells did not stain for dopamine beta-hydroxylase or acetylcholinesterase, indicating that they were not adrenergic or cholinergic in nature. Immunohistochemical studies also revealed the presence of MAP-1B-positive staining in interstitial nerve fibers in caput and cauda epididymidis from both rat and human. Thus, the expression of MAP 1B is not confined to a specific cell type in rat and human efferent ductules and epididymis. The functional significance of this cytoskeleton protein in tissues from the male reproductive tract requires further investigation.
Collapse
Affiliation(s)
- Daniel B C Queiróz
- Section of Experimental Endocrinology, Department of Pharmacology, Universidade Federal de São Paulo-Escola Paulista de Medicina, Rua 3 de maio 100, INFAR, Vila Clementino, 04044-020 São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
7
|
Bondallaz P, Barbier A, Soehrman S, Grenningloh G, Riederer BM. The control of microtubule stability in vitro and in transfected cells by MAP1B and SCG10. ACTA ACUST UNITED AC 2006; 63:681-95. [PMID: 17009328 DOI: 10.1002/cm.20154] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In neurons, the regulation of microtubules plays an important role for neurite outgrowth, axonal elongation, and growth cone steering. SCG10 family proteins are the only known neuronal proteins that have a strong destabilizing effect, are highly enriched in growth cones and are thought to play an important role during axonal elongation. MAP1B, a microtubule-stabilizing protein, is found in growth cones as well, therefore it was important to test their effect on microtubules in the presence of both proteins. We used recombinant proteins in microtubule assembly assays and in transfected COS-7 cells to analyze their combined effects in vitro and in living cells, respectively. Individually, both proteins showed their expected activities in microtubule stabilization and destruction respectively. In MAP1B/SCG10 double-transfected cells, MAP1B could not protect microtubules from SCG10-induced disassembly in most cells, in particular not in cells that contained high levels of SCG10. This suggests that SCG10 is more potent to destabilize microtubules than MAP1B to rescue them. In microtubule assembly assays, MAP1B promoted microtubule formation at a ratio of 1 MAP1B per 70 tubulin dimers while a ratio of 1 SCG10 per two tubulin dimers was needed to destroy microtubules. In addition to its known binding to tubulin dimers, SCG10 binds also to purified microtubules in growth cones of dorsal root ganglion neurons in culture. In conclusion, neuronal microtubules are regulated by antagonistic effects of MAP1B and SCG10 and a fine tuning of the balance of these proteins may be critical for the regulation of microtubule dynamics in growth cones.
Collapse
Affiliation(s)
- Percy Bondallaz
- Département de Biologie Cellulaire et de Morphologie, University of Lausanne, 1005 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
8
|
Schiaveto de Souza A, da Silva CA, Del Bel EA. Methodological evaluation to analyze functional recovery after sciatic nerve injury. J Neurotrauma 2004; 21:627-35. [PMID: 15165370 DOI: 10.1089/089771504774129955] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Basso, Bresnahan and Beattie (BBB) locomotor scale has not been tested to evaluate functional consequences of peripheral nerve lesions. Alternative methods to evaluate animal functional recovery after sciatic nerve injury are desirable. Male Wistar rats had a right sciatic nerve segment exposed and were divided in three experimental groups: Sham (wound open, 10 min), Sham-device (nerve segment between crushing device, 10 min), and Crush-force (nerve crushing load of 15,000 g/1,000 mm Hg/mm(2), 10 min). Animals were evaluated preoperatively, 1, 7, 14, 21, and 28 days after procedure by calculation of Sciatic Functional Index (SFI), BBB score and open arena exploratory activity. The primary findings of the present study were (1) the SFI calculated by either DeMedinaceli, Carlton and Goldberg, and Bain formulae were highly correlated; (2) the BBB score evaluation was highly correlated with the SFI; (3) the BBB motor scale was able to detect functional impairments not recognized by the SFI; and (4) open arena exploratory activity was a poor method to detect sciatic nerve impairment. In conclusion, the BBB prescribed functional deficits on the sham-device and crush-force groups even when the SFI indicated full recovery. This greater sensitivity may prove useful when comparing new therapeutic approaches to nerve regeneration.
Collapse
|
9
|
Gonzalez-Billault C, Jimenez-Mateos EM, Caceres A, Diaz-Nido J, Wandosell F, Avila J. Microtubule-associated protein 1B function during normal development, regeneration, and pathological conditions in the nervous system. ACTA ACUST UNITED AC 2004; 58:48-59. [PMID: 14598369 DOI: 10.1002/neu.10283] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microtubule-associated protein 1B is the first MAP to be expressed during the development of the nervous system. Several different approaches have revealed that MAP1B function is associated with microtubule and actin microfilament polymerization and dynamics. In recent years, the generation of molecular models to inactivate MAP1B function in invertebrates and mammals has sparked some controversy about the real role of MAP1B. Despite discrepancies between some studies, it is clear that MAP1B plays a principal role in the development of the nervous system. In this article, we summarize the evidence for MAP1B function in a wide variety of cellular processes implicated in the proper construction of the nervous system. We also discuss the role of MAP1B in pathological processes.
