1
|
Lin R, Yu J. The role of NAD + metabolism in macrophages in age-related macular degeneration. Mech Ageing Dev 2023; 209:111755. [PMID: 36435209 DOI: 10.1016/j.mad.2022.111755] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/05/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Age-related macular degeneration (AMD) is a leading cause of legal blindness and moderate and severe vision impairment (MSVI) in people older than 50 years. It is classified in various stages including early, intermediate, and late stage. In the early stages, innate immune system, especially macrophages, play an essential part in disease onset and progression. NAD+ is an essential coenzyme involved in cellular senescence and immune cell function, and its role in age-related diseases is gaining increasing attention. The imbalance between the NAD+ synthesis and consumption causes the fluctuation of intracellular NAD+ level which determines the polarization fate of macrophages. In AMD, the over-expression of NAD+-consuming enzymes in macrophages leads to declining of NAD+ concentrations in the microenvironment. This phenomenon triggers the activation of inflammatory pathways in macrophages, positive feedback aggregation of inflammatory cells and accumulation of reactive oxygen species (ROS). This review details the role of NAD+ metabolism in macrophages and molecular mechanisms during AMD. The selected pathways were identified as potential targets for intervention in AMD, pending further investigation.
Collapse
Affiliation(s)
- Ruoyi Lin
- Department of Ophthalmology, the Tenth People's Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200072, China
| | - Jing Yu
- Department of Ophthalmology, the Tenth People's Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200072, China; Department of Ophthalmology, Bengbu Third People's Hospital, Bengbu, Anhui 233099, China.
| |
Collapse
|
2
|
Singh A, Bazzi T, Lebovic D, Demirci H. Choroidal effusion: a rare and unusual complication of daratumumab. BMJ Case Rep 2022; 15:e249735. [PMID: 35914801 PMCID: PMC9344984 DOI: 10.1136/bcr-2022-249735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 11/04/2022] Open
Abstract
Daratumumab-containing regimens are an effective treatment for advanced cases of multiple myeloma. Overall, daratumumab has a favourable safety profile, although rare side effects can occur. Rare side effects of daratumumab include choroidal effusion. Patients who begin to experience symptoms such as eye swelling, vision changes, eye discharge and blurry vision should undergo urgent ophthalmological evaluation and their daratumumab infusions held.
Collapse
Affiliation(s)
- Aditi Singh
- Hematology Oncology, Ascension St John Hospital, Detroit, Michigan, USA
| | - Talal Bazzi
- Internal Medicine, Ascension St John Hospital, Detroit, Michigan, USA
| | - Daniel Lebovic
- Hematology Oncology, Ascension St John Hospital, Detroit, Michigan, USA
| | - Hakan Demirci
- W. K. Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Nadeau Nguyen M, Chambers W, Dores GM, Nayernama A, Jones SC. Association of Daratumumab Use With Ocular Events in a Case Series of US Adults. JAMA Oncol 2022; 8:1209-1210. [PMID: 35653128 DOI: 10.1001/jamaoncol.2022.1634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Michelle Nadeau Nguyen
- Division of Pharmacovigilance, Office of Surveillance and Epidemiology, US Food and Drug Administration, Silver Spring, Maryland
| | - Wiley Chambers
- Division of Ophthalmology, Office of Specialty Medicine, US Food and Drug Administration, Silver Spring, Maryland
| | - Graça M Dores
- Division of Pharmacovigilance, Office of Surveillance and Epidemiology, US Food and Drug Administration, Silver Spring, Maryland
| | - Afrouz Nayernama
- Division of Pharmacovigilance, Office of Surveillance and Epidemiology, US Food and Drug Administration, Silver Spring, Maryland
| | - S Christopher Jones
- Division of Pharmacovigilance, Office of Surveillance and Epidemiology, US Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
4
|
Chen G, Yan F, Wei W, Wang F, Wang Z, Nie J, Jin M, Pang Y, Qin M, Wang L, Zhang X. CD38 deficiency protects the retina from ischaemia/reperfusion injury partly via suppression of TLR4/MyD88/NF-κB signalling. Exp Eye Res 2022; 219:109058. [PMID: 35364100 DOI: 10.1016/j.exer.2022.109058] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/14/2022] [Accepted: 03/25/2022] [Indexed: 12/22/2022]
Abstract
PURPOSE This study aimed to explore cellular localisation of CD38 in the retina and evaluate the role and potential mechanism of CD38 deficiency in retinal ischaemia/reperfusion (I/R) injury. METHODS Six-to eight-week-old male CD38 knockout (KO) and wild-type mice in C57BL/6 background were used. Immunostaining was performed to determine the cellular localisation of CD38 in the retina. Haematoxylin and eosin staining and immunostaining of Brn3a were used to evaluate the retinal I/R injury. Western blotting was performed to detect toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), p-p65, ionised calcium-binding adapter molecule 1, Sirtuin1 (Sirt1), Ac-p65, and pro-inflammatory cytokines protein expression. RESULTS CD38 was highly expressed in mouse retinal microglia and astrocytes/Müller cells. CD38 deficiency reduced I/R-induced retinal damage and retinal ganglion cell death. Following retinal I/R injury, TLR4, MyD88, nuclear factor-κB p-p65 (NF-κB p-p65), pro-inflammatory cytokines and CD38 protein levels were also upregulated. After I/R injury, retinal inflammation factors IL-1β, IL-6, and TNF-α mRNA and protein levels were increased. IL-1β, IL-6, and TNF-α were reduced in CD38 KO mice after I/R injury. Retinal I/R injury induced the activation of microglia, but this effect was also suppressed by KO of CD38. Additionally, retinal I/R induced a significant increase in Ac-p65 protein levels and decrease in Sirt1 protein levels, while this effect was greatly attenuated by KO of CD38. CONCLUSION CD38 deficiency protects the retina from I/R injury by suppressing microglial activation partly via activating Sirt1-mediated suppression of TLR4/MyD88/NF-κB signalling.
