1
|
Abstract
Obstructive sleep apnea (OSA) is a disease that results from loss of upper airway muscle tone leading to upper airway collapse during sleep in anatomically susceptible persons, leading to recurrent periods of hypoventilation, hypoxia, and arousals from sleep. Significant clinical consequences of the disorder cover a wide spectrum and include daytime hypersomnolence, neurocognitive dysfunction, cardiovascular disease, metabolic dysfunction, respiratory failure, and pulmonary hypertension. With escalating rates of obesity a major risk factor for OSA, the public health burden from OSA and its sequalae are expected to increase, as well. In this chapter, we review the mechanisms responsible for the development of OSA and associated neurocognitive and cardiometabolic comorbidities. Emphasis is placed on the neural control of the striated muscles that control the pharyngeal passages, especially regulation of hypoglossal motoneuron activity throughout the sleep/wake cycle, the neurocognitive complications of OSA, and the therapeutic options available to treat OSA including recent pharmacotherapeutic developments.
Collapse
Affiliation(s)
- Luu V Pham
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States.
| | - Jonathan Jun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
2
|
Kubin L. Neural Control of the Upper Airway: Respiratory and State-Dependent Mechanisms. Compr Physiol 2016; 6:1801-1850. [PMID: 27783860 DOI: 10.1002/cphy.c160002] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Upper airway muscles subserve many essential for survival orofacial behaviors, including their important role as accessory respiratory muscles. In the face of certain predisposition of craniofacial anatomy, both tonic and phasic inspiratory activation of upper airway muscles is necessary to protect the upper airway against collapse. This protective action is adequate during wakefulness, but fails during sleep which results in recurrent episodes of hypopneas and apneas, a condition known as the obstructive sleep apnea syndrome (OSA). Although OSA is almost exclusively a human disorder, animal models help unveil the basic principles governing the impact of sleep on breathing and upper airway muscle activity. This article discusses the neuroanatomy, neurochemistry, and neurophysiology of the different neuronal systems whose activity changes with sleep-wake states, such as the noradrenergic, serotonergic, cholinergic, orexinergic, histaminergic, GABAergic and glycinergic, and their impact on central respiratory neurons and upper airway motoneurons. Observations of the interactions between sleep-wake states and upper airway muscles in healthy humans and OSA patients are related to findings from animal models with normal upper airway, and various animal models of OSA, including the chronic-intermittent hypoxia model. Using a framework of upper airway motoneurons being under concurrent influence of central respiratory, reflex and state-dependent inputs, different neurotransmitters, and neuropeptides are considered as either causing a sleep-dependent withdrawal of excitation from motoneurons or mediating an active, sleep-related inhibition of motoneurons. Information about the neurochemistry of state-dependent control of upper airway muscles accumulated to date reveals fundamental principles and may help understand and treat OSA. © 2016 American Physiological Society. Compr Physiol 6:1801-1850, 2016.
Collapse
Affiliation(s)
- Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Kim SJ, Kim YJ, Kakall Z, Farnham MMJ, Pilowsky PM. Intermittent hypoxia-induced cardiorespiratory long-term facilitation: A new role for microglia. Respir Physiol Neurobiol 2016; 226:30-8. [PMID: 27015670 DOI: 10.1016/j.resp.2016.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023]
Abstract
Intermittent hypoxia induces plasticity in neural networks controlling breathing and cardiovascular function. Studies demonstrate that mechanisms causing cardiorespiratory plasticity rely on intracellular signalling pathways that are activated by specific neurotransmitters. Peptides such as serotonin, PACAP and orexin are well-known for their physiological significance in regulating the cardiorespiratory system. Their receptor counterparts are present in cardiorespiratory centres of the brainstem medulla and spinal cord. Microglial cells are also important players in inducing plasticity. The phenotype and function of microglial cells can change based on the physiological state of the central nervous system. Here, we propose that in the autonomic nuclei of the ventral brainstem the relationship between neurotransmitters and neurokines, neurons and microglia determines the overall neural function of the central cardiorespiratory system.
Collapse
Affiliation(s)
- Seung Jae Kim
- Department of Physiology, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia; The Heart Research Institute, 7 Eliza Street, Newtown, Sydney 2042, Australia
| | - Yeon Jae Kim
- Department of Physiology, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zohra Kakall
- Department of Physiology, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia; The Heart Research Institute, 7 Eliza Street, Newtown, Sydney 2042, Australia
| | - Melissa M J Farnham
- Department of Physiology, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia; The Heart Research Institute, 7 Eliza Street, Newtown, Sydney 2042, Australia
| | - Paul M Pilowsky
- Department of Physiology, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia; The Heart Research Institute, 7 Eliza Street, Newtown, Sydney 2042, Australia.
