1
|
El-Saadony MT, Saad AM, Alkafaas SS, Dladla M, Ghosh S, Elkafas SS, Hafez W, Ezzat SM, Khedr SA, Hussien AM, Fahmy MA, Elesawi IE, Salem HM, Mohammed DM, Abd El-Mageed TA, Ahmed AE, Mosa WFA, El-Tarabily MK, AbuQamar SF, El-Tarabily KA. Chitosan, derivatives, and its nanoparticles: Preparation, physicochemical properties, biological activities, and biomedical applications - A comprehensive review. Int J Biol Macromol 2025:142832. [PMID: 40187443 DOI: 10.1016/j.ijbiomac.2025.142832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Chitosan, derived from the deacetylation of chitin, is the second most widely used natural polymer, valued for its nontoxic, biocompatible, and biodegradable properties. These attributes have driven extensive research into diverse applications of chitosan and various derivatives. The key characteristics of chitosan muco-adhesion, permeability enhancement, drug release modulation, and antimicrobial activity are primarily due to its amino and hydroxyl groups. However, the limited solubility of raw chitosan in water and most organic solvents has posed challenges for broader application. Numerous chemically modified derivatives have been developed to address these inadequacies with improved physical and chemical properties. Among these derivatives, chitosan nanoparticles have emerged as versatile drug carriers with precise release kinetics and the capacity for targeted delivery, greatly enhancing drug efficacy and safety profiles for therapeutic applications. Due to these unique physicochemical properties, chitosan and chitosan nanoparticles are promising for improved drug delivery, vaccine administration, transplantation, gene therapy, and diagnostics. This review examines the physicochemical properties and bioactivities of chitosan and chitosan nanoparticles, emphasizing their broad-ranging biomedical applications.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Ahmed M Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mthokozisi Dladla
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia 32511, Egypt; Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg 191002, Russia
| | - Wael Hafez
- Medical Research Division, Department of Internal Medicine, The National Research Centre, Cairo 11511, Egypt
| | - Salma Mohamed Ezzat
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Tanta University, Tanta 44511, Egypt
| | - Sohila A Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta 31733, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohamed A Fahmy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ibrahim Eid Elesawi
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Diseases of Birds, Rabbits, Fish & Their Care & Wildlife, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Taia A Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria 21531, Egypt
| | | | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
2
|
Biswas UK, Bose A, Ghosh B, Sharma S. An insight into chemically modified chitosan and their biological, pharmaceutical, and medical applications: A review. Int J Biol Macromol 2025; 303:140612. [PMID: 39909251 DOI: 10.1016/j.ijbiomac.2025.140612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/30/2024] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
Quaternized chitosan derivatives demonstrated improved antimicrobial activity. Carboxy chitosan derivatives, resulting from carboxylation with glyoxylic acid or chloroalkanoic acid, enhance solubility and are utilized in wound healing and antitumor therapies. Modifications like acylation of chitosan alter hydrophobicity, affecting biocompatibility and drug delivery efficiency. Thiolated chitosan derivatives, with enhanced mucoadhesive properties, are advantageous for mucosal drug delivery. Sulfated chitosan derivatives mimic heparin's functions, showcasing anticoagulant, anti-sclerosis, and antiviral properties. Phosphorylated chitosan derivatives find utility in orthopedics due to their cation-exchange abilities. Heterocyclic chitosan derivatives exhibit antibacterial properties, while Schiff's base and epoxy Schiff's base chitosan derivatives display antimicrobial enhancements and improved drug delivery profiles. Aminosalicylhydrazide cross-linked Schiff's base chitosan derivatives exhibit versatility with heightened antimicrobial and biological activities. Continually exploring novel functional groups highlights the importance of staying current with ongoing research in chitosan modification. Future research should focus on developing innovative chitosan derivatives with enhanced bioactivity, physicochemical properties, and multifunctional capabilities to improve pharmaceutical applications. Additionally, studies on scalability, commercialization, and eco-friendly production methods are essential to ensure industrial viability and sustainability.
Collapse
Affiliation(s)
- Ujjwal Kumar Biswas
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India; East India Pharmaceutical Works Limited, 119, Biren Roy Road (West), Kolkata 700061, India
| | - Anindya Bose
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India.
| | - Bhavna Ghosh
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| | - Susrita Sharma
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| |
Collapse
|
3
|
Liu P, Chen W, Wu D, Zhang Z, Li W, Yang Y. The preparation, modification and hepatoprotective activity of chitooligosaccharides: A review. Int J Biol Macromol 2024; 277:134489. [PMID: 39111493 DOI: 10.1016/j.ijbiomac.2024.134489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/13/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Chitooligosaccharides (COS) has attracted increasing attention due to the various promising bioactivities, tremendous potential in agricultural, environmental nutritional and functional food fields. COS as the major degradation product from chitosan or chitin is prepared via enzymatic, chemical and physical methods. Further obtained COS generally possesses different structural characteristics, such as molecular weight, degree of acetylation and degree of polymerization. Innovations into COS modification has also broadened application of COS in nutrition as well as in agricultural safety. Due to the affinity between structure and bioactivity, diversity of structural characteristics endows COS with various bioactivities like antitumor, antioxidant and anti-inflammatory effects, especially hepatoprotective activity. Therefore, the present review narrates the recent developments in COS physicochemical properties, while paying considerable attention to preparation strategies of COS and their advantages and disadvantages. Moreover, the modification of COS is also discussed including alkylation, quaternization and sulfation, herein the structure-activity relationship of COS was highlighted. Additionally, we summarize the latest research on hepatoprotective activity and mechanisms of COS. Eventually, the future directions of research on COS were discussed, which would provide a new appreciation for the future use of COS.
