1
|
Shaffer KJ, Smith RAA, Daines AM, Luo X, Lu X, Tan TC, Le BQ, Schwörer R, Hinkley SFR, Tyler PC, Nurcombe V, Cool SM. Rational synthesis of a heparan sulfate saccharide that promotes the activity of BMP2. Carbohydr Polym 2024; 333:121979. [PMID: 38494232 DOI: 10.1016/j.carbpol.2024.121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024]
Abstract
Heparan sulfate (HS) is a glycosaminoglycan (GAG) found throughout nature and is involved in a wide range of functions including modulation of cell signalling via sequestration of growth factors. Current consensus is that the specificity of HS motifs for protein binding are individual for each protein. Given the structural complexity of HS the synthesis of libraries of these compounds to probe this is not trivial. Herein we present the synthesis of an HS decamer, the design of which was undertaken rationally from previously published data for HS binding to the growth factor BMP-2. The biological activity of this HS decamer was assessed in vitro, showing that it had the ability to both bind BMP-2 and increase its thermal stability as well as enhancing the bioactivity of BMP-2 in vitro in C2C12 cells. At the same time no undesired anticoagulant effect was observed. This decamer was then analysed in vivo in a rabbit model where higher bone formation, bone mineral density (BMD) and trabecular thickness were observed over an empty defect or collagen implant alone. This indicated that the HS decamer was effective in promoting bone regeneration in vivo.
Collapse
Affiliation(s)
- Karl J Shaffer
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Raymond A A Smith
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138673, Singapore; School of Chemical Engineering, University of Queensland, Brisbane, Qld 4072, Australia
| | - Alison M Daines
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand.
| | - Xiaoman Luo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138673, Singapore
| | - Xiaohua Lu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138673, Singapore
| | - Tuan Chun Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138673, Singapore
| | - Bach Q Le
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138673, Singapore
| | - Ralf Schwörer
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Simon F R Hinkley
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Peter C Tyler
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Victor Nurcombe
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 138632, Singapore
| | - Simon M Cool
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138673, Singapore; School of Chemical Engineering, University of Queensland, Brisbane, Qld 4072, Australia; Department of Orthopaedic Surgery, Yong Yoo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
2
|
Preparation of rare L-idose derivatives from D-glucofuranose via neighboring acyl group assistance. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Mohamed S, He QQ, Lepage RJ, Krenske EH, Ferro V. Glycosylations of Simple Acceptors with 2‐
O
‐Acyl
l
‐Idose or
l
‐Iduronic Acid Donors Reveal Only a Minor Role for Neighbouring‐Group Participation. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shifaza Mohamed
- School of Chemistry and Molecular Biosciences The University of Queensland 4072 Brisbane QLD Australia
| | - Qi Qi He
- School of Chemistry and Molecular Biosciences The University of Queensland 4072 Brisbane QLD Australia
| | - Romain J. Lepage
- School of Chemistry and Molecular Biosciences The University of Queensland 4072 Brisbane QLD Australia
| | - Elizabeth H. Krenske
- School of Chemistry and Molecular Biosciences The University of Queensland 4072 Brisbane QLD Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences The University of Queensland 4072 Brisbane QLD Australia
| |
Collapse
|
4
|
He QQ, Trim PJ, Snel MF, Hopwood JJ, Ferro V. Synthesis and mass spectrometric analysis of disaccharides from methanolysis of heparan sulfate. Org Biomol Chem 2018; 16:8791-8803. [DOI: 10.1039/c8ob02225a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heparan sulfate (HS) disaccharides were synthesized to identify HS methanolysis products by LC-MS/MS with applications for mucopolysaccharidosis disorders.