Collapse
Affiliation(s)
- Guiping Chen
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Feng Yan
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China; School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Wei Wei
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Feifei Wang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Zhiruo Wang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Jiahe Nie
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Ming Jin
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Yulian Pang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Mengqi Qin
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Lingfang Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China.
| |
Collapse
|
5
|
Zand L, Rajkumar SV, Leung N, Sethi S, El Ters M, Fervenza FC. Safety and Efficacy of Daratumumab in Patients with Proliferative GN with Monoclonal Immunoglobulin Deposits. J Am Soc Nephrol 2021; 32:1163-1173. [PMID: 33685975 PMCID: PMC8259683 DOI: 10.1681/asn.2020101541] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/06/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Treatment of proliferative GN with monoclonal Ig deposits (PGNMID) is not established. A monoclonal anti-CD38 antibody (daratumumab) is effective in treating multiple myeloma. Abnormal plasma cell clones may play a role in the pathogenesis of PGNMID. METHODS We evaluated daratumumab's safety and efficacy in an open-label, phase 2 trial in 11 adults with PGNMID and one with C3 glomerulopathy (C3G) with monoclonal gammopathy. Patients had an eGFR >20 ml/min per 1.73 m2 and proteinuria >1 g/d. They received daratumumab intravenously (16 mg/kg) once weekly for 8 weeks, and then every other week for eight additional doses. Primary outcome was safety, defined as major infections, grade 3 or 4 anemia, leukopenia, or thrombocytopenia. Secondary outcomes were rate of complete remission (proteinuria <500 mg/d with <15% decline in baseline eGFR) or partial remission (>50% reduction in 24-hour proteinuria with <30% decline in eGFR) and proteinuria at 6 and 12 months. RESULTS One patient with C3G had GN unrelated to the monoclonal gammopathy, and one with PGNMID did not complete the first infusion. Five serious adverse events occurred. During the 12 months of the trial, six of the ten patients with PGNMID who received at least one dose of daratumumab had a partial response, and four had a complete response (an overall response rate of 100%). Three patients experienced relapse, two of whom re-entered partial remission after resuming daratumumab therapy. Proteinuria declined significantly, from a median of 4346 mg/d to 1264 mg/d by 12 months. CONCLUSIONS Daratumumab demonstrated an acceptable safety profile and resulted in significant improvement in proteinuria while stabilizing kidney function in patients with PGNMID, suggesting the drug merits further investigation. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER Daratumumab in Treatment of PGNMID and C3 GN, NCT03095118.
Collapse
Affiliation(s)
- Ladan Zand
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Nelson Leung
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota,Division of Hematology and Oncology, Mayo Clinic, Rochester, Minnesota
| | - Sanjeev Sethi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Mireille El Ters
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
6
|
Acute bilateral angle closure induced by monoclonal antibody (Daratumumab) infusion. Am J Ophthalmol Case Rep 2021; 22:101079. [PMID: 33889788 PMCID: PMC8050364 DOI: 10.1016/j.ajoc.2021.101079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 11/20/2022] Open
Abstract
Purpose To report a case of daratumumab-induced bilateral angle closure glaucoma and myopia that showed no recurrence after repeated drug administration with prophylactic cycloplegia. Observations A 63-year-old man with relapsing multiple myeloma presented with acute bilateral eye pain and blurred vision 14 hours after first daratumumab infusion. Eye examination revealed raised intraocular pressure and shallow anterior chamber. Anterior segment ocular coherence tomography and ultrasound biomicroscopy showed ciliochoroidal effusions in both eyes. The diagnosis of bilateral acute angle closure glaucoma and induced myopia was made. Cycloplegia- and intraocular-pressure-lowering medications were given, which gradually deepened the anterior chambers and normalized intraocular pressure and refraction. The ciliochoroidal effusions completely resolved on day 14. The cycloplegic was given as a premedication for subsequent infusions. There was no recurrence of effusion throughout his 6-month daratumumab treatment course. Conclusions and importance Daratumumab can induce ciliochoroidal effusion, which results in acute secondary angle closure and myopia. The potential prophylactic effect of the cycloplegic drug may enable continuation of daratumumab infusion under close monitoring.
Collapse
|
7
|
Sung VMH. Mechanistic overview of ADP-ribosylation reactions. Biochimie 2015; 113:35-46. [PMID: 25828806 DOI: 10.1016/j.biochi.2015.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 03/20/2015] [Indexed: 10/23/2022]
Abstract
ADP-ribosylation reactions consist of mono-ADP-ribosylation, poly-ADP-ribosylation and cyclic ADP-ribosylation. These reactions play essential roles in many important physiological and pathophysiological events. The types of chemical linkages, the evolutionarily conserved motif within the enzymes to determine the target specificity, stereochemistry of the ADP-ribosylated products, and the chemical reactions taking place among the enzymes and substrates are discussed.
Collapse
Affiliation(s)
- Vicky M-H Sung
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Harvard University, MA 02115, USA.
| |
Collapse
|
8
|
Abstract
Cell-surface expression of CD38 in CLL has been recognised recently as a marker of progressive disease and poor outcome. In contrast to traditional staging systems, CD38 is able to identify progressive cases at an early stage. Measurement of CD38, in conjunction with other novel prognostic factors such as p53 and ZAP-70 helps to identify patients who might benefit from early and more intensive therapy. In addition, CD38 positivity can predict unmutated IgVH gene mutation status in most cases. These features, together with its easy applicability, render CD38 a valuable tool in the routine diagnostics of CLL. Questions remaining to be clarified about CD38 include the incidence and significance of its variations during the course of the disease, the optimal method to define CD38 positivity and the impact of different methodologies on results. Only after these issues are resolved can the definitive place of CD38 be defined in the diagnostics of CLL.
Collapse
Affiliation(s)
- Zoltan Matrai
- Department of Clinical Haematology, national Medical Center, Budapest, Hungary.
