1
|
Yang YS, Choi JH, Rah JC. Hypoxia with inflammation and reperfusion alters membrane resistance by dynamically regulating voltage-gated potassium channels in hippocampal CA1 neurons. Mol Brain 2021; 14:147. [PMID: 34556177 PMCID: PMC8461870 DOI: 10.1186/s13041-021-00857-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 02/01/2023] Open
Abstract
Hypoxia typically accompanies acute inflammatory responses in patients and animal models. However, a limited number of studies have examined the effect of hypoxia in combination with inflammation (Hypo-Inf) on neural function. We previously reported that neuronal excitability in hippocampal CA1 neurons decreased during hypoxia and greatly rebounded upon reoxygenation. We attributed this altered excitability mainly to the dynamic regulation of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels and input resistance. However, the molecular mechanisms underlying input resistance changes by Hypo-Inf and reperfusion remained unclear. In the present study, we found that a change in the density of the delayed rectifier potassium current (IDR) can explain the input resistance variability. Furthermore, voltage-dependent inactivation of A-type potassium (IA) channels shifted in the depolarizing direction during Hypo-Inf and reverted to normal upon reperfusion without a significant alteration in the maximum current density. Our results indicate that changes in the input resistance, and consequently excitability, caused by Hypo-Inf and reperfusion are at least partially regulated by the availability and voltage dependence of KV channels. Moreover, these results suggest that selective KV channel modulators can be used as potential neuroprotective drugs to minimize hypoxia- and reperfusion-induced neuronal damage.
Collapse
Affiliation(s)
- Yoon-Sil Yang
- Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41062 South Korea
| | - Joon Ho Choi
- Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41062 South Korea
| | - Jong-Cheol Rah
- Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41062 South Korea
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, 333 Techno Jungang-daero, Dalseong-gun, Daegu, 42988 South Korea
| |
Collapse
|
2
|
Slepchenko KG, Lu Q, Li YV. Cross talk between increased intracellular zinc (Zn 2+) and accumulation of reactive oxygen species in chemical ischemia. Am J Physiol Cell Physiol 2017; 313:C448-C459. [PMID: 28747335 DOI: 10.1152/ajpcell.00048.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 12/16/2022]
Abstract
Both zinc (Zn2+) and reactive oxygen species (ROS) have been shown to accumulate during hypoxic-ischemic stress and play important roles in pathological processes. To understand the cross talk between the two of them, here we studied Zn2+ and ROS accumulation by employing fluorescent probes in HeLa cells to further the understanding of the cause and effect relationship of these two important cellular signaling systems during chemical-ischemia, stimulated by oxygen and glucose deprivation (OGD). We observed two Zn2+ rises that were divided into four phases in the course of 30 min of OGD. The first Zn2+ rise was a transient, which was followed by a latent phase during which Zn2+ levels recovered; however, levels remained above a basal level in most cells. The final phase was the second Zn2+ rise, which reached a sustained plateau called Zn2+ overload. Zn2+ rises were not observed when Zn2+ was removed by TPEN (a Zn2+ chelator) or thapsigargin (depleting Zn2+ from intracellular stores) treatment, indicating that Zn2+ was from intracellular storage. Damaging mitochondria with FCCP significantly reduced the second Zn2+ rise, indicating that the mitochondrial Zn2+ accumulation contributes to Zn2+ overload. We also detected two OGD-induced ROS rises. Two Zn2+ rises preceded two ROS rises. Removal of Zn2+ reduced or delayed OGD- and FCCP-induced ROS generation, indicating that Zn2+ contributes to mitochondrial ROS generation. There was a Zn2+-induced increase in the functional component of NADPH oxidase, p47phox, thus suggesting that NADPH oxidase may mediate Zn2+-induced ROS accumulation. We suggest a new mechanism of cross talk between Zn2+ and mitochondrial ROS through positive feedback processes that eventually causes excessive free Zn2+ and ROS accumulations during the course of ischemic stress.