Collapse
Affiliation(s)
- Qi Qi He
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- Brisbane
- Australia
| | - Paul J. Trim
- Hopwood Centre for Neurobiology
- South Australian Health and Medical Research Institute
- Adelaide
- Australia
| | - Marten F. Snel
- Hopwood Centre for Neurobiology
- South Australian Health and Medical Research Institute
- Adelaide
- Australia
| | - John J. Hopwood
- Hopwood Centre for Neurobiology
- South Australian Health and Medical Research Institute
- Adelaide
- Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- Brisbane
- Australia
| |
Collapse
|
5
|
Kakitsubata Y, Aramaki R, Nishioka K, Wakao M, Suda Y. Toward the construction of dermatan sulfate (DS) partial disaccharide library: efficient synthesis of building blocks, common intermediate, and ligand conjugate of type-B DS disaccharide. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.01.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Mohamed S, Ferro V. Synthetic Approaches to L-Iduronic Acid and L-Idose: Key Building Blocks for the Preparation of Glycosaminoglycan Oligosaccharides. Adv Carbohydr Chem Biochem 2015; 72:21-61. [PMID: 26613814 DOI: 10.1016/bs.accb.2015.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
L-Iduronic acid (IdoA) is an important monosaccharide component of glycosaminoglycans (GAGs) such as heparin, heparan sulfate and dermatan sulfate. GAGs are complex, highly sulfated polysaccharides that mediate a multitude of physiological and pathological processes via their interactions with a range of diverse proteins. The main challenge in the synthesis of GAG oligosaccharides is the efficient gram-scale preparation of IdoA building blocks since neither IdoA nor L-idose is commercially available or readily accessible from natural sources. In this review, the different synthetic approaches for the preparation of IdoA and its derivatives, including L-idose, are presented and discussed. Derivatives of the latter are often used in GAG synthesis and are elaborated to IdoA via selective oxidation at C-6 after incorporation into a GAG chain. Particular focus will be given to the preparation of IdoA synthons most commonly used for GAG oligosaccharide synthesis, and on the progress made since the last systematic review in this area.
Collapse
Affiliation(s)
- Shifaza Mohamed
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Cao X, Lv Q, Li D, Ye H, Yan X, Yang X, Gan H, Zhao W, Jin L, Wang P, Shen J. Direct C5-Isomerization Approach tol-Iduronic Acid Derivatives. ASIAN J ORG CHEM 2015. [DOI: 10.1002/ajoc.201500269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xuefeng Cao
- State Key Laboratory of Medicinal Chemical Biology and; College of Pharmacy; Tianjin 300071 PR China
| | - Qingqing Lv
- State Key Laboratory of Medicinal Chemical Biology and; College of Pharmacy; Tianjin 300071 PR China
| | - Dongmei Li
- State Key Laboratory of Medicinal Chemical Biology and; College of Pharmacy; Tianjin 300071 PR China
| | - Hui Ye
- State Key Laboratory of Medicinal Chemical Biology and; College of Pharmacy; Tianjin 300071 PR China
| | - Xu Yan
- State Key Laboratory of Medicinal Chemical Biology and; College of Pharmacy; Tianjin 300071 PR China
| | - Xiande Yang
- State Key Laboratory of Medicinal Chemical Biology and; College of Pharmacy; Tianjin 300071 PR China
| | - Hao Gan
- Chenxin Homes; Huaihe Road Tianjin 300410 PR China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology and; College of Pharmacy; Tianjin 300071 PR China
| | - Lan Jin
- National Glycoengineering Research Center; Shandong University; No.44 West Wenhua Road, Jinan Shandong 250012 PR China) address
| | - Peng Wang
- State Key Laboratory of Medicinal Chemical Biology and; College of Pharmacy; Tianjin 300071 PR China
| | - Jie Shen
- State Key Laboratory of Medicinal Chemical Biology and; College of Pharmacy; Tianjin 300071 PR China
| |
Collapse
|
8
|
Christensen HM, Oscarson S, Jensen HH. Common side reactions of the glycosyl donor in chemical glycosylation. Carbohydr Res 2015; 408:51-95. [DOI: 10.1016/j.carres.2015.02.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/12/2015] [Accepted: 02/18/2015] [Indexed: 12/13/2022]
|
9
|
Kandasamy J, Schuhmacher F, Hahm HS, Klein JC, Seeberger PH. Modular automated solid phase synthesis of dermatan sulfate oligosaccharides. Chem Commun (Camb) 2014; 50:1875-7. [PMID: 24402061 DOI: 10.1039/c3cc48860h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dermatan sulfates are glycosaminoglycan polysaccharides that serve a multitude of biological roles as part of the extracellular matrix. Orthogonally protected D-galactosamine and L-iduronic acid building blocks and a photo-cleavable linker are instrumental for the automated synthesis of dermatan sulfate oligosaccharides. Conjugation-ready oligosaccharides were obtained in good yield.