Collapse
Affiliation(s)
- Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China.
| |
Collapse
|
4
|
Sun L, Yang B, Lin Y, Gao M, Yang Y, Cui X, Hao Q, Liu Y, Wang C. Dynamic bond crosslinked maca polysaccharide hydrogels with reactive oxygen species scavenging and antibacterial effects on infected wound healing. Int J Biol Macromol 2024; 276:133471. [PMID: 38942406 DOI: 10.1016/j.ijbiomac.2024.133471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
In this study, a polysaccharide fragment with antioxidant and reactive oxygen species (ROS) scavenging activities was extracted from Maca (Lepidium meyenii Walp.) and subjected to structural analyses. The fragment, characterized by the α-D-Glcp-(1 → terminal group of the main chain linked to the →4)-Glcp-(1 → end unit through an O-6 bond and the O-3 bond of 1-3-4Glcp, was modified by introducing dialdehyde structures on its glucose units. It was then crosslinked with N-carboxymethyl chitosan via the Schiff base reaction to create a multifunctional hydrogel with antibacterial and ROS scavenging properties. Polyvinyl alcohol was incorporated to form a double crosslinked gel network, and the addition of silver nanoparticles enhanced its antibacterial efficacy. This gel system can scavenge excess ROS, mitigate wound inflammation, eradicate harmful bacteria, and aid in the restoration of skin microecology. The multifunctional maca polysaccharide hydrogel shows significant potential as a medical dressing for the treatment of infected wounds.
Collapse
Affiliation(s)
- Liangliang Sun
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Boyuan Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yameng Lin
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Mingju Gao
- Wenshan University, Wenshan 663099, China
| | - Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiuming Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qian Hao
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yuan Liu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
5
|
Khodadadi Yazdi M, Seidi F, Hejna A, Zarrintaj P, Rabiee N, Kucinska-Lipka J, Saeb MR, Bencherif SA. Tailor-Made Polysaccharides for Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:4193-4230. [PMID: 38958361 PMCID: PMC11253104 DOI: 10.1021/acsabm.3c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Polysaccharides (PSAs) are carbohydrate-based macromolecules widely used in the biomedical field, either in their pure form or in blends/nanocomposites with other materials. The relationship between structure, properties, and functions has inspired scientists to design multifunctional PSAs for various biomedical applications by incorporating unique molecular structures and targeted bulk properties. Multiple strategies, such as conjugation, grafting, cross-linking, and functionalization, have been explored to control their mechanical properties, electrical conductivity, hydrophilicity, degradability, rheological features, and stimuli-responsiveness. For instance, custom-made PSAs are known for their worldwide biomedical applications in tissue engineering, drug/gene delivery, and regenerative medicine. Furthermore, the remarkable advancements in supramolecular engineering and chemistry have paved the way for mission-oriented biomaterial synthesis and the fabrication of customized biomaterials. These materials can synergistically combine the benefits of biology and chemistry to tackle important biomedical questions. Herein, we categorize and summarize PSAs based on their synthesis methods, and explore the main strategies used to customize their chemical structures. We then highlight various properties of PSAs using practical examples. Lastly, we thoroughly describe the biomedical applications of tailor-made PSAs, along with their current existing challenges and potential future directions.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Division
of Electrochemistry and Surface Physical Chemistry, Faculty of Applied
Physics and Mathematics, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
- Advanced
Materials Center, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
| | - Farzad Seidi
- Jiangsu
Co−Innovation Center for Efficient Processing and Utilization
of Forest Resources and International Innovation Center for Forest
Chemicals and Materials, Nanjing Forestry
University, Nanjing 210037, China
| | - Aleksander Hejna
- Institute
of Materials Technology, Poznan University
of Technology, PL-61-138 Poznań, Poland
| | - Payam Zarrintaj
- School
of Chemical Engineering, Oklahoma State
University, 420 Engineering
North, Stillwater, Oklahoma 74078, United States
| | - Navid Rabiee
- Department
of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Justyna Kucinska-Lipka
- Department
of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department
of Pharmaceutical Chemistry, Medical University
of Gdańsk, J.
Hallera 107, 80-416 Gdańsk, Poland
| | - Sidi A. Bencherif
- Chemical
Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
6
|
Ronte A, Chalitangkoon J, Foster EJ, Monvisade P. Development of a pH-responsive intelligent label using low molecular weight chitosan grafted with phenol red for food packaging applications. Int J Biol Macromol 2024; 266:131212. [PMID: 38552693 DOI: 10.1016/j.ijbiomac.2024.131212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/21/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
In this study, we successfully developed a screen-printed pH-responsive intelligent label using low molecular weight chitosan grafted with phenol red (LCPR) as a colorant for screen printing ink. The LCPR was synthesized via a Mannich reaction, and its successful grafting was confirmed through FT-IR, UV-vis, and NMR spectroscopy. The LCPR exhibited lower crystallinity and thermal stability compared to low molecular weight chitosan (LC) and demonstrated zwitterionic behavior. To create intelligent labels, the LCPR-based ink was efficiently printed on cotton substrates with high resolution. The label exhibited remarkable sensitivity to buffer pH solutions and ammonia gas, leading to distinctive color changes from orange to red to purple. Additionally, the label showed excellent reversibility, storage stability, and leaching resistance to different food simulant solutions. The label was utilized to monitor shrimp freshness, successfully detecting a noticeable color shift upon spoilage. These findings highlight the significant potential of the LCPR-based label as an intelligent food packaging solution, offering pH-responsiveness and color stability for qualitative freshness detection of protein-rich food.
