1
|
Shkryl VM. The spatio-temporal properties of calcium transients in hippocampal pyramidal neurons in vitro. Front Cell Neurosci 2022; 16:1054950. [PMID: 36589284 PMCID: PMC9795003 DOI: 10.3389/fncel.2022.1054950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
The spatio-temporal properties of calcium signals were studied in cultured pyramidal neurons of the hippocampus using two-dimensional fluorescence microscopy and ratiometric dye Fura-2. Depolarization-induced Ca2+ transients revealed an asynchronous delayed increase in free Ca2+ concentration. We found that the level of free resting calcium in the cell nucleus is significantly lower compared to the soma, sub-membrane, and dendritic tree regions. Calcium release from the endoplasmic reticulum under the action of several stimuli (field stimulation, high K+ levels, and caffeine) occurs in all areas studied. Under depolarization, calcium signals developed faster in the dendrites than in other areas, while their amplitude was significantly lower since larger and slower responses inside the soma. The peak value of the calcium response to the application of 10 mM caffeine, ryanodine receptors (RyRs) agonist, does not differ in the sub-membrane zone, central region, and nucleus but significantly decreases in the dendrites. In the presence of caffeine, the delay of Ca2+ signals between various areas under depolarization significantly declined. Thirty percentage of the peak amplitude of Ca2+ transients at prolonged electric field stimulation corresponded to calcium release from the ER store by RyRs, while short-term stimulation did not depend on them. 20 μM dantrolene, RyRs inhibitor, significantly reduces Ca2+ transient under high K+ levels depolarization of the neuron. RyRs-mediated enhancement of the Ca2+ signal is more pronounced in the central part and nucleus compared to the sub-membrane or dendrites regions of the neuron. In summary, using the ratiometric imaging allowed us to obtain additional information about the involvement of RyRs in the intracellular dynamics of Ca2+ signals induced by depolarization or electrical stimulation train, with an underlying change in Ca2+ concentration in various regions of interest in hippocampal pyramidal neurons.
Collapse
|
2
|
Rozumna NM, Shkryl VM, Ganzha VV, Lukyanetz EA. Effects of Modeling of Hypercalcemia and β-Amyloid on Cultured Hippocampal Neurons of Rats. NEUROPHYSIOLOGY+ 2021. [DOI: 10.1007/s11062-021-09891-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
3
|
Shkryl VM. Error correction due to background subtraction in ratiometric calcium measurements with CCD camera. Heliyon 2020; 6:e04180. [PMID: 32613103 PMCID: PMC7322130 DOI: 10.1016/j.heliyon.2020.e04180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/21/2019] [Accepted: 06/05/2020] [Indexed: 11/25/2022] Open
Abstract
Background Ca2+ plays an important role in many physiological processes and an accurate study of these signals is important. In modern fluorescence microscopy, a charge-coupled device (CCD) camera is widely deployed for calcium imaging. The ratiometric method is used for the fluorescence dye Fura-2 and Grynkiewitz's formula (Grynkiewicz et al., 1985) is commonly used to convert fluorescence to free Ca2+ concentration ([Ca2+]). But the need to subtract the background signal can lead to a big error in ratiometric calcium measurements. When the error due to background subtraction occurs, the fluorescence ratio of 340 nm divided by 380 nm lights may be twice as large as the actual value. Under conditions when the excitation intensity is not adjusted to ensure the same throughput of the objective lens for ultraviolet dye illumination, the indicator does not gradually bleach out for channels with a wavelength of 340 nm and 380 nm light, which lead to an additional error in determining the concentration of Ca2+. New method Here we present a new approach for calculating [Ca2+] from the ratiometric fluorescence of Fura-2 dye imaged by a CCD camera. It is designed to optimize [Ca2+] measurements with photobleaching correction without background subtraction error. A mathematical method is also provided for removing the existing underestimated value of fluorescence at an excitation wavelength of 340 nm and compensating for the bleaching rate for both channels with wavelengths of 340 nm and 380 nm using a power function. Results In cultured neurons, the calculations of the free Ca2+ concentration during Ca2+ transients estimated by the old and new methods, determine it to the same extent. This comparison was made under conditions without errors through background subtraction. If there is this error, the old method calculates [Ca2+] with a much higher, rather than the actual value. Conclusions We present a modified Grynkiewitz's formula for calculation [Ca2+] for ratiometric dye, such as Fura-2 imaged by a CCD camera, with photobleaching correction without background subtraction error.