Collapse
Affiliation(s)
- Jeyakumar Kandasamy
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | | | | | | | | |
Collapse
|
10
|
Kumar B, Aga MA, Rouf A, Shah BA, Taneja SC. Tetrahydropyranyl ether (THPE) formation in hydroxyl group protection and conversion to other useful functionalities. RSC Adv 2014. [DOI: 10.1039/c4ra02093f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This short review highlights the various methods of formation of tetrahydropyranyl ethers (THPEs) as a method for the protection of simple alcohols as well as a diverse range of complex molecules, using a variety of reagents and reaction conditions including their direct conversion to other useful functionalities.
Collapse
Affiliation(s)
- Brijesh Kumar
- Bio-organic Chemistry Division
- Indian Institute of Integrative Medicine (CSIR)
- , India-180001
| | - Mushtaq A. Aga
- Bio-organic Chemistry Division
- Indian Institute of Integrative Medicine (CSIR)
- , India-180001
| | - Abdul Rouf
- Bio-organic Chemistry Division
- Indian Institute of Integrative Medicine (CSIR)
- , India-180001
| | - Bhahwal A. Shah
- Natural Product Microbe
- Indian Institute of Integrative Medicine (CSIR)
- , India-180001
| | - Subhash C. Taneja
- Bio-organic Chemistry Division
- Indian Institute of Integrative Medicine (CSIR)
- , India-180001
| |
Collapse
|
11
|
Schwörer R, Zubkova OV, Turnbull JE, Tyler PC. Synthesis of a targeted library of heparan sulfate hexa- to dodecasaccharides as inhibitors of β-secretase: potential therapeutics for Alzheimer's disease. Chemistry 2013; 19:6817-23. [PMID: 23553710 DOI: 10.1002/chem.201204519] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/22/2013] [Indexed: 01/21/2023]
Abstract
Heparan sulfates (HS) are a class of sulfated polysaccharides that function as dynamic biological regulators of the functions of diverse proteins. The structural basis of these interactions, however, remains elusive, and chemical synthesis of defined structures represents a challenging but powerful approach for unravelling the structure-activity relationships of their complex sulfation patterns. HS has been shown to function as an inhibitor of the β-site cleaving enzyme β-secretase (BACE1), a protease responsible for generating the toxic Aβ peptides that accumulate in Alzheimer's disease (AD), with 6-O-sulfation identified as a key requirement. Here, we demonstrate a novel generic synthetic approach to HS oligosaccharides applied to production of a library of 16 hexa- to dodecasaccharides targeted at BACE1 inhibition. Screening of this library provided new insights into structure-activity relationships for optimal BACE1 inhibition, and yielded a number of potent non-anticoagulant BACE1 inhibitors with potential for development as leads for treatment of AD through lowering of Aβ peptide levels.