Collapse
Affiliation(s)
- Kira G Slepchenko
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio; and
| | - Qiping Lu
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, Ohio
| | - Yang V Li
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio; and
| |
Collapse
|
3
|
Wang YX, Tian K, He CC, Ma XL, Zhang F, Wang HG, An D, Heng B, Jiang YG, Liu YQ. Genistein inhibits hypoxia, ischemic-induced death, and apoptosis in PC12 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 50:227-233. [PMID: 28192752 DOI: 10.1016/j.etap.2017.01.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/25/2017] [Accepted: 01/29/2017] [Indexed: 06/06/2023]
Abstract
A hypoxia/ischemia neuronal model was established in PC12 cells using oxygen-glucose deprivation (OGD). OGD-induced neuronal death, apoptosis, glutamate receptor subunit GluR2 expression, and potassium channel currents were evaluated in the present study to determine the effects of genistein in mediating the neuronal death and apoptosis induced by hypoxia and ischemia, as well as its underlying mechanism. OGD exposure reduced the cell viability, increased apoptosis, decreased the GluR2 expression, and decreased the voltage-activated potassium currents. Genistein partially reversed the effects induced by OGD. Therefore, genistein may prevent hypoxia/ischemic-induced neuronal apoptosis that is mediated by alterations in GluR2 expression and voltage-activated potassium currents.
Collapse
Affiliation(s)
- Yu-Xiang Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kun Tian
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Cong-Cong He
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xue-Ling Ma
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Feng Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hong-Gang Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Di An
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Bin Heng
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yu-Gang Jiang
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, China
| | - Yan-Qiang Liu
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
4
|
Bacak BJ, Segaran J, Molkov YI. Modeling the effects of extracellular potassium on bursting properties in pre-Bötzinger complex neurons. J Comput Neurosci 2016; 40:231-45. [PMID: 26899961 DOI: 10.1007/s10827-016-0594-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 02/03/2016] [Accepted: 02/08/2016] [Indexed: 11/29/2022]
Abstract
There are many types of neurons that intrinsically generate rhythmic bursting activity, even when isolated, and these neurons underlie several specific motor behaviors. Rhythmic neurons that drive the inspiratory phase of respiration are located in the medullary pre-Bötzinger Complex (pre-BötC). However, it is not known if their rhythmic bursting is the result of intrinsic mechanisms or synaptic interactions. In many cases, for bursting to occur, the excitability of these neurons needs to be elevated. This excitation is provided in vitro (e.g. in slices), by increasing extracellular potassium concentration (K out) well beyond physiologic levels. Elevated K out shifts the reversal potentials for all potassium currents including the potassium component of leakage to higher values. However, how an increase in K out , and the resultant changes in potassium currents, induce bursting activity, have yet to be established. Moreover, it is not known if the endogenous bursting induced in vitro is representative of neural behavior in vivo. Our modeling study examines the interplay between K out, excitability, and selected currents, as they relate to endogenous rhythmic bursting. Starting with a Hodgkin-Huxley formalization of a pre-BötC neuron, a potassium ion component was incorporated into the leakage current, and model behaviors were investigated at varying concentrations of K out. Our simulations show that endogenous bursting activity, evoked in vitro by elevation of K out , is the result of a specific relationship between the leakage and voltage-dependent, delayed rectifier potassium currents, which may not be observed at physiological levels of extracellular potassium.