Collapse
Affiliation(s)
- Arnat Ronte
- Polymer Synthesis and Functional Materials Research Unit, Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand
| | - Jongjit Chalitangkoon
- Polymer Synthesis and Functional Materials Research Unit, Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand; Department of Chemical and Biological Engineering, BioProducts Institute, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - E Johan Foster
- Department of Chemical and Biological Engineering, BioProducts Institute, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Pathavuth Monvisade
- Polymer Synthesis and Functional Materials Research Unit, Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|
7
|
Káčerová S, Muchová M, Doudová H, Münster L, Hanulíková B, Valášková K, Kašpárková V, Kuřitka I, Humpolíček P, Víchová Z, Vašíček O, Vícha J. Chitosan/dialdehyde cellulose hydrogels with covalently anchored polypyrrole: Novel conductive, antibacterial, antioxidant, immunomodulatory, and anti-inflammatory materials. Carbohydr Polym 2024; 327:121640. [PMID: 38171669 DOI: 10.1016/j.carbpol.2023.121640] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024]
Abstract
In this work, conductive composite hydrogels with covalently attached polypyrrole (PPy) nanoparticles are prepared. Hydrogels are based on partially re-acetylated chitosan soluble at physiological pH without any artificial structural modifications or need for an acidic environment, which simplifies synthesis and purification. Low-toxic and sustainable dialdehyde cellulose (DAC) was used for crosslinking chitosan and covalent anchoring of PPy colloidal particles. The condensation reaction between DAC and PPy is reported for the first time and improves not only the anchoring of PPy particles but also control over the properties of the final composite. The soluble chitosan and PPy particles are shown to act in synergy, which improves the biological properties of the materials. Prepared composite hydrogels are non-cytotoxic, non-irritating, antibacterial, can capture reactive oxygen species often related to excessive inflammation, have conductivity similar to human tissues, enhance in vitro cell growth (migration assay), and have immunomodulatory effects related to the stimulation of neutrophils and macrophages. The covalent attachment of PPy also strengthens the hydrogel network. The aldol condensation as a method for PPy covalent anchoring thus presents an interesting possibility for the development of advanced biomaterials in the future.
Collapse
Affiliation(s)
- Simona Káčerová
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Monika Muchová
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Hana Doudová
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Lukáš Münster
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Barbora Hanulíková
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Kristýna Valášková
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Věra Kašpárková
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic; Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Ivo Kuřitka
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic; Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic
| | - Petr Humpolíček
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic; Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Zdenka Víchová
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic.
| | - Ondřej Vašíček
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolská 135, 612 00 Brno, Czech Republic.
| | - Jan Vícha
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic.
| |
Collapse
|
8
|
Yu M, Zhang K, Guo X, Qian L. Effects of the Degree of Deacetylation on the Single-Molecule Mechanics of Chitosans. J Phys Chem B 2023; 127:4261-4267. [PMID: 37141100 DOI: 10.1021/acs.jpcb.3c01661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chitosan is one of the most prevalent biomass materials, and its physicochemical and biological characteristics, such as solubility, crystallinity, flocculation ability, biodegradability, and amino-related chemical processes, are directly connected to the degree of deacetylation (DD). However, the specifics about the effects of the DD on the characteristics of chitosan are still unclear up to now. In this work, atomic force microscopy-based single-molecule force spectroscopy was used to study the role of the DD in the single-molecule mechanics of chitosan. Even though the DD varies largely (17% ≤ DD ≤ 95%), the experimental results demonstrate that the chitosans exhibit the same natural (in nonane) and backbone (in dimethyl sulfoxide (DMSO)) single-chain elasticity. This suggests that chitosans have the same intra-chain hydrogen bond (H-bond) state in nonane and to which these H-bonds can be eliminated in DMSO. However, when the experiments are carried out in ethylene glycol (EG) and water, the single-chain mechanics are increased with the increases of the DD. The energy consumed to stretch chitosans in water is larger than that in EG, indicating that amino can form a strong interaction with water and induce the formation of the binding water around the sugar rings. The strong interaction between water and amino may be the key factor for the well solubility and chemical activity of chitosan. The results of this work are anticipated to provide fresh light on the significant role played by the DD and water in the structures and functions of chitosan at the single molecular level.
Collapse
Affiliation(s)
- Miao Yu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| | - Kai Zhang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| | - Xin Guo
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| | - Lu Qian
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
9
|
Xie Q, Yang J, Cai J, Shen F, Gu J. Homogeneous preparation of water-soluble products from chitin under alkaline conditions and their cell proliferation in vitro. Int J Biol Macromol 2023; 231:123321. [PMID: 36657539 DOI: 10.1016/j.ijbiomac.2023.123321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/18/2022] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
The purpose of this study was to prepare water-soluble products by homogeneous depolymerization of chitin with H2O2 under alkaline conditions and investigate their potential application in wound healing. For the first time, water-soluble products were successfully prepared using a chitin-NaOH/urea solution; the products were chitosans with molecular weights (Mw) of 3.48-33.5 kDa and degrees of deacetylation (DD) > 0.5. Their Mw, DD and yield were affected by the reaction temperature, reaction time, concentration of H2O2 and chitin DD. The deacetylation and depolymerization of chitin were achieved simultaneously. The depolymerization of chitin was caused by hydrogen abstraction of HO, whereas the deacetylation resulted from the cleavage of amide bonds by HO- and HO2-, although the latter played a more important role. All water-soluble chitosans markedly promoted the proliferation of human skin fibroblast (HSF) cells, but they inhibited the proliferation of human keratinocyte cells. For the proliferation of HSF, a low concentration of chitosans was important. In addition, water-soluble chitosans with an Mw of 3.48-16.4 kDa markedly stimulated the expression of growth factors such as PDGF and TGF-β by macrophages. Water-soluble chitosans could be used as a potential active component in wound dressings.