Collapse
Affiliation(s)
- Ralf Schwörer
- Carbohydrate Chemistry, Industrial Research, Ltd. P. O. Box 31310, Lower Hutt, New Zealand
| | | | | | | |
Collapse
|
12
|
Miller GJ, Hansen SU, Avizienyte E, Rushton G, Cole C, Jayson GC, Gardiner JM. Efficient chemical synthesis of heparin-like octa-, deca- and dodecasaccharides and inhibition of FGF2- and VEGF165-mediated endothelial cell functions. Chem Sci 2013. [DOI: 10.1039/c3sc51217g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
13
|
Barroca-Aubry N, Pernet-Poil-Chevrier A, Domard A, Trombotto S. Towards a modular synthesis of well-defined chitooligosaccharides: synthesis of the four chitodisaccharides. Carbohydr Res 2010; 345:1685-97. [DOI: 10.1016/j.carres.2010.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 05/07/2010] [Accepted: 05/13/2010] [Indexed: 10/19/2022]
|
14
|
Gainsford GJ, Tyler PC, Zubkova OV. p-Tolyl 2- O-benzoyl-3- O-benzyl-4,6- O-benzylidene-1-thio-α- L-idopyranoside. Acta Crystallogr Sect E Struct Rep Online 2010; 66:o1598-9. [PMID: 21587835 PMCID: PMC3007053 DOI: 10.1107/s1600536810020970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 06/01/2010] [Indexed: 11/17/2022]
Abstract
The title compound, C34H32O6S, is an ido-configured thioglycoside building block for heparan sulfate fragments. It contains disordered tolyl and O-benzyl groups with occupancy ratios of 0.539 (13):0.461 (13) and 0.613 (13):0.387 (13), respectively, as determined from a weakly diffracting crystal. The fused rings adopt chair conformations with the molecules packing into a three-dimensional network via C—H⋯O and three C—H⋯π interactions. The former interactions, occuring between molecules related by a twofold axis, define an R22(26) motif.
Collapse
|
15
|
Saito A, Wakao M, Deguchi H, Mawatari A, Sobel M, Suda Y. Towards the assembly of heparin and heparan sulfate oligosaccharide libraries: efficient synthesis of uronic acid and disaccharide building blocks. Tetrahedron 2010; 66:3951-3962. [PMID: 20473366 PMCID: PMC2869207 DOI: 10.1016/j.tet.2010.03.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The monosaccharide moieties found in heparin (HP) and heparan sulfate (HS), glucosamine and two kinds of uronic acids, glucuronic and iduronic acids, were efficiently synthesized by use of glucosamine hydrochloride and glucurono-6,3-lactone as starting compounds. In the synthesis of the disaccharide building block, the key issues of preparation of uronic acids (glucuronic acid and iduronic acid moieties) were achieved in 12 steps and 15 steps, respectively, without cumbersome C-6 oxidation. The resulting monosaccharide moieties were utilized to the syntheses of HP/HS disaccharide building blocks possessing glucosamine-glucuronic acid (GlcN-GlcA) or iduronic acid (GlcN-IdoA) sequences. The disaccharide building blocks were also suitable for further modification such as glycosylation, selective deprotection, and sulfation.
Collapse
Affiliation(s)
- Akihiro Saito
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Kohrimoto, Kagoshima 890-0065, Japan
| | - Masahiro Wakao
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Kohrimoto, Kagoshima 890-0065, Japan
| | - Hiroshi Deguchi
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Kohrimoto, Kagoshima 890-0065, Japan
| | - Aya Mawatari
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Kohrimoto, Kagoshima 890-0065, Japan
| | - Michael Sobel
- Division of Vascular Surgery, VA Puget Sound Health Care System and the University of Washington, School of Medicine, Seattle, Washington, USA
| | - Yasuo Suda
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Kohrimoto, Kagoshima 890-0065, Japan
- SUDx-Biotec Corporation, 1-42-1, Shiroyama, Kagoshima 890-0013, Japan
| |
Collapse
|
16
|
Weïwer M, Sherwood T, Green DE, Chen M, DeAngelis PL, Liu J, Linhardt RJ. Synthesis of uridine 5'-diphosphoiduronic acid: a potential substrate for the chemoenzymatic synthesis of heparin. J Org Chem 2008; 73:7631-7. [PMID: 18759479 PMCID: PMC2639712 DOI: 10.1021/jo801409c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An improved understanding of the biological activities of heparin requires structurally defined heparin oligosaccharides. The chemoenzymatic synthesis of heparin oligosaccharides relies on glycosyltransferases that use UDP-sugar nucleotides as donors. Uridine 5'-diphosphoiduronic acid (UDP-IdoA) and uridine 5'-diphosphohexenuronic acid (UDP-HexUA) have been synthesized as potential analogues of uridine 5'-diphosphoglucuronic acid (UDP-GlcA) for enzymatic incorporation into heparin oligosaccharides. Non-natural UDP-IdoA and UDP-HexUA were tested as substrates for various glucuronosyltransferases to better understand enzyme specificity.