| |
Collapse
|
9
|
Pavón EJ, Zumaquero E, Rosal-Vela A, Khoo KM, Cerezo-Wallis D, García-Rodríguez S, Carrascal M, Abian J, Graeff R, Callejas-Rubio JL, Ortego-Centeno N, Malavasi F, Zubiaur M, Sancho J. Increased CD38 expression in T cells and circulating anti-CD38 IgG autoantibodies differentially correlate with distinct cytokine profiles and disease activity in systemic lupus erythematosus patients. Cytokine 2013; 62:232-43. [PMID: 23538292 DOI: 10.1016/j.cyto.2013.02.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 02/14/2013] [Accepted: 02/16/2013] [Indexed: 01/05/2023]
Abstract
CD38 is a multifunctional protein possessing ADP-ribosyl cyclase activity responsible for both the synthesis and the degradation of several Ca(2+)-mobilizing second messengers. In mammals, CD38 also functions as a receptor. In this study CD38 expression in CD4(+), CD8(+), or CD25(+) T cells was significantly higher in systemic lupus erythematosus (SLE) patients than in Normal controls. Increased CD38 expression in SLE T cells correlated with plasma levels of Th2 (IL-4, IL-10, IL-13) and Th1 (IL-1β, IL-12, IFN-γ, TNF-α) cytokines, and was more prevalent in clinically active SLE patients than in Normal controls. In contrast, elevated anti-CD38 IgG autoantibodies were more frequent in clinically quiescent SLE patients (SLEDAI=0) than in Normal controls, and correlated with moderate increased plasma levels of IL-10 and IFN-γ. However, clinically active SLE patients were mainly discriminated from quiescent SLE patients by increased levels of IL-10 and anti-dsDNA antibodies, with odds ratios (ORs) of 3.7 and 4.8, respectively. Increased frequency of anti-CD38 autoantibodies showed an inverse relationship with clinical activity (OR=0.43), and in particular with the frequency of anti-dsDNA autoantibodies (OR=0.21). Increased cell death occurred in CD38(+) Jurkat T cells treated with anti-CD38(+) SLE plasmas, and not in these cells treated with anti-CD38(-) SLE plasmas, or Normal plasmas. This effect did not occur in CD38-negative Jurkat T cells, suggesting that it could be attributed to anti-CD38 autoantibodies. These results support the hypothesis that anti-CD38 IgG autoantibodies or their associated plasma factors may dampen immune activation by affecting the viability of CD38(+) effector T cells and may provide protection from certain clinical SLE features.
Collapse
Affiliation(s)
- Esther J Pavón
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico de Ciencias de la Salud (PTS), Avenida del Conocimiento s/n, 18016 Armilla, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Vences-Catalán F, Santos-Argumedo L. CD38 through the life of a murine B lymphocyte. IUBMB Life 2011; 63:840-6. [PMID: 21901817 DOI: 10.1002/iub.549] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/02/2011] [Indexed: 12/15/2022]
Abstract
CD38 is a 45 kDa transmembrane receptor expressed in B lymphocytes and other cells from the immune system. It is involved in apoptosis, cell activation, differentiation, and proliferation. CD38 has been used extensively to classify various subpopulations of lymphocytes in both humans and mice. It has also been used as a marker of poor prognosis in some lymphoid pathologies. However, CD38 is not a marker but rather an ectoenzyme and a receptor, where it performs several functions. The CD38 signaling pathway has only been partially studied in various cells of the immune system, where apparently the signaling is different depending on the lineage and differentiation state of the cell, leading to distinct outcomes. In this review, we provide an overview of well-established roles of CD38 signaling B lymphocytes from mice. We also discuss areas that need further clarification to get a broader image of how CD38 performs different functions in B cells and to understand its role in B lymphocyte biology under normal versus pathological conditions.
Collapse
Affiliation(s)
- Felipe Vences-Catalán
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico
| | | |
Collapse
|
11
|
Masuda W, Jimi E. CD38/ADP-ribosyl cyclase in the rat sublingual gland: Subcellular localization under resting and saliva-secreting conditions. Arch Biochem Biophys 2011; 513:131-9. [DOI: 10.1016/j.abb.2011.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 12/01/2022]
|
12
|
Yang D, Elner SG, Chen X, Field MG, Petty HR, Elner VM. MCP-1-activated monocytes induce apoptosis in human retinal pigment epithelium. Invest Ophthalmol Vis Sci 2011; 52:6026-34. [PMID: 21447688 DOI: 10.1167/iovs.10-7023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The inflammatory response in age-related macular degeneration (AMD) is characterized by mononuclear leukocyte infiltration of the outer blood-retina barrier formed by the retinal pigment epithelium (RPE). A key mechanistic element in AMD progression is RPE dysfunction and apoptotic cell loss. The purpose of this study was to evaluate whether monocyte chemoattractant protein (MCP)-1-activated monocytes induce human RPE apoptosis and whether Ca(2+) and reactive oxygen species (ROS) are involved in this process. METHODS A cell-based fluorometric assay was used to measure intracellular Ca(2+) concentrations ([Ca(2+)](i)) in RPE cells loaded with fluorescent Ca(2+) indicator. Intracellular RPE ROS levels were measured by using the 5- and 6-chloromethyl-2',7'-dichlorodihydrofluorescence diacetate acetyl ester (CM-H(2)DCFDA) assay. RPE apoptosis was evaluated by activated caspase-3, Hoechst staining, and apoptosis ELISA. RESULTS MCP-1-activated human monocytes increased [Ca(2+)](i), ROS levels, and apoptosis in RPE cells, all of which were inhibited by 8-bromo-cyclic adenosine diphosphoribosyl ribose (8-Br-cADPR), an antagonist of cADPR. Although the ROS scavengers pyrrolidinedithiocarbamate (PDTC) and N-acetylcysteine (NAC) significantly inhibited ROS production and apoptosis induced by activated monocytes, they did not affect induced Ca(2+) levels. The induced Ca(2+) levels and apoptosis in RPE cells were inhibited by an antibody against cluster of differentiation antigen 14 (CD14), an adhesion molecule expressed by these cells. CONCLUSIONS These results indicate that CD14, Ca(2+), and ROS are involved in activated monocyte-induced RPE apoptosis and that cADPR contributes to these changes. Understanding the complex interactions among CD14, cADPR, Ca(2+), and ROS may provide new insights and treatments of retinal diseases, including AMD.