Collapse
Affiliation(s)
- Qinyue Xie
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jianhong Yang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Jun Cai
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Fengqin Shen
- Changzhou Liu Guojun Vocational Technology College, Changzhou 213025, Jiangsu, China
| | - Jianbin Gu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
10
|
Knight BM, Edgar KJ, De Yoreo JJ, Dove PM. Chitosan as a Canvas for Studies of Macromolecular Controls on CaCO 3 Biological Crystallization. Biomacromolecules 2023; 24:1078-1102. [PMID: 36853173 DOI: 10.1021/acs.biomac.2c01394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
A mechanistic understanding of how macromolecules, typically as an organic matrix, nucleate and grow crystals to produce functional biomineral structures remains elusive. Advances in structural biology indicate that polysaccharides (e.g., chitin) and negatively charged proteoglycans (due to carboxyl, sulfate, and phosphate groups) are ubiquitous in biocrystallization settings and play greater roles than currently recognized. This review highlights studies of CaCO3 crystallization onto chitinous materials and demonstrates that a broader understanding of macromolecular controls on mineralization has not emerged. With recent advances in biopolymer chemistry, it is now possible to prepare chitosan-based hydrogels with tailored functional group compositions. By deploying these characterized compounds in hypothesis-based studies of nucleation rate, quantitative relationships between energy barrier to crystallization, macromolecule composition, and solvent structuring can be determined. This foundational knowledge will help researchers understand composition-structure-function controls on mineralization in living systems and tune the designs of new materials for advanced applications.
Collapse
Affiliation(s)
- Brenna M Knight
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kevin J Edgar
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - James J De Yoreo
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Patricia M Dove
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
11
|
Ali MS, Ho TC, Razack SA, Haq M, Roy VC, Park JS, Kang HW, Chun BS. Oligochitosan recovered from shrimp shells through subcritical water hydrolysis: Molecular size reduction and biological activities. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
12
|
Recent Advances of Chitosan Formulations in Biomedical Applications. Int J Mol Sci 2022; 23:ijms231810975. [PMID: 36142887 PMCID: PMC9504745 DOI: 10.3390/ijms231810975] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 02/07/2023] Open
Abstract
Chitosan, a naturally abundant cationic polymer, is chemically composed of cellulose-based biopolymers derived by deacetylating chitin. It offers several attractive characteristics such as renewability, hydrophilicity, biodegradability, biocompatibility, non-toxicity, and a broad spectrum of antimicrobial activity towards gram-positive and gram-negative bacteria as well as fungi, etc., because of which it is receiving immense attention as a biopolymer for a plethora of applications including drug delivery, protective coating materials, food packaging films, wastewater treatment, and so on. Additionally, its structure carries reactive functional groups that enable several reactions and electrochemical interactions at the biomolecular level and improves the chitosan’s physicochemical properties and functionality. This review article highlights the extensive research about the properties, extraction techniques, and recent developments of chitosan-based composites for drug, gene, protein, and vaccine delivery applications. Its versatile applications in tissue engineering and wound healing are also discussed. Finally, the challenges and future perspectives for chitosan in biomedical applications are elucidated.
Collapse
|
13
|
Rahayu DP, De Mori A, Yusuf R, Draheim R, Lalatsa A, Roldo M. Enhancing the antibacterial effect of chitosan to combat orthopaedic implant-associated infections. Carbohydr Polym 2022; 289:119385. [DOI: 10.1016/j.carbpol.2022.119385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/02/2022]
|
14
|
Zhang Q, Xiang Q, Li Y. One-step bio-extraction of chitin from shrimp shells by successive co-fermentation using Bacillus subtilis and Lactobacillus plantarum. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Rahayu DP, Draheim R, Lalatsa A, Roldo M. Harnessing the Antibacterial Properties of Fluoridated Chitosan Polymers against Oral Biofilms. Pharmaceutics 2022; 14:488. [PMID: 35335865 PMCID: PMC8951426 DOI: 10.3390/pharmaceutics14030488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 02/07/2023] Open
Abstract
Dental caries are a worldwide endemic chronic disease affecting people of all ages. Due to the limitations of daily used oral hygiene products, there is an unmet need for new, effective, safe, and economic oral products. We have recently demonstrated that N-(2(2,6-diaminohexanamide)-chitosan (CS3H Lys) has enhanced antibacterial properties against Streptococcus mutans, the main cariogenic bacterium, and here we investigated the effect of fluoridation of this polymer (CS3H Lys F) on its antibacterial properties and the ability to protect teeth from acid demineralization. We further formulated this polymer into mouthwash preparations and studied their cytocompatibility and physicochemical stability over 6 months. CS3H Lys F was 1.6-fold more effective than the highest tested oral NaF dose in preventing acid demineralization. CS3H Lys F has a 3- to 5-fold lower minimum inhibitory concentration value against S. mutants than the values reported for chitosan polymers and showed negligible cell toxicity. The mouthwashes were stable at both 25 and 40 °C. Further work is under way towards other CS3H Lys F oral hygiene products such as a toothpaste.