Collapse
Affiliation(s)
- Bartholomew J Bacak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Room 274, 2900 W. Queen Ln., Philadelphia, PA, 19129, USA.
| | - Joshua Segaran
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yaroslav I Molkov
- Department of Mathematics & Statistics, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
5
|
Liu YQ, Huang WX, Sanchez RM, Min JW, Hu JJ, He XH, Peng BW. Regulation of Kv4.2 A-Type Potassium Channels in HEK-293 Cells by Hypoxia. Front Cell Neurosci 2014; 8:329. [PMID: 25352783 PMCID: PMC4196569 DOI: 10.3389/fncel.2014.00329] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/29/2014] [Indexed: 11/13/2022] Open
Abstract
We previously observed that A-type potassium currents were decreased and membrane excitability increased in hippocampal dentate granule cells after neonatal global hypoxia associated with seizures. Here, we studied the effects of hypoxia on the function and expression of Kv4.2 and Kv4.3 α subunit channels, which encode rapidly inactivating A-type K currents, in transfected HEK-293 cells to determine if hypoxia alone could regulate IAin vitro. Global hypoxia in neonatal rat pups resulted in early decreased hippocampal expression of Kv4.2 mRNA and protein with 6 or 12 h post-hypoxia. Whole-cell voltage-clamp recordings revealed that similar times after hypoxia (1%) in vitro decreased peak currents mediated by recombinant Kv4.2 but not Kv4.3 channels. Hypoxia had no significant effect on the voltage-dependencies of activation and inactivation of Kv4.2 channels, but increased the time constant of activation. The same result was observed when Kv4.2 and Kv4.3 channels were co-expressed in a 1:1 ratio. These data suggested that hypoxia directly modulates A-type potassium channels of the subfamily typically expressed in principal hippocampal neurons, and does so in a manner to decrease function. Given the role of IA to slow action potential firing, these data are consistent with a direct effect of hypoxia to decrease IA as a mechanism of increased neuronal excitability and promotion of seizures.
Collapse
Affiliation(s)
- Yu-Qiang Liu
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University , Wuhan , China
| | - Wen-Xian Huang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University , Wuhan , China
| | - Russell M Sanchez
- Department of Surgery, College of Medicine, Texas A&M Health Science Center, Neuroscience Institute, Scott and White Hospital, Central Texas Veterans Health Care System , Temple, TX , USA
| | - Jia-Wei Min
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University , Wuhan , China
| | - Jiang-Jian Hu
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University , Wuhan , China
| | - Xiao-Hua He
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University , Wuhan , China
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University , Wuhan , China
| |
Collapse
|
6
|
Liu W, Zhang XP, Yang DL, Song SW. Humanin attenuated the change of voltage-dependent potassium currents in hippocampal neurons induced by anoxia. CNS Neurosci Ther 2013; 20:95-7. [PMID: 24341938 DOI: 10.1111/cns.12211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 11/25/2022] Open
Affiliation(s)
- Wei Liu
- The 88th Hospital of PLA, Tai'an, Shandong, China
| | | | | | | |
Collapse
|
7
|
Sabyrbek ZB, Alekseeva OM, Tuleukhanov ST, Kim YA. Effect of perfluorodecalin on viability of Ehrlich ascites tumor cells under conditions of hypoxia. Bull Exp Biol Med 2012; 152:353-6. [PMID: 22803084 DOI: 10.1007/s10517-012-1526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Perfluorodecalin increased survival rate of Ehrlich ascites tumor cells under pathological conditions of hypoxia in combination with hyperkalemia. High potassium medium increased the content of lysophospholipids in samples, while in the presence of perfluorodecalin, phosphatidylethanolamine level decreased.