Collapse
Affiliation(s)
- Dongli Yang
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105-0714, USA
| | | | | | | | | | | |
Collapse
|
13
|
Nguyen MH, Dang VU, Luu BV. Computational characterization for catalytic activities of human CD38's wild type, E226 and E146 mutants. Interdiscip Sci 2010; 2:193-204. [PMID: 20640790 DOI: 10.1007/s12539-010-0091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/16/2010] [Accepted: 03/04/2010] [Indexed: 11/26/2022]
Abstract
A series of the complexes of human CD38's wild type, E226 and E146 mutants as well have been simulated. The biosoftwares well simulate the penetration of nicotinamide-adenine-dinucleotide (NAD) into the active site. The nicotinamide end of NAD penetrates deep into the active site consistent with cleavage of the nicotinamide-glycosidic bond which is the first step of catalysis creating a Michaelis complex regarded as the intermediate product of NAD cyclase and hydrolysis reaction. The breaking down hydrogen bond between 2'-3' OH ribosyl and the residues replaced Glu(226) makes NAD to be less constrained in active site and nicotinamide (NA) becomes more difficult to be cleaved and eliminates the mutant catalytic activities. The large majority of the substrate NAD is hydrolyzed to ADPR while the conversion of NAD to cADPR is not the dominant reaction catalyzed by wild-type human CD38. The more strongly kept ribosyl group by hydrogen bonds the more NADase and the less cyclase activity. Breaking hydrogen bonds of ribosyl 2'- and 3'-OH by mutation will loosen it to promote the cyclase. The cyclic adenosine diphosphate-ribose (cADPR) could also penetrate deeply into active site to make some hydrogen bonds with Glu(146) and Glu(226); however, its docking poses are affected by a residue located at the entrance of the catalytic pocket (Lys(129)). These results are in good agreement with the previous crystallographic analysis and the experiments quantified the catalytic activities of human CD38 and its mutants.
Collapse
Affiliation(s)
- My H Nguyen
- Faculty of Chemistry, Hanoi University of Natural Science, VNU, 19 Le Thanh Tong, Hanoi, Vietnam
| | | | | |
Collapse
|
14
|
Trimarchi JM, Cho SH, Cepko CL. Identification of genes expressed preferentially in the developing peripheral margin of the optic cup. Dev Dyn 2009; 238:2327-9. [PMID: 19449303 PMCID: PMC2916742 DOI: 10.1002/dvdy.21973] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Specification of the peripheral optic cup by Wnt signaling is critical for formation of the ciliary body/iris. Identification of marker genes for this region during development provides a starting point for functional analyses. During transcriptional profiling of single cells from the developing eye, two cells were identified that expressed genes not found in most other single cell profiles. In situ hybridizations demonstrated that many of these genes were expressed in the peripheral optic cup in both early mouse and chicken development, and in the ciliary body/iris at subsequent developmental stages. These analyses indicate that the two cells probably originated from the developing ciliary body/iris. Changes in expression of these genes were assayed in embryonic chicken retinas when canonical Wnt signaling was ectopically activated by CA-beta-catenin. Twelve ciliary body/iris genes were identified as upregulated following induction, suggesting they are excellent candidates for downstream effectors of Wnt signaling in the optic cup.
Collapse
Affiliation(s)
- Jeffrey M Trimarchi
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
15
|
Horenstein AL, Sizzano F, Lusso R, Besso FG, Ferrero E, Deaglio S, Corno F, Malavasi F. CD38 and CD157 ectoenzymes mark cell subsets in the human corneal limbus. Mol Med 2008; 15:76-84. [PMID: 19052657 DOI: 10.2119/molmed.2008.00108] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 11/19/2008] [Indexed: 11/06/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD(+)), a precursor of molecules involved in cell regulatory processes, is released in extra-cellular compartments after stress or inflammation.This study investigates the expression in the human cornea of CD38 and CD157, two NAD(+)-consuming ectoenzymes and surface receptors. The analysis in corneal epithelial and stromal cells was performed by means of multiple approaches, which included immunofluorescence, reverse transcriptase polymerase chain reaction (RT-PCR), Western blot, and confocal microscopy. The presence of enzymatically active NAD(+)-consumers in intact corneal cells was analyzed by high performance liquid chromatography (HPLC)-based assays. The results obtained show that CD38 and CD157 are expressed constitutively by corneal cells: CD38 appears as a 45-kDa monomer, while CD157 is a 42- to 45-kDa doublet. The molecules are enzymatically active, with features reminiscent of those observed in human leukocytes. CD38 is expressed by cells of the suprabasal limbal epithelium, whereas it is not detectable in central corneal epithelium and stroma. CD157 is expressed by basal limbal clusters, a p63(+)/cytokeratin 19(+) cell subset reported to contain corneal stem cells, and by stromal cells. The results of the work indicates that the human cornea is equipped with molecular tools capable of consuming extracellular NAD(+), and that CD157 is a potential marker of corneal limbal cells in the stem cell niche. The presence and characteristics of these ectoenzymes may be exploited to design drugs for wound repair or for applications in tissue transplantation.
Collapse
Affiliation(s)
- Alberto L Horenstein
- Department of Genetics, Biology and Biochemistry, University of Torino Medical School, Torino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, Vaisitti T, Aydin S. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev 2008; 88:841-86. [PMID: 18626062 DOI: 10.1152/physrev.00035.2007] [Citation(s) in RCA: 628] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The membrane proteins CD38 and CD157 belong to an evolutionarily conserved family of enzymes that play crucial roles in human physiology. Expressed in distinct patterns in most tissues, CD38 (and CD157) cleaves NAD(+) and NADP(+), generating cyclic ADP ribose (cADPR), NAADP, and ADPR. These reaction products are essential for the regulation of intracellular Ca(2+), the most ancient and universal cell signaling system. The entire family of enzymes controls complex processes, including egg fertilization, cell activation and proliferation, muscle contraction, hormone secretion, and immune responses. Over the course of evolution, the molecules have developed the ability to interact laterally and frontally with other surface proteins and have acquired receptor-like features. As detailed in this review, the loss of CD38 function is associated with impaired immune responses, metabolic disturbances, and behavioral modifications in mice. CD38 is a powerful disease marker for human leukemias and myelomas, is directly involved in the pathogenesis and outcome of human immunodeficiency virus infection and chronic lymphocytic leukemia, and controls insulin release and the development of diabetes. Here, the data concerning diseases are examined in view of potential clinical applications in diagnosis, prognosis, and therapy. The concluding remarks try to frame all of the currently available information within a unified working model that takes into account both the enzymatic and receptorial functions of the molecules.