Collapse
Affiliation(s)
- Dien Puji Rahayu
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael’s Building, White Swan Road, Portsmouth PO1 2DT, UK; (D.P.R.); (R.D.)
- National Research and Innovation Agency of Indonesia (BRIN), Lebak Bulus Raya No. 49, Jakarta 12440, Indonesia
| | - Roger Draheim
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael’s Building, White Swan Road, Portsmouth PO1 2DT, UK; (D.P.R.); (R.D.)
| | - Aikaterini Lalatsa
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael’s Building, White Swan Road, Portsmouth PO1 2DT, UK; (D.P.R.); (R.D.)
| | - Marta Roldo
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael’s Building, White Swan Road, Portsmouth PO1 2DT, UK; (D.P.R.); (R.D.)
| |
Collapse
|
16
|
|
17
|
Tangthong T, Piroonpan T, Thipe VC, Khoobchandani M, Katti K, Katti KV, Pasanphan W. Bombesin Peptide Conjugated Water-Soluble Chitosan Gallate-A New Nanopharmaceutical Architecture for the Rapid One-Pot Synthesis of Prostate Tumor Targeted Gold Nanoparticles. Int J Nanomedicine 2021; 16:6957-6981. [PMID: 34675516 PMCID: PMC8520890 DOI: 10.2147/ijn.s327045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/17/2021] [Indexed: 01/28/2023] Open
Abstract
PURPOSE We report herein bombesin peptide conjugated water-soluble chitosan gallate as a template for rapid one-pot synthesis of gold nanoparticles (AuNPs) with capabilities to target receptors on prostate cancer cells. METHODS Water-soluble chitosan (WCS), anchored with gallic acid (GA) and LyslLys3 (1,4,7,10-tetraazacyclo dodecane-1,4,7,10-tetraacetic acid) bombesin 1-14 (DBBN) peptide, provides a tumor targeting nanomedicine agent. WCS nanoplatforms provide attractive strategies with built-in capabilities to reduce gold (III) to gold nanoparticles with stabilizing and tumor-targeting capabilities. WCS-GA-DBBN encapsulation around gold nanoparticles affords optimum in vitro stability. RESULTS The DBBN content in the WCS-GA-DBBN sample was ~27%w/w. The antioxidant activities of WCS-GA and WCS-GA-DBBN nanocolloids were enhanced by 12 times as compared to the nascent WCS. AuNPs with a desirable hydrodynamic diameter range of 40-60 nm have been efficiently synthesized using WCS-GA and WCS-GA-DBBN platforms. The AuNPs were stable over 4 days after preparation and ~3 days after subjecting to all relevant biological fluids. The AuNPs capped with WCS-GA-DBBN peptide exhibited superior cellular internalization into prostate tumor (PC-3) cells with evidence of receptor mediated endocytosis. CONCLUSION The AuNPs capped with WCS-GA-DBBN exhibited selective affinity toward prostate cancer cells. AuNPs conjugated with WCS-GA-DBBN serve as a new generation of theranostic agents for treating various neoplastic diseases, thus opening-up new applications in oncology.
Collapse
Affiliation(s)
- Theeranan Tangthong
- Department of Materials Science, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
- Center of Radiation Processing for Polymer Modification and Nanotechnology (CRPN), Department of Materials Science, Faculty of Science, Kasetsart University Chatuchak, Bangkok, 10900, Thailand
| | - Thananchai Piroonpan
- Center of Radiation Processing for Polymer Modification and Nanotechnology (CRPN), Department of Materials Science, Faculty of Science, Kasetsart University Chatuchak, Bangkok, 10900, Thailand
| | - Velaphi C Thipe
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65211, USA
| | - Menka Khoobchandani
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65211, USA
- Department of Radiology, University of Missouri, Columbia, MO, 65211, USA
| | - Kavita Katti
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65211, USA
- Department of Radiology, University of Missouri, Columbia, MO, 65211, USA
| | - Kattesh V Katti
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65211, USA
- Department of Radiology, University of Missouri, Columbia, MO, 65211, USA
- Department of Physics, University of Missouri, Columbia, MO, 65211, USA
| | - Wanvimol Pasanphan
- Department of Materials Science, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
- Center of Radiation Processing for Polymer Modification and Nanotechnology (CRPN), Department of Materials Science, Faculty of Science, Kasetsart University Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
18
|
Effect of hydrophobicity and molar mass on the capacity of chitosan and κ-carrageenan to stabilize water in water emulsions. Carbohydr Polym 2021; 271:118423. [PMID: 34364564 DOI: 10.1016/j.carbpol.2021.118423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/16/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022]
Abstract
A range of commercial chitosan samples with different molar masses and degrees of acetylation was tested for their capacity to stabilize water in water (W/W) emulsions formed by mixing aqueous solutions of dextran and poly (ethylene oxide). To further understand the effect of the acetylation degree, commercial samples were acetylated and deacetylated to different degrees. The effect of pH and chitosan concentration on the stability was investigated. The lowest investigated degree of acetylation (6%) was sufficient to inhibit coalescence, but higher degrees that were studied (up to 50%) led to faster stabilization resulting in smaller stable dispersed droplets that did not sediment for at least one week. The effect of hydrophobic acetyl units on the stability was confirmed for κ-carrageenan that could stabilize the W/W emulsion only after acetylation. For chitosan it was shown that the molar mass should be above a critical value independent of the degree of acetylation.