Collapse
|
10
|
Emery DL, Royo NC, Fischer I, Saatman KE, McIntosh TK. Plasticity following Injury to the Adult Central Nervous System: Is Recapitulation of a Developmental State Worth Promoting? J Neurotrauma 2003; 20:1271-92. [PMID: 14748977 DOI: 10.1089/089771503322686085] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The adult central nervous system (CNS) appears to initiate a transient increase in plasticity following injury, including increases in growth-related proteins and generation of new cells. Recent evidence is reviewed that the injured adult CNS exhibits events and patterns of gene expression that are also observed during development and during regeneration following damage to the mature peripheral nervous system (PNS). The growth of neurons during development or regeneration is correlated, in part, with a coordinated expression of growth-related proteins, such as growth-associated-protein-43 (GAP-43), microtubule-associated-protein-1B (MAP1B), and polysialylated-neural-cell-adhesion-molecule (PSA-NCAM). For each of these proteins, evidence is discussed regarding its specific role in neuronal development, signals that modify its expression, and reappearance following injury. The rate of adult hippocampal neurogenesis is also affected by numerous endogenous and exogenous factors including injury. The continuing study of developmental neurobiology will likely provide further gene and protein targets for increasing plasticity and regeneration in the mature adult CNS.
Collapse
Affiliation(s)
- Dana L Emery
- Head Injury Center, Department of Neurosurgery, University of Pennsylvania, USA
| | | | | | | | | |
Collapse
|
11
|
Vogelaar CF, Hoekman MFM, Gispen WH, Burbach JPH. Homeobox gene expression in adult dorsal root ganglia during sciatic nerve regeneration: is regeneration a recapitulation of development? Eur J Pharmacol 2003; 480:233-50. [PMID: 14623366 DOI: 10.1016/j.ejphar.2003.08.110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
After damage of the sciatic nerve, a regeneration process is initiated. Neurons in the dorsal root ganglion regrow their axons and functional connections. The molecular mechanisms of this neuronal regenerative process have remained elusive, but a relationship with developmental processes has been conceived. This chapter discusses the applicability of the developmental hypothesis of regeneration to the dorsal root ganglion; this hypothesis states that regeneration of dorsal root ganglion neurons is a recapitulation of development. We present data on changes in gene expression upon sciatic nerve damage, and the expression and function of homeobox genes. This class of transcription factors plays a role in neuronal development. Based on these data, it is concluded that the hypothesis does not hold for dorsal root ganglion neurons, and that regeneration-specific mechanisms exist. Cytokines and the associated Jak/STAT (janus kinase/signal transducer and activator of transcription) signal transduction pathway emerge as constituents of a regeneration-specific mechanism. This mechanism may be the basis of pharmacological strategies to stimulate regeneration.
Collapse
Affiliation(s)
- Christina F Vogelaar
- Department of Pharmacology and Anatomy, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
12
|
Gonzalez-Billault C, Owen R, Gordon-Weeks PR, Avila J. Microtubule-associated protein 1B is involved in the initial stages of axonogenesis in peripheral nervous system cultured neurons. Brain Res 2002; 943:56-67. [PMID: 12088839 DOI: 10.1016/s0006-8993(02)02534-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuronal process extension is dependent on the reorganisation of the cytoskeleton, in particular microtubules and microfilaments, and one of the ways in which microtubules are regulated is by a group of microtubule-associated proteins called MAPs. MAP1B, the first MAP to be expressed in developing neurons, has been shown to play an important role during axonogenesis. Previously, we have shown that a phosphorylated isoform of MAP1B is involved in maintaining growth cone microtubules in a dynamically unstable state. In order to further investigate the role of MAP1B during axonogenesis we have cultured dorsal root ganglion (DRG) neurons from a MAP1B deficient mutant mouse. These mice express only trace amounts of MAP1B, have defects in the development of their nervous system and die perinatally. Cultured DRG neurons from MAP1B deficient mice show a reduction in axon elongation and an increase in growth cone area. The reduction in axon elongation is most likely to occur due to an inhibition in the early stages of axonogenesis. Using time-lapse video we have verified that during the first 2 h after plating, MAP1B deficient neurones extend their axons with an average speed that is half the speed of control neurones. These results support the participation of MAP1B during the initial stages of axonogenesis.
Collapse
|
13
|
Bleicher F, Couble ML, Buchaille R, Farges JC, Magloire H. New genes involved in odontoblast differentiation. Adv Dent Res 2001; 15:30-3. [PMID: 12640735 DOI: 10.1177/08959374010150010701] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The odontoblast phenotype has been mainly approached by the biochemical characterization of dentin matrix proteins and by extrapolation of the knowledge of bone cell biology, since dentin and bone share many similarities. In fact, direct investigations of the odontoblast phenotype have been hindered by the limited number of cells within the dental pulp and the difficulty in microdissection and isolation of a pure population of these cells. To overcome these obstacles, we previously developed a cell-culture system that promotes differentiation of human dental pulp cells into odontoblasts. This material now permits the study of odontoblasts through molecular biology techniques. Therefore, we constructed a cDNA library enriched for odontoblast-specific genes using the suppression subtractive hybridization technique (SSH). This library led us to identify new genes expressed by odontoblasts. In this paper, we will focus on some genes implied in various functions associated with odontoblast differentiation, such as cell polarization (MAP1B), dentin mineralization (PHEX, osteoadherin), and relationships between odontoblasts and nerve cells (reelin). Another important fact is that about 40% of the cDNA were unknown genes. Therefore, one can speculate that some of them will be odontoblast-specific, since, until now, only one gene (DSPP) presents this characteristic.