Collapse
Affiliation(s)
- Fabio Malavasi
- Laboratory of Immunogenetics, Department of Genetics, Biology, and Biochemistry and Centro di Ricerca in Medicina Sperimentale, University of Torino Medical School, Torino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Trubiani O, Guarnieri S, Eleuterio E, Di Giuseppe F, Orciani M, Angelucci S, Di Primio R. Insights into nuclear localization and dynamic association of CD38 in Raji and K562 cells. J Cell Biochem 2008; 103:1294-308. [PMID: 17786980 DOI: 10.1002/jcb.21510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
CD38 is a type II transmembrane glycoprotein found mainly on the plasma membrane involved in the metabolism of cADPR and NAADP, two nucleotides with calcium mobilizing activity independent of inositol trisphosphate. Recent data report the presence of CD38 in different cellular compartments raising new questions about its effective role in cellular metabolism. In rat hepatocyte nuclei, CD38 has been proposed as a responsive to cADPR integral inner membrane protein suggesting that the nuclear envelope may also be an important source of Ca2+ stores. Further reports indicating that CD38 is localized in nuclear compartments in a variety of cell types and tissues including brain, liver, eye, spleen, and bone raise the condition of resolving the question concerning the effective presence of CD38 within the nucleus. Here we report data supporting the presence of CD38 at nuclear level independently of expression of surface CD38. We utilized two different human leukemia cell lines expressing or not expressing CD38 molecule on their cell surface. The morphological and biochemical results including enzymatic activity and proteomic determinations explain the effective nuclear localization of CD38 in human Raji and K562 cells. Since cell nucleus is a complex and highly dynamic environment with many functionally specialized regions, the nuclear localization of specific proteins represents an important mechanism in signal transduction. The presence of CD38 at the interchromatin region whether linked to nuclear scaffold or stored in nuclear structures as micronuclei and Cajal bodies co-localizing with coilin, suggests its involvement in nuclear processes including transcription, replication, repairing and splicing.
Collapse
Affiliation(s)
- Oriana Trubiani
- Department of Oral Science, University "G. D'Annunzio", Chieti-Pescara, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Graeff R, Liu Q, Kriksunov IA, Hao Q, Lee HC. Acidic residues at the active sites of CD38 and ADP-ribosyl cyclase determine nicotinic acid adenine dinucleotide phosphate (NAADP) synthesis and hydrolysis activities. J Biol Chem 2006; 281:28951-7. [PMID: 16861223 DOI: 10.1074/jbc.m604370200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a novel metabolite of NADP that has now been established as a Ca(2+) messenger in many cellular systems. Its synthesis is catalyzed by multifunctional enzymes, CD38 and ADP-ribosyl cyclase (cyclase). The degradation pathway for NAADP is unknown and no enzyme that can specifically hydrolyze it has yet been identified. Here we show that CD38 can, in fact, hydrolyze NAADP to ADP-ribose 2'-phosphate. This activity was low at neutrality but greatly increased at acidic pH. This novel pH dependence suggests that the hydrolysis is determined by acidic residues at the active site. X-ray crystallography of the complex of CD38 with one of its substrates, NMN, showed that the nicotinamide moiety was in close contact with Glu(146) at 3.27 A and Asp(155) at 2.52 A. Changing Glu(146) to uncharged Gly and Ala, and Asp(155) to Gln and Asn, by site-directed mutagenesis indeed eliminated the strong pH dependence. Changing Asp(155) to Glu, in contrast, preserved the dependence. The specificity of the two acidic residues was further demonstrated by changing the adjacent Asp(147) to Val, which had minimal effect on the pH dependence. Crystallography confirmed that Asp(147) was situated and directed away from the bound substrate. Synthesis of NAADP catalyzed by CD38 is known to have strong preference for acidic pH, suggesting that Glu(146) and Asp(155) are also critical determinants. This was shown to be case by mutagensis. Likewise, using similar approaches, Glu(98) of the cyclase, which is equivalent to Glu(146) in CD38, was found to be responsible for controlling the pH dependence of NAADP synthesis by the cyclase. Based on these findings, a catalytic model is proposed.
Collapse
Affiliation(s)
- Richard Graeff
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
19
|
Pupilli C, Antonelli A, Iughetti L, D'Annunzio G, Cotellessa M, Vanelli M, Okamoto H, Lorini R, Ferrannini E. Anti-CD38 autoimmunity in children with newly diagnosed type 1 diabetes mellitus. J Pediatr Endocrinol Metab 2005; 18:1417-23. [PMID: 16459468 DOI: 10.1515/jpem.2005.18.12.1417] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AIMS To test for anti-CD38 autoimmunity in children with newly-diagnosed type 1 diabetes mellitus (DM1). METHODS Serum anti-CD38 autoantibodies were detected by Western blot in 270 children (130 girls, 140 boys, mean age 8 +/- 4 years) with newly-diagnosed DM1 and 179 gender- and age-matched non-diabetic children. In 126 diabetic children, another blood sample was obtained 15 +/- 4 months after the diagnosis. RESULTS Anti-CD38 autoantibody titers at least 3 SD above the mean value for the control group were found in 4.4% of children with DM1 vs 0.6% of controls (chi2 = 5.8, p <0.016). No statistical differences were observed between anti-CD38 positive and negative patients in terms of phenotype. At follow-up, of six diabetic children who were positive for anti-CD38 antibodies, two were new cases. A positive correlation was found between the antibody titer of diabetic sera at diagnosis and follow up (r = 0.46, p <0.0001). CONCLUSION An autoimmune reaction against CD38, a protein expressed in human islets, is associated with newly-diagnosed DM1. In children with DM1, CD38 autoimmunity increases with time and persists.
Collapse
Affiliation(s)
- C Pupilli
- Endocrinology Unit, Azienda Ospedaliera Careggi and University of Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Khoo KM, Chang CF, Schubert J, Wondrak E, Chng HH. Expression and purification of the recombinant His-tagged GST-CD38 fusion protein using the baculovirus/insect cell expression system. Protein Expr Purif 2005; 40:396-403. [PMID: 15766882 DOI: 10.1016/j.pep.2004.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Indexed: 11/28/2022]
Abstract
CD38 is a type II transmembrane glycoprotein found in myriad mammalian tissues and cell types. It is known for its involvement in the metabolism of cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate, two nucleotides with calcium mobilizing activity independent of inositol trisphosphate. CD38 itself has been shown to have clinical significance in certain diseases with possible utilization in diagnostic and prognostic applications. Previous studies on several autoimmune diseases have shown the usefulness of recombinant CD38 protein expressed from Escherichia coli and Pichia pastoris in the detection of autoantibodies to CD38 via Western blot and ELISA. In this study, we produced a 6 x His-tagged GST-CD38 fusion protein using a recombinant baculovirus/insect cell expression technique that was purified as a soluble protein. The fusion protein was purified to homogeneity by affinity and gel filtration chromatography steps. It has an apparent molecular mass of 56 kDa on SDS-PAGE gel stained with Coomassie blue and was recognized on Western blots by antibodies against human CD38 as well as the polyhistidine tag. Peptide mass fingerprinting analysis confirmed the identity of human CD38 in the fusion protein.