Collapse
Affiliation(s)
- Zh B Sabyrbek
- Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | | | | | | |
Collapse
|
8
|
Yavorskii VA, Pogorelaya NK, Bogdanova NA, Lukyanetz EA. Effect of “Chemical” Hypoxia on the Potassium Conductance of the Membrane of Pheochromocytoma Cells. NEUROPHYSIOLOGY+ 2011. [DOI: 10.1007/s11062-011-9205-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Sigaut S, Jannier V, Rouelle D, Gressens P, Mantz J, Dahmani S. The Preconditioning Effect of Sevoflurane on the Oxygen Glucose-Deprived Hippocampal Slice: The Role of Tyrosine Kinases and Duration of Ischemia. Anesth Analg 2009; 108:601-8. [DOI: 10.1213/ane.0b013e31818e2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Zou B, Li Y, Deng P, Xu ZC. Alterations of potassium currents in ischemia-vulnerable and ischemia-resistant neurons in the hippocampus after ischemia. Brain Res 2005; 1033:78-89. [PMID: 15680342 DOI: 10.1016/j.brainres.2004.11.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2004] [Indexed: 12/19/2022]
Abstract
CA1 pyramidal neurons in the hippocampus die 2-3 days following transient forebrain ischemia, whereas CA3 pyramidal neurons and granule cells in the dentate gyrus remain viable. Excitotoxicity is the major cause of ischemic cell death, and potassium currents play important roles in regulating the neuronal excitability. The present study compared the changes of potassium currents in acutely dissociated hippocampal neurons at different intervals after ischemia. In CA1 neurons, the amplitude of rapid inactivating potassium currents (I(A)) was significantly increased at 14 h and returned to control levels at 38 h after ischemia; the rising slope and decay time constant of I(A) were accordingly increased after ischemia. The activation curve of I(A) in CA1 neurons shifted to the depolarizing direction at 38 h after ischemia. In granule cells, the amplitude and rising slope of I(A) were significantly increased at 38 h after ischemia; the inactivation curves of I(A) shifted toward the depolarizing direction accordingly at 38 h after ischemia. The I(A) remained unchanged in CA3 neurons after ischemia. The amplitudes of delayed rectifier potassium currents (I(Kd)) in CA1 neurons were progressively increased after ischemia. No significant difference in I(Kd) was detected in CA3 and granule cells at any time points after reperfusion. These results indicated that the voltage dependent potassium currents in hippocampal neurons were differentially altered after cerebral ischemia. The up-regulation of I(A) in dentate granule cells might have protective effects. The increase of I(Kd) in CA1 neurons might be associated with the neuronal damage after ischemia.
Collapse
Affiliation(s)
- Bende Zou
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS 507, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
11
|
Deng P, Pang ZP, Zhang Y, Xu ZC. Increase of delayed rectifier potassium currents in large aspiny neurons in the neostriatum following transient forebrain ischemia. Neuroscience 2005; 131:135-46. [PMID: 15680698 DOI: 10.1016/j.neuroscience.2004.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2004] [Indexed: 11/19/2022]
Abstract
Large aspiny (LA) neurons in the neostriatum are resistant to cerebral ischemia whereas spiny neurons are highly vulnerable to the same insult. Excitotoxicity has been implicated as the major cause of neuronal damage after ischemia. Voltage-dependent potassium currents play important roles in controlling neuronal excitability and therefore influence the ischemic outcome. To reveal the ionic mechanisms underlying the ischemia-resistance, the delayed rectifier potassium currents (Ik) in LA neurons were studied before and at different intervals after transient forebrain ischemia using brain slices and acute dissociation preparations. The current density of Ik increased significantly 24 h after ischemia and returned to control levels 72 h following reperfusion. Among currents contributing to Ik, the margatoxin-sensitive currents increased 24 h after ischemia while the KCNQ/M current remained unchanged after ischemia. Activation of protein kinase A (PKA) down-regulated Ik in both control and ischemic LA neurons, whereas inhibition of PKA only up-regulated Ik and margatoxin-sensitive currents 72 h after ischemia, indicating an active PKA regulation on Ik at this time. Protein tyrosine kinases had a tonic inhibition on Ik to a similar extent before and after ischemia. Compared with that of control neurons, the spike width was significantly shortened 24 h after ischemia due to facilitated repolarization, which could be reversed by blocking margatoxin-sensitive currents. The increase of Ik in LA neurons might be one of the protective mechanisms against ischemic insult.