Collapse
Affiliation(s)
- Michel Weïwer
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180
| | - Trevor Sherwood
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180
| | - Dixy E. Green
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Oklahoma City, Oklahoma
| | - Miao Chen
- University of North Carolina School of Pharmacy, Division of Medicinal Chemistry and Natural Products, CB no. 7360 Beard Hall, Room 309, Chapel Hill, North Carolina 27599-7360
| | - Paul L. DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Oklahoma City, Oklahoma
| | - Jian Liu
- University of North Carolina School of Pharmacy, Division of Medicinal Chemistry and Natural Products, CB no. 7360 Beard Hall, Room 309, Chapel Hill, North Carolina 27599-7360
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180
- Department of Chemical and Biological Engineering and Department of Biology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180
| |
Collapse
|
17
|
Tatai J, Osztrovszky G, Kajtár-Peredy M, Fügedi P. An efficient synthesis of l-idose and l-iduronic acid thioglycosides and their use for the synthesis of heparin oligosaccharides. Carbohydr Res 2008; 343:596-606. [DOI: 10.1016/j.carres.2007.12.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 12/16/2007] [Accepted: 12/18/2007] [Indexed: 12/01/2022]
|
18
|
Tite T, Lallemand MC, Poupon E, Kunesch N, Tillequin F, Gravier-Pelletier C, Le Merrer Y, Husson HP. Synthesis of polyhydroxylated piperidines and evaluation as glycosidase inhibitors. Bioorg Med Chem 2004; 12:5091-7. [PMID: 15351392 DOI: 10.1016/j.bmc.2004.07.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Accepted: 07/16/2004] [Indexed: 11/22/2022]
Abstract
A series of 16 new chiral nonracemic polyhydroxylated piperidines was synthesized utilizing several chiral beta-amino-alcohols. They act as a nitrogen source, chirality inducer and iminium stabilizer, in the desymmetrization of meso-trihydroxylated glutaraldehyde. The biological activity of these compounds towards several glycosidases (alpha-D-glucosidase, alpha-D-mannosidase, alpha-L-fucosidase) has been evaluated.
Collapse
Affiliation(s)
- Tony Tite
- Laboratoire de Pharmacognosie, Faculté des Sciences Pharmaceutiques et Biologiques, UMR 8638 associée au CNRS et à l'Université René Descartes, 4, Avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Dilhas A, Bonnaffé D. Efficient selective preparation of methyl-1,2,4-tri-O-acetyl-3-O-benzyl-beta-L-idopyranuronate from methyl 3-O-benzyl-L-iduronate. Carbohydr Res 2003; 338:681-6. [PMID: 12644380 DOI: 10.1016/s0008-6215(02)00525-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Methyl 1,2,4-tri-O-acetyl-3-O-benzyl-L-idopyranuronate 6beta/6alpha, prepared from methyl 3-O-benzyl-L-iduronate (4), is a key synthon in heparin/heparan sulfate synthesis. The 1H and 13C NMR spectra of the furanose-pyranose mixture of 4, after dissolution and equilibration in d(4)-methanol, were fully assigned allowing to expect that 4 could crystallise in the beta-pyranose form. New acetylation conditions able to trap this form were subsequently devised, allowing the isolation of 83% of pure 6beta by simple crystallisation, along with 9% of the 6beta/6alpha mixture. This represents a major advantage over the previously published procedure, especially on multigram scales.