Collapse
|
19
|
Silva DS, Facchinatto WM, Dos Santos DM, Boni FI, Valdes TA, Leitão A, Gremião MPD, Colnago LA, Campana-Filho SP, Ribeiro SJL. N-(2-hydroxy)-propyl-3-trimethylammonium, O-palmitoyl chitosan: Synthesis, physicochemical and biological properties. Int J Biol Macromol 2021; 178:558-568. [PMID: 33577816 DOI: 10.1016/j.ijbiomac.2021.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/14/2021] [Accepted: 02/04/2021] [Indexed: 12/18/2022]
Abstract
Two samples of N-(2-hydroxy)-propyl-3-trimethylammonium, O-palmitoyl chitosan (DPCat) with different average degrees of quaternization named as DPCat35 (DQ¯ = 35%) and DPCat80 (DQ¯ = 80%), were successfully synthesized by reacting glycidyltrimethylammonium chloride (GTMAC) with O-palmitoyl chitosan (DPCh) derivative (DS¯ = 12%). Such amphiphilic derivatives of chitosan were fully water-soluble at 1.0 < pH < 12.0 and showed significant electrostatic stability enhancement of a self-assembly micellar nanostructure (100-320 nm) due to its positively-charged out-layer. In vitro mucoadhesive and cytotoxicity essays toward healthy fibroblast cells (Balb/C 3T3 clone A31 cell), human prostate cancer (DU145) and liver cancer (HepG2/C3A) cell lines revealed that the biological properties of DPCat derivatives were strongly dependent on DQ¯. Additionally, DPCat35 had better interactions with the biological tissue and with mucin glycoproteins at pH 7.4 as well as exhibited potential to be used on the development of drug delivery systems for prostate and liver cancer treatment.
Collapse
Affiliation(s)
- Daniella Souza Silva
- Institute of Chemistry, Sao Paulo State University, Av. Prof. Francisco Degni 55, CEP 14800-900, 237 Araraquara, SP, Brazil
| | - William Marcondes Facchinatto
- Sao Carlos Institute of Chemistry, University of Sao Paulo, Av. Trabalhador sao-carlense 400, CEP 13566-590, 780 São Carlos, SP, Brazil.
| | - Danilo Martins Dos Santos
- Brazilian Corporation for Agricultural Research, Embrapa Instrumentation, Rua XV de Novembro 1452, CEP 13560-970 São Carlos, SP, Brazil
| | - Fernanda Isadora Boni
- School of Pharmaceutical Sciences, Sao Paulo State University, Rod. Araraquara Jau Km 01 s/n, CEP 14800-903 Araraquara, SP, Brazil
| | - Talita Alvarenga Valdes
- Sao Carlos Institute of Chemistry, University of Sao Paulo, Av. Trabalhador sao-carlense 400, CEP 13566-590, 780 São Carlos, SP, Brazil
| | - Andrei Leitão
- Sao Carlos Institute of Chemistry, University of Sao Paulo, Av. Trabalhador sao-carlense 400, CEP 13566-590, 780 São Carlos, SP, Brazil
| | - Maria Palmira Daflon Gremião
- School of Pharmaceutical Sciences, Sao Paulo State University, Rod. Araraquara Jau Km 01 s/n, CEP 14800-903 Araraquara, SP, Brazil
| | - Luiz Alberto Colnago
- Brazilian Corporation for Agricultural Research, Embrapa Instrumentation, Rua XV de Novembro 1452, CEP 13560-970 São Carlos, SP, Brazil
| | - Sérgio Paulo Campana-Filho
- Sao Carlos Institute of Chemistry, University of Sao Paulo, Av. Trabalhador sao-carlense 400, CEP 13566-590, 780 São Carlos, SP, Brazil
| | - Sidney José Lima Ribeiro
- Institute of Chemistry, Sao Paulo State University, Av. Prof. Francisco Degni 55, CEP 14800-900, 237 Araraquara, SP, Brazil
| |
Collapse
|
20
|
Salmanpour M, Saeed-Vaghefi M, Abolmaali SS, Tamaddon AM. Sterically Stabilized Polyionic Complex Nanogels of Chitosan Lysate and PEG-b-Polyglutamic Acid Copolymer for the Delivery of Irinotecan Active Metabolite (SN-38). Curr Drug Deliv 2020; 18:741-752. [PMID: 33155910 DOI: 10.2174/1567201817999201103195846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Poly Ionic Complex (PIC) nanogels are promising delivery systems with numerous attractions such as simple, fast, and organic solvent-free particle formation and mild drug loading conditions. Among polyelectrolytes, poly (L-amino acid) copolymers, such as poly (ethylene glycol)-block-poly (L-glutamic acid) copolymers (PEG-b-PGlu) are interesting biocompatible and biodegradable candidates bearing carboxylic acid functional groups. OBJECTIVE Aiming to solubilize and to preserve short-acting irinotecan active metabolite (SN38), sterically stabilized PIC nanogels were prepared through electrostatic charge neutralization between PEG-b-PGlu and chitosan lysate, a polycationic natural polymer obtained through digestion of chitosan by hydrogen peroxide oxidation and is soluble in a wide range of pH. METHODS Synthesis of PEG-b-PGlu was accomplished by N-carboxy anhydride polymerization of γ -benzyl L-glutamic acid, which is initiated by methoxy PEG-NH2 and successive debenzylation reaction. RESULTS The resulting block copolymer was characterized by FTIR, 1H-NMR, and Size Exclusion Chromatography (SEC). Self-assembling properties of the PIC nanogels were investigated by pyrene assay, Dynamic Light Scattering (DLS), and Transmission Electron Microscopy (TEM), indicating the formation of homogeneous spherical particles with a mean size of 28 nm at the PEGb- PGlu concentrations/LMWC weight ratio of 5:1. Upon direct loading of SN38, the drug solubility enhanced more than 4×103 folds with a mean loading efficiency of 89% and the drug loading of 30%. PIC nanogels exhibited zeta potential of +1 mV, acceptable biocompatibility, and superior cytotoxicity in murine colorectal carcinoma (CT26 cell line) compared to free drug. CONCLUSION In addition, the PIC nanogels provided SN38 protection against hydrolytic degradation in physiologic conditions. Conclusively, the well-tuned PIC nanogels are suggested as a potentially biocompatible nanocarrier for SN38 delivery.