Collapse
Affiliation(s)
- P Deng
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS 507, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
12
|
Pierrefiche O, Shevtsova NA, St-John WM, Paton JFR, Rybak IA. Ionic currents and endogenous rhythm generation in the pre-Bötzinger complex: modelling and in vitro studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 551:121-6. [PMID: 15602953 DOI: 10.1007/0-387-27023-x_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
13
|
van Manen HJ, Kraan YM, Roos D, Otto C. Intracellular Chemical Imaging of Heme-Containing Enzymes Involved in Innate Immunity Using Resonance Raman Microscopy. J Phys Chem B 2004. [DOI: 10.1021/jp046955b] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Henk-Jan van Manen
- Biophysical Engineering Group, Faculty of Science & Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands, and Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| | - Yvonne M. Kraan
- Biophysical Engineering Group, Faculty of Science & Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands, and Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| | - Dirk Roos
- Biophysical Engineering Group, Faculty of Science & Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands, and Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| | - Cees Otto
- Biophysical Engineering Group, Faculty of Science & Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands, and Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
14
|
Paquet-Durand F, Bicker G. Hypoxic/ischaemic cell damage in cultured human NT-2 neurons. Brain Res 2004; 1011:33-47. [PMID: 15140642 DOI: 10.1016/j.brainres.2004.02.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2004] [Indexed: 10/26/2022]
Abstract
Postmitotic neurons were generated from the human NT-2 teratocarcinoma cell line in a novel rapid differentiation procedure. These neurons were used to establish an in vitro assay system that allows the investigation of hypoxic/ischaemic cell damage and the development of neuroprotective strategies. In experiments of simulated ischaemia, the neurons were subjected to anoxia and hypoglycaemia. The viability of NT-2 neuronal cells was significantly reduced by anoxia especially in the presence of glutamate, reflecting the cellular vulnerability to excitotoxic conditions. The addition of the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 reduced glutamate-induced neuronal damage. Calcium imaging showed that NT-2 neurons increased cytosolic calcium levels in response to stimulation with glutamate or NMDA, an effect that was abolished in calcium free medium and at low pH values. The NMDA receptor antagonists MK-801, AP 5 and ketamine reduced the NMDA-induced response, suggesting the presence of functional NMDA receptors in the human neuronal cells. The mitochondrial potential of neurons was estimated using the fluorescent dye rhodamine 123 (R123). The fluorescence imaging experiments indicated an energetic collapse of mitochondrial functions during anoxia, suggesting that the human NT-2 neurons can be used to investigate subcellular processes during the excitotoxic cascade.
Collapse
Affiliation(s)
- François Paquet-Durand
- School of Veterinary Medicine Hannover, Cell Biology, Bischofsholer Damm 15/102, D-30173 Hannover, Germany
| | | |
Collapse
|
15
|
Rybak IA, Shevtsova NA, St-John WM, Paton JFR, Pierrefiche O. Endogenous rhythm generation in the pre-Bötzinger complex and ionic currents: modelling and in vitro studies. Eur J Neurosci 2003; 18:239-57. [PMID: 12887406 DOI: 10.1046/j.1460-9568.2003.02739.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pre-Bötzinger complex is a small region in the mammalian brainstem involved in generation of the respiratory rhythm. As shown in vitro, this region, under certain conditions, can generate endogenous rhythmic bursting activity. Our investigation focused on the conditions that may induce this bursting behaviour. A computational model of a population of pacemaker neurons in the pre-Bötzinger complex was developed and analysed. Each neuron was modelled in the Hodgkin-Huxley style and included persistent sodium and delayed-rectifier potassium currents. We found that the firing behaviour of the model strongly depended on the expression of these currents. Specifically, bursting in the model could be induced by a suppression of delayed-rectifier potassium current (either directly or via an increase in extracellular potassium concentration, [K+]o) or by an augmentation of persistent sodium current. To test our modelling predictions, we recorded endogenous population activity of the pre-Bötzinger complex and activity of the hypoglossal (XII) nerve from in vitro transverse brainstem slices (700 micro m) of neonatal rats (P0-P4). Rhythmic activity was absent at 3 mm[K+]o but could be triggered by either the elevation of [K+]o to 5-7 mm or application of potassium current blockers (4-AP, 50-200 micro m, or TEA, 2 or 4 mm), or by blocking aerobic metabolism with NaCN (2 mm). This rhythmic activity could be abolished by the persistent sodium current blocker riluzole (25 or 50 micro m). These findings are discussed in the context of the role of endogenous bursting activity in the respiratory rhythm generation in vivo vs. in vitro and during normal breathing in vivo vs. gasping.