Collapse
Affiliation(s)
- Vyacheslav M Shkryl
- Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology, 4 Bogomoletz Street, Kyiv, 01024, Ukraine
| |
Collapse
|
4
|
Effect of Cyclosporin A on the Viability of Hippocampal Cells Cultured under Conditions of Modeling of Alzheimer’s Disease. NEUROPHYSIOLOGY+ 2016. [DOI: 10.1007/s11062-016-9595-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Chronic high-frequency repetitive transcranial magnetic stimulation improves age-related cognitive impairment in parallel with alterations in neuronal excitability and the voltage-dependent Ca2+ current in female mice. Neurobiol Learn Mem 2015; 118:1-7. [DOI: 10.1016/j.nlm.2014.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 10/31/2014] [Accepted: 11/02/2014] [Indexed: 01/03/2023]
|
6
|
Yu C, Wang J. Neuroprotective effect of penehyclidine hydrochloride on focal cerebral ischemia-reperfusion injury. Neural Regen Res 2014; 8:622-32. [PMID: 25206707 PMCID: PMC4145985 DOI: 10.3969/j.issn.1673-5374.2013.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/07/2013] [Indexed: 12/30/2022] Open
Abstract
Penehyclidine hydrochloride can promote microcirculation and reduce vascular permeability. However, the role of penehyclidine hydrochloride in cerebral ischemia-reperfusion injury remains unclear. In this study, in vivo middle cerebral artery occlusion models were established in experimental rats, and penehyclidine hydrochloride pretreatment was given via intravenous injection prior to model establishment. Tetrazolium chloride, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling and immunohistochemical staining showed that, penehyclidine hydrochloride pretreatment markedly attenuated neuronal histopathological changes in the cortex, hippocampus and striatum, reduced infarction size, increased the expression level of Bcl-2, decreased the expression level of caspase-3, and inhibited neuronal apoptosis in rats with cerebral ischemia-reperfusion injury. Xanthine oxidase and thiobarbituric acid chromogenic results showed that penehyclidine hydrochloride upregulated the activity of superoxide dismutase and downregulated the concentration of malondialdehyde in the ischemic cerebral cortex and hippocampus, as well as reduced the concentration of extracellular excitatory amino acids in rats with cerebral ischemia-reperfusion injury. In addition, penehyclidine hydrochloride inhibited the expression level of the NR1 subunit in hippocampal nerve cells in vitro following oxygen-glucose deprivation, as detected by PCR. Experimental findings indicate that penehyclidine hydrochloride attenuates neuronal apoptosis and oxidative stress injury after focal cerebral ischemia-reperfusion, thus exerting a neuroprotective effect.
Collapse
Affiliation(s)
- Cuicui Yu
- Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China ; Department of Anesthesiology, Affiliated Yuhuangding Hospital, Medical College of Qingdao University, Yantai 264000, Shandong Province, China
| | - Junke Wang
- Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
7
|
Xiang K, Earl D, Dwyer T, Behrle BL, Tietz EI, Greenfield LJ. Hypoxia enhances high-voltage-activated calcium currents in rat primary cortical neurons via calcineurin. Epilepsy Res 2012; 99:293-305. [PMID: 22245138 PMCID: PMC3341530 DOI: 10.1016/j.eplepsyres.2011.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 12/04/2011] [Accepted: 12/18/2011] [Indexed: 01/09/2023]
Abstract
Hypoxia regulates neuronal ion channels, sometimes resulting in seizures. We evaluated the effects of brief sustained hypoxia (1% O(2), 4h) on voltage-gated calcium channels (VGCCs) in cultured rat primary cortical neurons. High-voltage activated (HVA) Ca(2+) currents were acquired immediately after hypoxic exposure or after 48h recovery in 95% air/5% CO(2). Maximal Ca(2+) current density increased 1.5-fold immediately after hypoxia, but reverted to baseline after 48h normoxia. This enhancement was primarily due to an increase in L-type VGCC activity, since nimodipine-insensitive residual Ca(2+) currents were unchanged. The half-maximal potentials of activation and steady-state inactivation were unchanged. The calcineurin inhibitors FK-506 (in the recording pipette) or cyclosporine A (during hypoxia) prevented the post-hypoxic increase in HVA Ca(2+) currents, while rapamycin and okadaic acid did not. L-type VGCCs were the source of Ca(2+) for calcineurin activation, as nimodipine during hypoxia prevented post-hypoxic enhancement. Hypoxia transiently potentiated L-type VGCC currents via calcineurin, suggesting a positive feedback loop to amplify neuronal calcium signaling that may contribute to seizure generation.