Collapse
Affiliation(s)
- F Bleicher
- Lab. du Développement des Tissus Dentaires, EA1892, Faculté d'Odontologie, UCBL, Rue G. Paradin, 69372, Lyon, France.
| | | | | | | | | |
Collapse
|
14
|
Ma D, Connors T, Nothias F, Fischer I. Regulation of the expression and phosphorylation of microtubule-associated protein 1B during regeneration of adult dorsal root ganglion neurons. Neuroscience 2000; 99:157-70. [PMID: 10924960 DOI: 10.1016/s0306-4522(00)00141-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Microtubule-associated protein 1B is a major constituent of the neuronal cytoskeleton during the early stages of development. This protein and its phosphorylated isoform, microtubule-associated protein 1B-P, defined by the monoclonal antibody 1B-P [Boyne L. J. et al. (1995) J. Neurosci. Res. 40, 439-450], are present in growing axons and concentrated in the distal end near the growth cone. In most regions of the central nervous system, microtubule-associated protein 1B and microtubule-associated protein 1B-P are developmentally down-regulated. They remain, however, at relatively high levels in the adult peripheral nervous system, where microtubule-associated protein 1B-P is localized exclusively in axons. The aim of this study was to examine the levels of microtubule-associated protein 1B and its phosphorylated isoform during regenerative growth of peripheral axons. Following transection and re-apposition of the sciatic nerve at midthigh, the levels of total microtubule-associated protein 1B, microtubule-associated protein 1B-P and microtubule-associated protein 1B messenger RNA were analysed in dorsal root ganglion neurons and sciatic nerve axons using western blots and RNase protection assays. After the lesion, there was a small decrease in the levels of microtubule-associated protein 1B and its messenger RNA in dorsal root ganglion neurons. The proximal axonal stump showed a similar decrease in the levels of microtubule-associated protein 1B 30days after lesion and returned to normal 60-90days post-lesion. In the distal stump of the sciatic nerve, the levels of microtubule-associated protein 1B increased dramatically and rapidly between three and 14days, but the protein was localized mainly in activated Schwann cells and myelin-like structures, and not in axons [Ma D. et al. (1999) Brain Res. 823, 141-153]. With the regeneration of axons into the distal stump, an intense expression of microtubule-associated protein 1B was observed in these axons. Microtubule-associated protein 1B-P, however, disappeared from the degenerated distal axonal stump as early as three days post-operation, and was absent in the regenerating axons and in Schwann cells between three and 14days. The levels of microtubule-associated protein 1B-P recovered slowly and did not reach the normal levels even after 90days post-operation. In contrast to the response following transection, the levels of microtubule-associated protein 1B and microtubule-associated protein 1B-P were much less affected after nerve crush. We propose that the relatively high levels of microtubule-associated protein 1B and its messenger RNA in adult dorsal root ganglions support peripheral neuron regeneration. The presence of microtubule-associated protein 1B in the regenerating axons suggests that microtubule-associated protein 1B is involved in axonal growth during peripheral nerve regeneration. However, the phosphorylated microtubule-associated protein 1B-P isoform, associated with growing axons during development, is not present in the regenerating axons after transection, presumably because of changes in the activities of kinases and phosphatases associated with the injury. These observations underscore the difference between axonal development and regeneration and the importance of injury-related effects that occur locally.
Collapse
Affiliation(s)
- D Ma
- Department of Neurobiology and Anatomy, Medical College of Pennsylvania Hahnemann University, 3200 Henry Avenue, Philadelphia, PA 19129, USA
| | | | | | | |
Collapse
|
15
|
Abstract
MAP1B is a microtubule-associated phosphoprotein that is particularly highly expressed in developing neurons. There is experimental evidence that it plays an important role in neuronal differentiation, especially the extension of axons and dendrites, but exactly what role is unclear. Recent experiments have shed light on the gene structure of MAP1B and identified some of the kinases that phosphorylate the protein. Implicit in these findings is the idea that MAP1B regulates the organisation of microtubules in neurites and is itself regulated in a complex way and at a number of levels.
Collapse
Affiliation(s)
- P R Gordon-Weeks
- Centre for Developmental Neurobiology, GKT School of Biomedical Sciences, King's College London, London WC2B 5RL.
| | | |
Collapse
|
16
|
Emery DL, Raghupathi R, Saatman KE, Fischer I, Grady MS, McIntosh TK. Bilateral growth-related protein expression suggests a transient increase in regenerative potential following brain trauma. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20000828)424:3<521::aid-cne9>3.0.co;2-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|