Collapse
Affiliation(s)
- Ilya A Rybak
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
16
|
Shevtsova N, Ptak K, McCrimmon D, Rybak I. Computational modeling of bursting pacemaker neurons in the pre-Bötzinger complex. Neurocomputing 2003. [DOI: 10.1016/s0925-2312(02)00841-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Shin DSH, Buck LT. Effect of anoxia and pharmacological anoxia on whole-cell NMDA receptor currents in cortical neurons from the western painted turtle. Physiol Biochem Zool 2003; 76:41-51. [PMID: 12695985 DOI: 10.1086/374274] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2002] [Indexed: 11/04/2022]
Abstract
The mammalian brain undergoes rapid cell death during anoxia that is characterized by uncontrolled Ca(2+) entry via N-methyl-D-aspartate receptors (NMDARs). In contrast, the western painted turtle is extremely anoxia tolerant and maintains close-to-normal [Ca(2+)](i) during periods of anoxia lasting from days to months. A plausible mechanism of anoxic survival in turtle neurons is the regulation of NMDARs to prevent excitotoxic Ca(2+) injury. However, studies using metabolic inhibitors such as cyanide (NaCN) as a convenient method to induce anoxia may not represent a true anoxic stress. This study was undertaken to determine whether turtle cortical neuron whole-cell NMDAR currents respond similarly to true anoxia with N(2) and to NaCN-induced anoxia. Whole-cell NMDAR currents were measured during a control N(2)-induced anoxic transition and a control NaCN-induced transition. During anoxia with N(2) normalized, NMDAR currents decreased to 35.3%+/-10.8% of control values. Two different NMDAR current responses were observed during NaCN-induced anoxia: one resulted in a 172%+/-51% increase in NMDAR currents, and the other was a decrease to 48%+/-14% of control. When responses were correlated to the two major neuronal subtypes under study, we found that stellate neurons responded to NaCN treatment with a decrease in NMDAR current, while pyramidal neurons exhibited both increases and decreases. Our results show that whole-cell NMDAR currents respond differently to NaCN-induced anoxia than to the more physiologically relevant anoxia with N(2).
Collapse
Affiliation(s)
- Damian Seung-Ho Shin
- Department of Zoology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| | | |
Collapse
|
18
|
St -John WM, Rybak IA, Paton JFR. Potential switch from eupnea to fictive gasping after blockade of glycine transmission and potassium channels. Am J Physiol Regul Integr Comp Physiol 2002; 283:R721-31. [PMID: 12185007 DOI: 10.1152/ajpregu.00004.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study evaluated possible neuronal mechanisms responsible for the transition from normal breathing (eupnea) to gasping. We hypothesized that a blockade of both inhibitory glycinergic synaptic transmission and potassium channels, combined with an increase in extracellular concentration of potassium, would induce a switch from an eupneic respiratory pattern to gasping. Efferent activities of the phrenic, vagal, and hypoglossal nerves were recorded during eupnea and ischemia-induced gasping in a perfused in situ preparation of the juvenile rat (4-6 wk of age). To block potassium channels, 4-aminopyridine (4-AP, 1-10 microM) was administered. Strychnine (0.2-0.6 microM) was used to block glycinergic neurotransmission. After administrations of 4-AP, excess extracellular potassium (10.25-17.25 mM), and strychnine, the incrementing pattern of eupneic phrenic activity was altered to a decrementing discharge. Hypoglossal and vagal activities became concentrated to the period of the phrenic burst with expiratory activity being reduced or eliminated. These changes in neural activities were similar to those in ischemia-induced gasping. Results are consistent with the concept that the elicitation of gasping represents a switch from a network-based rhythmogenesis for eupnea to a pacemaker-driven mechanism.