Collapse
Affiliation(s)
- Keng Meng Khoo
- Department of Rheumatology, Allergy, and Immunology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore.
| | | | | | | | | |
Collapse
|
21
|
Abstract
Human CD38 is a protein which catalyzes the synthesis of nicotinic acid adenine dinucleotide (NAADP+) and the conversion of NAD+ to cADPR. Both cADPR and NAADP+ are powerful intracellular Ca2+ ([Ca2+]i) mobilizers in different cell types. Recently, the presence of CD38 autoantibodies has been found in a significant number (9-15%) of patients with Type 2 or long-standing Type 1 diabetes. These autoantibodies are biologically active, the majority of them (-60%) displaying agonistic properties, i.e., [Ca2+]i mobilization in lymphocytic cell lines and in pancreatic islets. In cultured rat pancreatic islets, the human autoantibodies inhibit glucose-induced insulin release, whereas, in human pancreatic islets CD38 autoantibodies stimulate glucose-mediated insulin secretion. The clinical phenotype of anti-CD38-positive Type 2 diabetes differs from the LADA (latent autoimmune diabetes of adults) phenotype. When accurately matched for age and obesity, only LADA patients with anti-GAD antibodies, but not GAD-negative/ CD38-positive patients, have reduced in vivo beta-cell function in comparison to antibody-negative patients. Transgenic mice overexpressing CD38 show enhanced glucose-induced insulin release, whereas, conversely, CD38 knockout mice display a severe impairment in beta-cell function. Few Japanese diabetic patients carry a missense mutation in the CD38 gene; in Caucasian patients mutations in the CD38 gene have not been found. Collectively, these findings suggest that activation of CD38 represents an alternative signaling pathway for glucose-induced insulin secretion in human beta-cells. More information, however, is necessary to gauge the role of CD38 autoimmunity in the context of the natural history of human Type 1 or Type 2 diabetes.
Collapse
Affiliation(s)
- A Antonelli
- Metabolism Unit, Department of Internal Medicine and CNR Institute of Clinical Physiology, University of Pisa School of Medicine, Pisa, Italy.
| | | |
Collapse
|
22
|
Ortolan E, Vacca P, Capobianco A, Armando E, Crivellin F, Horenstein A, Malavasi F. CD157, the Janus of CD38 but with a unique personality. Cell Biochem Funct 2002; 20:309-22. [PMID: 12415565 DOI: 10.1002/cbf.978] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CD157 is a pleiotropic ectoenzyme which belongs to the CD38 family and to the growing number of leukocyte surface molecules known to act independently as both receptors and enzymes. A 45-kDa surface structure with a GPI anchor, the CD157 molecule displays two distinct domains in its extracellular component. The first is implicated in the enzymic activities of the molecule and the second features adhesion/signalling properties. CD157 shares several characteristics with CD38, including a similar amino acid sequence and enzymic functions. Both molecules are involved in the metabolism of NAD(+), and the CD157 gene is synthenic on 4p15 with CD38, with which it also shares a unique genomic organization. Their conservation in phylogeny is striking evidence for their relevance in the life and death cycle of the cell.
Collapse
Affiliation(s)
- Erika Ortolan
- Laboratory of Immunogenetics, Department of Genetics, Biology and Biochemistry, University of Torino Medical School, Via Santena 19, 10126 Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Esguerra M, Miller RF. CD38 expression and NAD+-induced intracellular Ca+ mobilization in isolated retinal Müller cells. Glia 2002; 39:314-9. [PMID: 12203397 DOI: 10.1002/glia.10115] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Müller cells of the vertebrate retina are prominent radial glia that provide essential support to sustain homeostasis of the tissue, including redistribution of external potassium, uptake and metabolism of neurotransmitters, and secretion of factors that stabilize the retina. Meeting this diversity of functional supports requires that Müller cells express numerous receptors, transporters, enzymes, and tissue factors. In this study, we provide evidence that adds to the dimensions of Müller cell function by demonstrating a unique relationship between external NAD(+) and the mobilization of internal calcium, expressed in the form of calcium waves. The cellular mechanism that supports internal mobilization of calcium appears to depend on a complex multifunctional ectoenzyme, CD38, which converts NAD(+) into the intracellular Ca(2+)-mobilizing second-messenger cyclic ADP-ribose (cADPR) and could function as a detector for extracellular NAD(+), thus providing a novel signal detection system for evaluating the extracellular environment. Our results are consistent with a model of intracellular Ca(2+) mobilization in which membrane-bound CD38 binds extracellular NAD(+) and triggers intracellular Ca(2+) waves either by direct conversion of NAD(+) to cADPR or by activating intracellular cADPR synthesis. Our preliminary results indicate that the Ca(2+) waves induced by external NAD(+) propagate through an internal pathway that depends on the activation of ryanodine receptors, which appear to be distributed throughout the Müller cell cytosol. Because NAD(+) is likely to be enhanced when cells are stress or damaged, CD38 could enable Müller cells to detect NAD(+) under these circumstances and respond appropriately. Alternatively, NAD(+) could also represent a novel extracellular, paracrine function that mediates signaling between glial cells and/or other cellular elements of the retina.
Collapse
Affiliation(s)
- Manuel Esguerra
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
24
|
Abstract
In the ocular lens, cataract formation is associated with an elevated intracellular Ca(2+) concentration (Ca(2+)(i)) resulting from the loss of lens cell Ca(2+) regulation. The mechanisms regulating Ca(2+)(i) have been characterized previously in lens epithelial cells, but have not been well characterized in the more differentiated lens fiber cells. The mechanisms regulating Ca(2+)(i) in clusters of fiber-like cells (lentoids) in a sheep lens primary cell culture system in which the epithelial cells differentiate into enlarged fiber-like cells were investigated. Only approximately 50% of the lentoids responded to thapsigargin and/or agonists (ATP and epinephrine), compared to>95% of the epithelial cells. Remarkably, most (90%) lentoids exhibited a resting cytosolic Ca(2+)(i) that was approximately three-fold greater than that in epithelial cells (approximately 100n M). This elevated resting cytosolic Ca(2+)(i) was not affected by thapsigargin treatment, but decreased upon removal of extracellular Ca(2+) or addition of the Ca(2+) channel blocker Gd(3+) (5mM ). These results suggest that a plasma membrane Ca(2+) channel is more active in lentoids than in epithelial cells. Indeed, when plasma membrane cation channel activity was monitored by Mn(2+) influx and quenching of fura-2 fluorescence, quenching was faster in lentoids than epithelial cells. Following thapsigargin treatment, capacitative Ca(2+) entry was activated in epithelial cells but not lentoids. In conclusion, during differentiation in primary cell culture, lens cells lose their ability to respond to agonists and exhibit an elevated resting Ca(2+)(i) that was dependent on the activation of a Ca(2+) influx pathway. The results of this study support the possibility that a sustained elevation in resting Ca(2+)(i) is one of the factors controlling lens cell differentiation, possibly by triggering events such as calpain activation.