| |
Collapse
|
4
|
Adachi T, Huxtable AG, Fang X, Funk GD. Substance P Modulation of Hypoglossal Motoneuron Excitability During Development: Changing Balance Between Conductances. J Neurophysiol 2010; 104:854-72. [DOI: 10.1152/jn.00016.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although Substance P (SP) acts primarily through neurokinin 1 (NK1) receptors to increase the excitability of virtually all motoneurons (MNs) tested, the ontogeny of this transmitter system is not known for any MN pool. Hypoglossal (XII) MNs innervate tongue protruder muscles and participate in several behaviors that must be functional from birth including swallowing, suckling and breathing. We used immunohistochemistry, Western immunoblotting, and whole cell recording of XII MNs in brain stem slices from rats ranging in age from postnatal day zero (P0) to P23 to explore developmental changes in: NK1 receptor expression; currents evoked by SPNK1 (an NK1-selective SP receptor agonist) and; the efficacy of transduction pathways transforming ligand binding into channel modulation. Despite developmental reductions in XII MN NK1 receptor expression, SPNK1 current density remained constant at 6.1 ± 1.0 (SE) pA/pF. SPNK1 activated at least two conductances. Activation of a pH-insensitive Na+ conductance dominated in neonates (P0–P5), but its contribution fell from ∼80 to ∼55% in juveniles (P14–P23). SPNK1 also inhibited a pH-sensitive, two-pore domain K+ (TASK)-like K+ current. Its contribution increased developmentally. First, the density of this pH-sensitive K+ current doubled between P0 and P23. Second, SPNK1 did not affect this current in neonates, but reduced it by 20% at P7–P10 and 80% in juveniles. In addition, potentiation of repetitive firing was greatest in juveniles. These data establish that despite apparent reductions in NK1 receptor density, SP remains an important modulator of XII MN excitability throughout postnatal development due, in part, to increased expression of a pH-sensitive, TASK-like conductance.
Collapse
Affiliation(s)
- Tadafumi Adachi
- Department of Physiology, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; and
- Department of Physiology, Faculty of Medicine and Health Science, University of Auckland, Auckland, New Zealand
| | - Adrianne G. Huxtable
- Department of Physiology, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; and
| | - X. Fang
- Department of Physiology, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; and
| | - Gregory D. Funk
- Department of Physiology, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; and
- Department of Physiology, Faculty of Medicine and Health Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Abstract
Sleep-induced apnea and disordered breathing refers to intermittent, cyclical cessations or reductions of airflow, with or without obstructions of the upper airway (OSA). In the presence of an anatomically compromised, collapsible airway, the sleep-induced loss of compensatory tonic input to the upper airway dilator muscle motor neurons leads to collapse of the pharyngeal airway. In turn, the ability of the sleeping subject to compensate for this airway obstruction will determine the degree of cycling of these events. Several of the classic neurotransmitters and a growing list of neuromodulators have now been identified that contribute to neurochemical regulation of pharyngeal motor neuron activity and airway patency. Limited progress has been made in developing pharmacotherapies with acceptable specificity for the treatment of sleep-induced airway obstruction. We review three types of major long-term sequelae to severe OSA that have been assessed in humans through use of continuous positive airway pressure (CPAP) treatment and in animal models via long-term intermittent hypoxemia (IH): 1) cardiovascular. The evidence is strongest to support daytime systemic hypertension as a consequence of severe OSA, with less conclusive effects on pulmonary hypertension, stroke, coronary artery disease, and cardiac arrhythmias. The underlying mechanisms mediating hypertension include enhanced chemoreceptor sensitivity causing excessive daytime sympathetic vasoconstrictor activity, combined with overproduction of superoxide ion and inflammatory effects on resistance vessels. 2) Insulin sensitivity and homeostasis of glucose regulation are negatively impacted by both intermittent hypoxemia and sleep disruption, but whether these influences of OSA are sufficient, independent of obesity, to contribute significantly to the "metabolic syndrome" remains unsettled. 3) Neurocognitive effects include daytime sleepiness and impaired memory and concentration. These effects reflect hypoxic-induced "neural injury." We discuss future research into understanding the pathophysiology of sleep apnea as a basis for uncovering newer forms of treatment of both the ventilatory disorder and its multiple sequelae.
Collapse
Affiliation(s)
- Jerome A Dempsey
- The John Rankin Laboratory of Pulmonary Medicine, Departments of Population Health Sciences and of Orthopedics and Rehabilitation, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
6
|
Pilowsky PM, Lung MSY, Spirovski D, McMullan S. Differential regulation of the central neural cardiorespiratory system by metabotropic neurotransmitters. Philos Trans R Soc Lond B Biol Sci 2009; 364:2537-52. [PMID: 19651655 DOI: 10.1098/rstb.2009.0092] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Central neurons in the brainstem and spinal cord are essential for the maintenance of sympathetic tone, the integration of responses to the activation of reflexes and central commands, and the generation of an appropriate respiratory motor output. Here, we will discuss work that aims to understand the role that metabotropic neurotransmitter systems play in central cardiorespiratory mechanisms. It is well known that blockade of glutamatergic, gamma-aminobutyric acidergic and glycinergic pathways causes major or even complete disruption of cardiorespiratory systems, whereas antagonism of other neurotransmitter systems barely affects circulation or ventilation. Despite the lack of an 'all-or-none' role for metabotropic neurotransmitters, they are nevertheless significant in modulating the effects of central command and peripheral adaptive reflexes. Finally, we propose that a likely explanation for the plethora of neurotransmitters and their receptors on cardiorespiratory neurons is to enable differential regulation of outputs in response to reflex inputs, while at the same time maintaining a tonic level of sympathetic activity that supports those organs that significantly autoregulate their blood supply, such as the heart, brain, retina and kidney. Such an explanation of the data now available enables the generation of many new testable hypotheses.