Collapse
Affiliation(s)
- Kun Xiang
- Department of Neurology, University of Toledo College of Medicine, Toledo, OH, USA
| | | | | | | | | | | |
Collapse
|
8
|
Yavorskii VA, Pogorelaya NK, Bogdanova NA, Lukyanetz EA. Effect of “Chemical” Hypoxia on the Potassium Conductance of the Membrane of Pheochromocytoma Cells. NEUROPHYSIOLOGY+ 2011. [DOI: 10.1007/s11062-011-9205-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Li Q, Zhu Y, Jiang H, Xu H, Liu H. Up-regulation of heme oxygenase-1 by isoflurane preconditioning during tolerance against neuronal injury induced by oxygen glucose deprivation. Acta Biochim Biophys Sin (Shanghai) 2008. [DOI: 10.1111/j.1745-7270.2008.00461.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
10
|
Protective effects of paeonol on cultured rat hippocampal neurons against oxygen–glucose deprivation-induced injury. J Neurol Sci 2008; 264:50-5. [DOI: 10.1016/j.jns.2007.06.057] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 06/17/2007] [Accepted: 06/28/2007] [Indexed: 11/17/2022]
|
11
|
Liu R, Wei XB, Zhang XM. Effects of acetylpuerarin on hippocampal neurons and intracellular free calcium subjected to oxygen–glucose deprivation/reperfusion in primary culture. Brain Res 2007; 1147:95-104. [PMID: 17397811 DOI: 10.1016/j.brainres.2007.01.146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2006] [Revised: 01/30/2007] [Accepted: 01/30/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVES This study was undertaken to find out the effects of acetylpuerarin on hippocampal neurons and intracellular free calcium in primary culture subjected to oxygen-glucose deprivation/reperfusion. METHODS According to different reperfusion time (1 h, 6 h, 12 h, 24 h), three concentrations (1.6 micromol l(-1), 0.4 micromol l(-1), 0.1 micromol l(-1)) of acetylpuerarin, and MK-801 (10 micromol l(-1)), a positive control drug, neurons were randomly divided into 21 groups. Each group was observed by inverted phase contrast microscope; neuron viability was measured by the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT); intracellular Ca(2+) was observed by Fura-2/AM ester through fluorospectrophotometer. RESULTS The injured neurons were protected and degeneration and necrosis were alleviated in treatment groups of acetylpuerarin and MK-801. Acetylpuerarin increased the neuron viability at high, middle and low concentrations. Fluorescence detection results showed that the calcium concentration in the group treated with acetylpuerarin and MK-801 was lowered in each reperfusion time. CONCLUSION Our results demonstrated that acetylpuerarin could protect the hippocampal neurons from ischemia-reperfusion injury in rats by alleviating the morphological damage, increasing neuron viability and decreasing calcium concentration in neuron.
Collapse
Affiliation(s)
- Rui Liu
- Department of Pharmacology, School of Medicine, Shandong University, 44 West Wen Hua Road, Jinan, Shandong 250012, PR China
| | | | | |
Collapse
|
12
|
Lukyanetz EA, Shkryl VM, Kravchuk OV, Kostyuk PG. Action of hypoxia on different types of calcium channels in hippocampal neurons. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2003; 1618:33-8. [PMID: 14643931 DOI: 10.1016/j.bbamem.2003.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Whole-cell patch clamp and polarographic oxygen partial pressure (pO2) measurements were used to establish the sensitivity of high-voltage-activated (HVA) Ca2+ channel subtypes of CA1 hippocampal neurons of rats to hypoxic conditions. Decrease of pO2 to 15-30 mm Hg induced a potentiation of HVA Ca2+ currents by 94%. Using selective blockers of N- and L-types of calcium channels, we found that inhibition of L-type channels decreased the effect by 54%, whereas N-type blocker attenuated the effect by 30%. Taking into account the ratio of currents mediated by these channel subtypes in CA1 hippocampal neurons, we concluded that both types of HVA Ca2+ channels are sensitive to hypoxia, however, L-type was about 3.5 times more sensitive to oxygen reduction.