Collapse
Affiliation(s)
- Mohsen Salmanpour
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Mahvand Saeed-Vaghefi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Samira Sadat Abolmaali
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Ali Mohamad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| |
Collapse
|
21
|
Gentry BM, Perry R, Laurie T, Beckman EJ, Enick RM, Keith JA. Sugar Acetate-based Low Molecular Weight Organogelators. CHEM LETT 2020. [DOI: 10.1246/cl.200333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Brian M. Gentry
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15261, USA
| | - Robert Perry
- GE Global Research Center, One Research Circle K-1, 5B2A, Niskayuna, NY 12309, USA
| | - Tyler Laurie
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15261, USA
| | - Eric J. Beckman
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15261, USA
| | - Robert M. Enick
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15261, USA
| | - John A. Keith
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15261, USA
| |
Collapse
|
22
|
Ibrahim S, Rezk MY, Ismail M, Abdelrahman T, Sharkawy M, Abdellatif A, Allam NK. Coaxial nanofibers outperform uniaxial nanofibers for the loading and release of pyrroloquinoline quinone (PQQ) for biomedical applications. NANOSCALE ADVANCES 2020; 2:3341-3349. [PMID: 36134273 PMCID: PMC9417322 DOI: 10.1039/d0na00311e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/06/2020] [Indexed: 06/16/2023]
Abstract
Pyrroloquinoline quinone (PQQ), present in breast milk and various foods, is highly recommended as an antioxidant, anti-inflammatory agent, and a cofactor in redox reactions in several biomedical fields. Moreover, PQQ has neuroprotective effects on nervous system disorders and immunosuppressive effects on different diseases. Herein, we report on the optimum fabrication of electrospun CS/PVA coaxial, core/shell, and uniaxial nanofibers. The morphological, elemental, and chemical structure of the fabricated nanofibers were investigated and discussed. PQQ, as a drug, was loaded on the uniaxial nanofibers and in the core of the coaxial nanofibers and the sustained and controlled release of PQQ was compared and discussed. The results revealed the privilege of the coaxial over the uniaxial nanofibers in the sustained release and reduction of the initial burst of PQQ. Remarkably, the results revealed a higher degree of swelling for CS/PVA hollow nanofibers compared to that of the uniaxial and the coaxial nanofibers. The coaxial nanofibers showed a lower release rate than the uniaxial nanofibers. Moreover, the CS/PVA coaxial nanofibers loaded with PQQ were found to enhance cell viability and proliferation. Therefore, the CS/PVA coaxial nanofibers loaded with PQQ assembly is considered a superior drug delivery system for PQQ release.
Collapse
Affiliation(s)
- Sara Ibrahim
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo New Cairo 11835 Egypt
| | - Marwan Y Rezk
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo New Cairo 11835 Egypt
| | - Mohammed Ismail
- Zoology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | | | - Mona Sharkawy
- Zoology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ahmed Abdellatif
- Biology Department, School of Sciences and Engineering, American University in Cairo New Cairo 11835 Egypt
| | - Nageh K Allam
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo New Cairo 11835 Egypt
| |
Collapse
|
23
|
Maschmeyer T, Luque R, Selva M. Upgrading of marine (fish and crustaceans) biowaste for high added-value molecules and bio(nano)-materials. Chem Soc Rev 2020; 49:4527-4563. [PMID: 32510068 DOI: 10.1039/c9cs00653b] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Currently, the Earth is subjected to environmental pressure of unprecedented proportions in the history of mankind. The inexorable growth of the global population and the establishment of large urban areas with increasingly higher expectations regarding the quality of life are issues demanding radically new strategies aimed to change the current model, which is still mostly based on linear economy approaches and fossil resources towards innovative standards, where both energy and daily use products and materials should be of renewable origin and 'made to be made again'. These concepts have inspired the circular economy vision, which redefines growth through the continuous valorisation of waste generated by any production or activity in a virtuous cycle. This not only has a positive impact on the environment, but builds long-term resilience, generating business, new technologies, livelihoods and jobs. In this scenario, among the discards of anthropogenic activities, biodegradable waste represents one of the largest and highly heterogeneous portions, which includes garden and park waste, food processing and kitchen waste from households, restaurants, caterers and retail premises, and food plants, domestic and sewage waste, manure, food waste, and residues from forestry, agriculture and fisheries. Thus, this review specifically aims to survey the processes and technologies for the recovery of fish waste and its sustainable conversion to high added-value molecules and bio(nano)materials.