Collapse
Affiliation(s)
- Grant C Churchill
- Department of Biology, Georgia State University, Atlanta, GA, 30303, U.S.A
| | | |
Collapse
|
25
|
Abstract
CD38 is an ectoenzyme, which can produce metabolites with intracellular Ca(2+) mobilizing properties and has multiple immunological functions. However, we have recently shown that CD38 is also localized to the nucleus of rat hepatocyte whereby its metabolite cADPR, is able to mobilize nuclear Ca(2+) stores. In this study, we further characterize the localization of nuclear CD38 in the spleen, an important immune organ. We managed to detect the presence of ADP-ribosyl cyclase activity in the nuclear fraction. With Western blotting, we managed to characterize a 42-45 kDa protein band that is typical of CD38 under reducing and non-reducing conditions. However, as a comparison, other nuclear fractions from tissues like thymus, cardiac muscle and cerebellum yielded an additional 85 kDa protein band under non-reducing conditions. Both protein bands could be blocked with a CD38 blocking peptide. Immunohistochemical studies revealed the expression of CD38 in the marginal zone and in the red pulp. In contrast, the germinal center remained largely immunonegative for CD38. This is the first report of a functionally active ADP-ribosyl cyclase/CD38 in the spleen nuclear fraction. The results here suggest that the presence of CD38 in the nuclear environment might have a corollary to functional and regulatory roles in the nucleus.
Collapse
Affiliation(s)
- Keng Meng Khoo
- Clinical Research Unit, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, S308433, Singapore, Singapore.
| | | |
Collapse
|
26
|
Cakir-Kiefer C, Muller-Steffner H, Oppenheimer N, Schuber F. Kinetic competence of the cADP-ribose-CD38 complex as an intermediate in the CD38/NAD+ glycohydrolase-catalysed reactions: implication for CD38 signalling. Biochem J 2001; 358:399-406. [PMID: 11513738 PMCID: PMC1222072 DOI: 10.1042/0264-6021:3580399] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CD38/NAD(+) glycohydrolase is a type II transmembrane glycoprotein widely used to study T- and B-cell activation and differentiation. CD38 is endowed with two different activities: it is a signal transduction molecule and an ectoenzyme that converts NAD(+) into ADP-ribose (NAD(+) glycohydrolase activity) and small proportions of cADP-ribose (cADPR; ADP-ribosyl cyclase activity), a calcium-mobilizing metabolite, which, ultimately, can also be hydrolysed (cADPR hydrolase activity). The relationship between these two properties, and strikingly the requirement for signalling in the formation of free or enzyme-complexed cADPR, is still ill-defined. In the present study we wanted to test whether the CD38-cADPR complex is kinetically competent in the conversion of NAD(+) into the reaction product ADP-ribose. In principle, such a complex could be invoked for cross-talk, via conformational changes, with neighbouring partner(s) of CD38 thus triggering the signalling phenomena. Analysis of the kinetic parameters measured for the CD38/NAD(+) glycohydrolase-catalysed hydrolysis of 2'-deoxy-2'-aminoribo-NAD(+) and ADP-cyclo[N1,C1']-2'-deoxy-2'-aminoribose (slowly hydrolysable analogues of NAD(+) and cADPR respectively) ruled out that the CD38-cADPR complex can accumulate under steady-state conditions. This was borne out by simulation of the prevalent kinetic mechanism of CD38, which involve the partitioning of a common E.ADP-ribosyl intermediate in the formation of the enzyme-catalysed reaction products. Using this mechanism, microscopic rate conditions were found which transform a NAD(+) glycohydrolase into an ADP-ribosyl cyclase. Altogether, the present work shows that if the cross-talk with a partner depends on a conformational change of CD38, this is most probably not attributable to the formation of the CD38-cADPR complex. In line with recent results on the conformational change triggered by CD38 ligands [Berthelier, Laboureau, Boulla, Schuber and Deterre (2000) Eur. J. Biochem. 267, 3056-3064], we believe that the Michaelis CD38-NAD(+) complex could play such a role instead.
Collapse
Affiliation(s)
- C Cakir-Kiefer
- Laboratoire de Chimie Bioorganique, UMR 7514 CNRS-ULP, Faculté de Pharmacie, 74 route du Rhin, 67400 Strasbourg-Illkirch, France
| | | | | | | |
Collapse
|
27
|
Abstract
Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) are two Ca(2+) messengers derived from NAD and NADP, respectively. Although NAADP is a linear molecule, structurally distinct from the cyclic cADPR, it is synthesized by similar enzymes, ADP-ribosyl cyclase and its homolog, CD38. The crystal structure of the cyclase has been solved and its active site identified. These two novel nucleotides have now been shown to be involved in a wide range of cellular functions including: cell cycle regulation in Euglena, a protist; gene expression in plants; and in animal systems, from fertilization to neurotransmitter release and long-term depression in brain. A battery of pharmacological reagents have been developed, providing valuable tools for elucidating the physiological functions of these two novel Ca(2+) messengers. This article reviews these recent results and explores the implications of the existence of multiple Ca(2+) messengers and Ca(2+) stores in cells.