Collapse
Affiliation(s)
- Elena A Lukyanetz
- Bogomoletz Institute of Physiology, Bogomoletz str 4, Kiev 01024, Ukraine.
| | | | | | | |
Collapse
|
13
|
Lukyanetz EA, Shkryl VM, Kravchuk OV, Kostyuk PG. Effect of hypoxia on calcium channels depends on extracellular calcium in CA1 hippocampal neurons. Brain Res 2003; 980:128-34. [PMID: 12865167 DOI: 10.1016/s0006-8993(03)02951-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Our previous studies have shown that short lasting hypoxia induces an increase of Ca(2+) influx into the cell through high voltage-activated Ca(2+) channels in hippocampal neurons. This effect was abolished by removing of free Ca(2+) from intracellular solution. The aim of this study was to compare hypoxic responses at different extracellular Ca(2+) concentrations ([Ca(2+)](e)) in hippocampal neurons to ascertain whether the hypoxic sensitivity is restricted to Ca(2+) ions. Whole-cell patch-clamp recordings were made from acutely dissociated CA1 hippocampal neurons of rats. Polarographic method for measurements of O(2) partial pressure was used. Here we found that at 2 mM [Ca(2+)](e) the hypoxic effect was significant (up to approximately 94%), whereas [Ca(2+)](e) elevations to 5 and 15 mM resulted in gradual decreasing of the effect. We found, that total Ca(2+) charge carried into the cell under the hypoxia was similar at all [Ca(2+)](e), whereas Ca(2+) charge carried at normoxia was different for different [Ca(2+)](e), being larger at higher [Ca(2+)](e). These data indicated a saturation of the hypoxic effect due to limitation in the channel conductance. Therefore, we suggested that the hypoxic effect can be connected with increase of channel conductance, and the level of channel conductance at normoxia can determine the amplitude of hypoxic effect.
Collapse
Affiliation(s)
- E A Lukyanetz
- Bogomoletz Institute of Physiology, Bogomoletz Str. 4, Kiev 01024, , Ukraine.
| | | | | | | |
Collapse
|
14
|
Lukyanetz EA, Stanika RI, Koval LM, Kostyuk PG. Intracellular mechanisms of hypoxia-induced calcium increase in rat sensory neurons. Arch Biochem Biophys 2003; 410:212-21. [PMID: 12573280 DOI: 10.1016/s0003-9861(02)00682-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Elevation of cytosolic level of Ca(2+) was measured by spatial screening of freshly isolated dorsal root ganglion neurons loaded with Fura-2AM after subjecting them to a moderate hypoxic solution (pO(2)=10-40 mmHg). Short exposure of neurons to hypoxia resulted in a reversible elevation of intracellular Ca(2+) to about 120% in the cell center and to 80% in the cell periphery. Such elevation could be almost completely eliminated by removal of Ca(2+) or Na(+) from external medium or application of nifedipine, an L-type calcium channel blocker. Remarkable antihypoxic efficiency (58%) was achieved by preapplication of mitochondrial protonophore CCCP. A conclusion is made that in sensory neurons the hypoxia-induced elevation of cytosolic Ca(2+) is induced by combined changes of function in three cell substructures: voltage-operated L-type Ca(2+) and Na(+) channels and Ca(2+) accumulation by mitochondria. Mitochondria are important for spatial difference in the hypoxia-induced Ca(2+) elevation due to their specific location in these neurons.