Collapse
Affiliation(s)
- Anna Dilhas
- Laboratoire de Chimie Organique Multifonctionnelle, UMR 8614 'Molecular Glycochemistry', Bat. 420 Université Paris Sud, F-91405, Orsay, France
| | | |
Collapse
|
20
|
Barroca N, Jacquinet JC. An access to various sulfation patterns in dermatan sulfate: chemical syntheses of sulfoforms of trisaccharide methyl glycosides. Carbohydr Res 2002; 337:673-89. [PMID: 11950464 DOI: 10.1016/s0008-6215(02)00060-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The syntheses are reported for the first time of alpha-L-IdopA2SO(3)-(1-->3)-beta-D-GalpNAc4SO(3)-(1-->4)-alpha-L-IdopA2SO(3)-(1-->OMe), its disulfated analogue alpha-L-IdopA2SO(3)-(1-->3)-beta-D-GalpNAc-(1-->4)-alpha-L-IdopA2SO(3)-(1-->OMe), and of beta-D-GalpNAc4SO(3)-(1-->4)-alpha-L-IdopA2SO(3)-(1-->3)-beta-D-GalpNAc4SO(3)-(1-->OMe), which represent structural fragments of dermatan sulfate, unavailable directly by chemical or enzymatic degradation of the glycosaminoglycan polymer. These molecules were readily obtained from a pair of key disaccharide intermediates, in which the relative difference of stability of the D-GalNAc 4-hydroxy protecting groups (acetate or pivalate) toward saponification conditions allowed access to various sulfoforms from a common precursor. For the preparation of these blocks, the 4-O-pivaloyl-D-galacto moiety was readily obtained through a one-pot stereospecific intramolecular nucleophilic displacement on an easily available 3-O-pivaloyl-D-gluco precursor, and the L-IdoA moiety through selective radical oxidation at C-6 of a L-ido 4,6-diol derivative with oxoammonium salts.
Collapse
Affiliation(s)
- Nadine Barroca
- Institut de Chimie Organique et Analytique, UFR Faculté des Sciences, UMR CNRS 6005, Université d'Orléans, BP 6759, F-45067 Orléans, France
| | | |
Collapse
|
21
|
Sherman AA, Yudina ON, Mironov YV, Sukhova EV, Shashkov AS, Menshov VM, Nifantiev NE. Study of glycosylation with N-trichloroacetyl-D-glucosamine derivatives in the syntheses of the spacer-armed pentasaccharides sialyl lacto-N-neotetraose and sialyl lacto-N-tetraose, their fragments, and analogues. Carbohydr Res 2001; 336:13-46. [PMID: 11675024 DOI: 10.1016/s0008-6215(01)00213-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The syntheses of 2-aminoethyl glycosides of the pentasaccharides Neu5Ac-alpha(2-->3)-Gal-beta(1-->4)-GlcNAc-beta(1-->3)-Gal-beta(1-->4)-Glc and Neu5Ac-alpha(2-->3)-Gal-beta(1-->3)-GlcNAc-beta(1-->3)-Gal-beta(1-->4)-Glc, their asialo di-, tri-, and tetrasaccharide fragments, and analogues included a systematic study of glycosylation with variously protected mono- and disaccharide donors derived from N-trichloroacetyl-D-glucosamine of galactose, lactose, and lactosamine glycosyl acceptors bearing benzoyl protection around the OH group to be glycosylated. Despite the low reactivity of these acceptors, stereospecificity and good to excellent yields were obtained with NIS-TfOH-activated thioglycoside donors of such type, or with AgOTf-activated glycosyl bromides, while other promotors, as well as a trichloroacetimidate donor, were less effective, and a beta-acetate donor was inactive. In NIS-TfOH-promoted glycosylation with the thioglycosides, the use of TfOH in catalytic amount led to rapid formation of the corresponding oxazoline, but the quantity of TfOH necessary for further efficient coupling with an acceptor depended on the reactivity of the donor, varying from 0.07 equiv for a 3,6-di-O-benzylated monosaccharide derivative to 2.1 equiv for a peracetylated disaccharide one. In the glycosylation products, the N-trichloroacetyl group was easily converted into N-acetyl by alkaline hydrolysis followed by N-acetylation.
Collapse
Affiliation(s)
- A A Sherman
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, B-334 119991, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|