Collapse
Affiliation(s)
- Paul M Pilowsky
- Australian School of Advanced Medicine, Dow-Corning Building, Level 1, 3 Innovation Road, Macquarie University, 2109 NSW, Australia.
| | | | | | | |
Collapse
|
7
|
|
8
|
Sun QJ, Berkowitz RG, Goodchild AK, Pilowsky PM. Substance P inputs to laryngeal motoneurons in the rat. Respir Physiol Neurobiol 2003; 137:11-8. [PMID: 12871673 DOI: 10.1016/s1569-9048(03)00136-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Substance P terminals have previously been demonstrated around retrogradely labelled posterior cricoarytenoid (PCA) motoneurons, but little is known regarding substance P inputs to other functionally identified laryngeal motoneurons. In the present study, we determined the number and distribution of close appositions between substance P immunoreactive boutons and three types of laryngeal motoneuron by using a combination of intracellular recording, dye-filling and immunocytochemistry in the rat. Cricothyroid (CT) motoneurons received 15+/-5 substance P appositions/neuron (mean+/-S.D., n = 6), PCA motoneurons received 13+/-5 (n = 6), and laryngeal constrictor (LCS) motoneurons received 11+/-4 (n = 5). In contrast to our previous finding of a preferential serotonin innervation of CT motoneurons, we found no significant difference between the substance P inputs to CT, PCA and LCS motoneurons. Our results indicate a modest role for substance P in control of laryngeal motoneuronal function.
Collapse
Affiliation(s)
- Qi-Jian Sun
- Hypertension and Stroke Research Laboratories, Department of Physiology, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
9
|
Yasuda K, Robinson DM, Selvaratnam SR, Walsh CW, McMorland AJ, Funk GD. Modulation of hypoglossal motoneuron excitability by NK1 receptor activation in neonatal mice in vitro. J Physiol 2001; 534:447-64. [PMID: 11454963 PMCID: PMC2278713 DOI: 10.1111/j.1469-7793.2001.00447.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2001] [Accepted: 03/29/2001] [Indexed: 12/01/2022] Open
Abstract
1. The effects of substance P (SP), acting at NK1 receptors, on the excitability and inspiratory activity of hypoglossal (XII) motoneurons (MNs) were investigated using rhythmically active medullary-slice preparations from neonatal mice (postnatal day 0-3). 2. Local application of the NK1 agonist [SAR(9),Met (O(2))(11)]-SP (SP(NK1)) produced a dose-dependent, spantide- (a non-specific NK receptor antagonist) and GR82334-(an NK1 antagonist) sensitive increase in inspiratory burst amplitude recorded from XII nerves. 3. Under current clamp, SP(NK1) significantly depolarized XII MNs, potentiated repetitive firing responses to injected currents and produced a leftward shift in the firing frequency-current relationships without affecting slope. 4. Under voltage clamp, SP(NK1) evoked an inward current and increased input resistance, but had no effect on inspiratory synaptic currents. SP(NK1) currents persisted in the presence of TTX, were GR82334 sensitive, were reduced with hyperpolarization and reversed near the expected E(K). 5. Effects of the alpha(1)-noradrenergic receptor agonist phenylephrine (PE) on repetitive firing behaviour were virtually identical to those of SP(NK1). Moreover, SP(NK1) currents were completely occluded by PE, suggesting that common intracellular pathways mediate the actions of NK1 and alpha(1)-noradrenergic receptors. In spite of the similar actions of SP(NK1) and PE on XII MN responses to somally injected current, alpha(1)-noradrenergic receptor activation potentiated inspiratory synaptic currents and was more than twice as effective in potentiating XII nerve inspiratory burst amplitude. 6. GR82334 reduced XII nerve inspiratory burst amplitude and generated a small outward current in XII MNs. These observations, together with the first immunohistochemical evidence in the newborn for SP immunopositive terminals in the vicinity of SP(NK1)-sensitive inspiratory XII MNs, support the endogenous modulation of XII MN excitability by SP. 7. In contrast to phrenic MNs (Ptak et al. 2000), blocking NMDA receptors with AP5 had no effect on the modulation of XII nerve activity by SP(NK1). 8. In conclusion, SP(NK1) modulates XII motoneuron responses to inspiratory drive primarily through inhibition of a resting, postsynaptic K+ leak conductance. The results establish the functional significance of SP in controlling upper airway tone during early postnatal life and indicate differential modulation of motoneurons controlling airway and pump muscles by SP.
Collapse
Affiliation(s)
- K Yasuda
- Department of Physiology, Faculty of Medicine and Health Science, University of Auckland, Private Bag 92019, 85 Park Road, Grafton, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|