Collapse
Affiliation(s)
- E A Lukyanetz
- Bogomoletz Institute of Physiology, 01024 Kiev, Ukraine.
| | | | | | | |
Collapse
|
15
|
Lukyanetz EA, Shkryl VM. Scientific and technological aspects of oxygen-sensitive electrodes for measurements of oxygen partial pressure in patch-clamp experiments. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2003; 55:37-52. [PMID: 12559587 DOI: 10.1016/s0165-022x(02)00174-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Anoxia/hypoxia induces dramatic changes in brain activity leading to the damages in brain structure. Several minutes of decrease in environmental oxygen partial pressure (P(O2)) can irreversibly destroy nerve cells. Therefore, investigations of intracellular mechanisms responsible for hypoxia-induced changes of mammalian nerve system are very important. On-line adjustment and measurements of P(O2) in bath solution during patch-clamp experiments are especially topical. At the recent time, a special interest on the on-line measurements of oxygen contents in bath solution has appeared as a result of application of old approaches previously used for polarographic measurements of oxygen contents in the blood and tissues. Here we describe the simple method of manufacturing oxygen-sensitive microelectrodes, which can be used with standard patch-clamp amplifier. We also describe the main principles of polarographic method and properties of oxygen-sensitive electrodes used in patch-clamp experiments.
Collapse
Affiliation(s)
- E A Lukyanetz
- Department of General Physiology of Nervous System, Bogomoletz Institute of Physiology, Bogomoletz str. 4, 01024 Kiev-24, Ukraine.
| | | |
Collapse
|
16
|
Abstract
PURPOSE We investigated the effect of the new antiepileptic drug (AED) levetiracetam (LEV) on different types of high-voltage-activated (HVA) Ca2+ channels in freshly isolated CA1 hippocampal neurons of rats. METHODS Patch-clamp recordings of HVA Ca2+ channel activity were obtained from isolated hippocampal CA1 neurons. LEV was applied by gravity flow from a pipette placed near the cell, and solution changes were made by electromicrovalves. Ca2+ channel blockers were used for separation of the channel subtypes. RESULTS The currents were measured in controls and after application of 1-200 microM LEV. LEV irreversibly inhibited the HVA calcium current by approximately 18% on the average. With a prepulse stimulation protocol, which can eliminate direct inhibition of Ca2+ channels by G proteins, we found that G proteins were not involved in the pathways underlying the LEV inhibitory effect. This suggested that the inhibitory effect arises from a direct action of LEV on the channel molecule. The blocking mechanism of LEV was not related to changes in steady-state activation or inactivation of Ca2+ channels. LEV also did not influence the rundown of the HVA Ca2+ current during experimental protocols lasting approximately 10 min. Finally, LEV at the highest concentration used (200 microM) did not influence the activity of L-, P- or Q-type Ca2+ channels in CA1 neurons, while selectively influencing the activity of N-type calcium channels. The maximal effect on these channels separated from other channel types was approximately 37%. CONCLUSIONS Our results provide evidence that LEV selectively inhibits N-type Ca2+ channels of CA1 pyramidal hippocampal neurons. These data suggest the existence of a subtype of N-type channels sensitive to LEV, which might be involved in the molecular basis of its antiepileptic action.
Collapse
|
17
|
Shkryl VM, Kostyuk PG, Lukyanetz EA. Dual action of cytosolic calcium on calcium channel activity during hypoxia in hippocampal neurones. Neuroreport 2001; 12:4035-9. [PMID: 11742234 DOI: 10.1097/00001756-200112210-00036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The role of cytoplasmic calcium level (Ca(i)) in regulation of Ca channel activity during hypoxia was studied in hippocampal neurones from rats. Whole-cell patch clamp recordings in combination with measurements of O(2) partial pressure (pO(2)) were used. Lowering of pO(2) induced a potentiation of HVA Ca channel activity by 25.7% at Ca(i) = 75 nM in comparison with Ca(2+)-free solution. Increase of Ca(i) up to 410 nM slightly increased the effect and significantly slowed the Ca(2+) current run-down. On the other hand, hypoxia increased a steady-state channel inactivation and speeded up the kinetics of Ca(2+) current decay by about 30%. We conclude that moderate hypoxia induces dual action on Ca channels: intracellularly mediated augmentation of Ca influx via Ca channels and their Ca(2+)-dependent inactivation.
Collapse
Affiliation(s)
- V M Shkryl
- Department of General Physiology of Nervous System, Bogomoletz Institute of Physiology, Bogomoletz str. 4, Kiev 01024, Ukraine
| | | | | |
Collapse
|