Collapse
Affiliation(s)
- H C Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
28
|
Graeff R, Munshi C, Aarhus R, Johns M, Lee HC. A single residue at the active site of CD38 determines its NAD cyclizing and hydrolyzing activities. J Biol Chem 2001; 276:12169-73. [PMID: 11278881 DOI: 10.1074/jbc.m011299200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
CD38 is a multifunctional enzyme involved in metabolizing two Ca(2+) messengers, cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP). When incubated with NAD, CD38 predominantly hydrolyzes it to ADP-ribose (NAD glycohydrolase), but a trace amount of cADPR is also produced through cyclization of the substrate. Site-directed mutagenesis was used to investigate the amino acid important for controlling the hydrolysis and cyclization reactions. CD38 and its mutants were produced in yeast, purified, and characterized by immunoblot. Glu-146 is a conserved residue present in the active site of CD38. Its replacement with Phe greatly enhanced the cyclization activity to a level similar to that of the NAD hydrolysis activity. A series of additional replacements was made at the Glu-146 position including Ala, Asn, Gly, Asp, and Leu. All the mutants exhibited enhanced cyclase activity to various degrees, whereas the hydrolysis activity was inhibited greatly. E146A showed the highest cyclase activity, which was more than 3-fold higher than its hydrolysis activity. All mutants also cyclized nicotinamide guanine dinucleotide to produce cyclic GDP. This activity was enhanced likewise, with E146A showing more than 9-fold higher activity than the wild type. In addition to NAD, CD38 also hydrolyzed cADPR effectively, and this activity was correspondingly depressed in the mutants. When all the mutants were considered, the two cyclase activities and the two hydrolase activities were correlated linearly. The Glu-146 replacements, however, only minimally affected the base-exchange activity that is responsible for synthesizing NAADP. Homology modeling was used to assess possible structural changes at the active site of E146A. These results are consistent with Glu-146 being crucial in controlling specifically and selectively the cyclase and hydrolase activities of CD38.
Collapse
Affiliation(s)
- R Graeff
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
Human CD38 is the mammalian prototype of a family of proteins which share structural similarities and an ectoenzymatic activity involved in the production of calcium mobilizing compounds. Besides the enzymatic activity, the molecule performs as a receptor, ruling adhesion and signaling in leukocytes. These functions are exerted through the interaction with surface ligands, one of which was identified as CD31. Recently, CD38 has gained attention as a prognostic marker and a pathogenetic agent in leukemias and in other diseases. Together these insights have produced a model of an as yet unique family of molecules, which act independently as receptors and enzymes.
Collapse
Affiliation(s)
- S Deaglio
- Laboratory of Cell Biology, Department of Biology, Genetics and Biochemistry, University of Torino Medical School, via Santena 19, 10126, Torino, Italy
| | | | | |
Collapse
|
30
|
Khoo KM, Han MK, Park JB, Chae SW, Kim UH, Lee HC, Bay BH, Chang CF. Localization of the cyclic ADP-ribose-dependent calcium signaling pathway in hepatocyte nucleus. J Biol Chem 2000; 275:24807-17. [PMID: 10818108 DOI: 10.1074/jbc.m908231199] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CD38 is a type II transmembrane glycoprotein found on both hematopoietic and non-hematopoietic cells. It is known for its involvement in the metabolism of cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate, two nucleotides with calcium mobilizing activity independent of inositol trisphosphate. It is generally believed that CD38 is an integral protein with ectoenzymatic activities found mainly on the plasma membrane. Here we show that enzymatically active CD38 is present intracellularly on the nuclear envelope of rat hepatocytes. CD38 isolated from rat liver nuclei possessed both ADP-ribosyl cyclase and NADase activity. Immunofluorescence studies on rat liver cryosections and isolated nuclei localized CD38 to the nuclear envelope of hepatocytes. Subcellular localization via immunoelectron microscopy showed that CD38 is located on the inner nuclear envelope. The isolated nuclei sequestered calcium in an ATP-dependent manner. cADPR elicited a rapid calcium release from the loaded nuclei, which was independent of inositol trisphosphate and was inhibited by 8-amino-cADPR, a specific antagonist of cADPR, and ryanodine. However, nicotinic acid adenine dinucleotide phosphate failed to elicit any calcium release from the nuclear calcium stores. The nuclear localization of CD38 shown in this study suggests a novel role of CD38 in intracellular calcium signaling for non-hematopoietic cells.
Collapse
Affiliation(s)
- K M Khoo
- Clinical Research Unit, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, S308433, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Galione A, Churchill GC. Cyclic ADP ribose as a calcium-mobilizing messenger. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2000; 2000:pe1. [PMID: 11752598 DOI: 10.1126/stke.2000.41.pe1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This Perspective by Galione and Churchill is one in a series on intracellular calcium release mechanisms. The authors review the evidence for cyclic adenosine diphosphate ribose (cADPR) being a second messenger involved in regulating intracellular calcium. In addition, the physiological stimuli and responses mediated by cADPR are discussed. The Perspective is accompanied by a movie showing a calcium wave triggered by cADPR.
Collapse
Affiliation(s)
- A Galione
- Department of Pharmacology, University of Oxford, UK
| | | |
Collapse
|
33
|
Khoo KM, Chang CF. Localization of plasma membrane CD38 is domain specific in rat hepatocyte. Arch Biochem Biophys 2000; 373:35-43. [PMID: 10620321 DOI: 10.1006/abbi.1999.1526] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CD38 is a 42- to 45-kDa type II transmembrane glycoprotein with the ability to synthesize cADPR, a metabolite with potent calcium mobilizing properties independent of IP(3). We report here the primary characterization and localization of CD38 in the plasma membrane fraction of rat hepatocyte. Western blot analysis of a partially purified plasma membrane fraction with a panel of polyclonal antibodies against CD38 detected a 42- to 45-kDa protein band which is characteristic of CD38. ADP-ribosyl cyclase activity was found to be present in the plasma membrane fraction, indicating the presence of functionally active CD38. Subfractionation of the plasma membrane to the sinusoidal and bile canalicular membrane fractions showed the presence of ADP-ribosyl cyclase activity in both fractions with the sinusoidal membrane fraction having a 10-fold higher specific activity than the bile canalicular membrane fraction. Immunohistochemical staining with the same panel of polyclonal antibodies showed exclusive differential spatial localization to both the nuclei and sinusoidal domain of the plasma membrane. It is possible that the different spatial distribution of CD38 in the rat hepatocyte might be responsible for its myriad of previously known functional roles.
Collapse
Affiliation(s)
- K M Khoo
- Faculty of Medicine, National University of Singapore, 10, Kent Ridge Crescent, S119260, Singapore
| | | |
Collapse
|