Collapse
Affiliation(s)
- Walter M St -John
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA
| | | | | |
Collapse
|
19
|
|
20
|
St -John WM, Rybak IA. Influence of levels of carbon dioxide and oxygen upon gasping in perfused rat preparation. RESPIRATION PHYSIOLOGY 2002; 129:279-87. [PMID: 11788131 DOI: 10.1016/s0034-5687(01)00322-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In vivo, the augmenting pattern of integrated phrenic nerve discharge of eupnea is altered to the decrementing pattern of gasping in severe hypoxia or ischaemia. Identical alterations in phrenic discharge are found in perfused in situ preparations of the juvenile rat. In this preparation, gasping was produced by equilibration of the perfusate with various levels of carbon dioxide and oxygen. The duration of the phrenic burst, the interval between bursts and the burst amplitude were not significantly different following equilibration with 21-6%O(2) at 5% CO(2) or with 0-9% CO(2) at 6% O(2), with the exception that the burst amplitude was significantly greater in hypercapnic-hypoxia (9% CO(2) at 6% O(2)). It is proposed that hypoxia-induced gasping results from the release of an endogenous pacemaker activity of rostral medullary neurons. This release is caused by cellular mechanisms that change the balance between membrane ionic currents. Moreover, these cellular mechanisms may be explicitly induced by alterations in the ionic and metabolic homeostasis.
Collapse
Affiliation(s)
- Walter M St -John
- Dartmouth-Hitchcock Medical Center, Department of Physiology, Dartmouth Medical School, Borwell Building, Lebanon, NH 03756, USA.
| | | |
Collapse
|
21
|
Chi XX, Xu ZC. Differential changes of potassium currents in CA1 pyramidal neurons after transient forebrain ischemia. J Neurophysiol 2000; 84:2834-43. [PMID: 11110813 DOI: 10.1152/jn.2000.84.6.2834] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CA1 pyramidal neurons are highly vulnerable to transient cerebral ischemia. In vivo studies have shown that the excitability of CA1 neurons progressively decreased following reperfusion. To reveal the mechanisms underlying the postischemic excitability change, total potassium current, transient potassium current, and delayed rectifier potassium current in CA1 neurons were studied in hippocampal slices prepared before ischemia and at different time points following reperfusion. Consistent with previous in vivo studies, the excitability of CA1 neurons decreased in brain slices prepared at 14 h following transient forebrain ischemia. The amplitude of total potassium current in CA1 neurons increased approximately 30% following reperfusion. The steady-state activation curve of total potassium current progressively shifted in the hyperpolarizing direction with a transient recovery at 18 h after ischemia. For transient potassium current, the amplitude was transiently increased approximately 30% at approximately 12 h after reperfusion and returned to control levels at later time points. The steady-state activation curve also shifted approximately 20 mV in the hyperpolarizing direction, and the time constant of removal of inactivation markedly increased at 12 h after reperfusion. For delayed rectifier potassium current, the amplitude significantly increased and the steady-state activation curve shifted in the hyperpolarizing direction at 36 h after reperfusion. No significant change in inactivation kinetics was observed in the above potassium currents following reperfusion. The present study demonstrates the differential changes of potassium currents in CA1 neurons after reperfusion. The increase of transient potassium current in the early phase of reperfusion may be responsible for the decrease of excitability, while the increase of delayed rectifier potassium current in the late phase of reperfusion may be associated with the postischemic cell death.
Collapse
Affiliation(s)
- X X Chi
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|