Collapse
Affiliation(s)
- Thomas Maschmeyer
- F11 - School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Rafael Luque
- Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 710049, P. R. China
| | - Maurizio Selva
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino, 155 - 30175 - Venezia Mestre, Italy.
| |
Collapse
|
24
|
Yadav MK, Pokhrel S, Yadav PN. Novel chitosan derivatives of 2-imidazolecarboxaldehyde and 2-thiophenecarboxaldehyde and their antibacterial activity. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1763809] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Manoj Kumar Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | - Shanta Pokhrel
- Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
| | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| |
Collapse
|
25
|
Babii O, Wang Z, Liu G, Martinez EC, van Drunen Littel-van den Hurk S, Chen L. Low molecular weight chitosan nanoparticles for CpG oligodeoxynucleotides delivery: Impact of molecular weight, degree of deacetylation, and mannosylation on intracellular uptake and cytokine induction. Int J Biol Macromol 2020; 159:46-56. [PMID: 32437810 DOI: 10.1016/j.ijbiomac.2020.05.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022]
Abstract
Although synthetic CpG oligodeoxynucleotides (ODNs) have shown substantial potential as immunotherapeutic agents, their effective intracellular delivery remains challenging. In this work, nanoparticles prepared from low-molecular weight (LMW) chitosans were investigated as CpG ODN delivery systems. Chitosan samples with a molecular weight (Mw) of 5 and 15 kDa and degree of deacetylation (DDA) of 50 and 80% were prepared. Additionally, mannosylated chitosans with a substitution degree of 15% were synthesized. The impact of LMW chitosan Mw and DDA on nanoparticle physical properties and the associated immunostimulatory effect in RAW 264.7 cells was studied. Nanoparticles prepared with chitosan of higher DDA and larger Mw exhibited better CpG ODN binding ability and intracellular uptake. Nevertheless, the most efficient immunostimulatory effect was observed while using 50% acetylated and mannosylated samples. The decreased charge density on chitosan backbone resulted in the enhanced intracellular CpG ODN release, which promoted in vitro cytokine secretion. Moreover, mannose ligand grafting promoted nanoparticle uptake through receptor-mediated recognition. Overall, this research suggests that chitosan structural parameters can be modulated to prepare LMW chitosan nanoparticles that first efficiently encapsulate CpG ODN, and then release it in immune cells, thus may be used as an efficient vector for intracellular CpG ODN delivery.
Collapse
Affiliation(s)
- Oksana Babii
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Zhenggang Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Guangyu Liu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Elisa C Martinez
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada; Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | | | - Lingyun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
26
|
Kang Y, Ji X, Bo S, Liu Y, Pasch H. Chromatographic mode transition from size exclusion to slalom chromatography as observed for chitosan. Carbohydr Polym 2020; 235:115950. [DOI: 10.1016/j.carbpol.2020.115950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/19/2019] [Accepted: 02/03/2020] [Indexed: 11/24/2022]
|
27
|
Sun M, Wang T, Pang J, Chen X, Liu Y. Hydroxybutyl Chitosan Centered Biocomposites for Potential Curative Applications: A Critical Review. Biomacromolecules 2020; 21:1351-1367. [DOI: 10.1021/acs.biomac.0c00071] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mengjie Sun
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China
| | - Ting Wang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China
| | - Jianhui Pang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, P.R. China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China
| |
Collapse
|
28
|
Fundueanu G, Constantin M, Bucatariu S, Nicolescu A, Ascenzi P, Moise LG, Tudor L, Trusca VG, Gafencu AV, Ficai D, Ficai A, Andronescu E. Simple and dual cross-linked chitosan millicapsules as a particulate support for cell culture. Int J Biol Macromol 2020; 143:200-212. [DOI: 10.1016/j.ijbiomac.2019.12.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 02/08/2023]
|
29
|
Piegat A, Goszczyńska A, Idzik T, Niemczyk A. The Importance of Reaction Conditions on the Chemical Structure of N, O-Acylated Chitosan Derivatives. Molecules 2019; 24:molecules24173047. [PMID: 31443405 PMCID: PMC6749269 DOI: 10.3390/molecules24173047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022] Open
Abstract
The structure of acylated chitosan derivatives strongly determines the properties of obtained products, influencing their hydrodynamic properties and thereby their solubility or self-assembly susceptibility. In the present work, the significance of slight changes in acylation conditions on the structure and properties of the products is discussed. A series of chitosan-acylated derivatives was synthesized by varying reaction conditions in a two-step process. As reaction media, two diluted acid solutions-i.e., acetic acid and hydrochloric acid)-and two coupling systems-i.e., 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride (EDC) and N-hydroxysulfosuccinimide (EDC/NHS)-were used. The chemical structure of the derivatives was studied in detail by means of two spectroscopic methods, namely infrared and nuclear magnetic resonance spectroscopy, in order to analyze the preference of the systems towards N- or O-acylation reactions, depending on the synthesis conditions used. The results obtained from advanced 1H-13C HMQC spectra emphasized the challenge of achieving a selective acylation reaction path. Additionally, the study of the molecular weight and solution behavior of the derivatives revealed that even slight changes in their chemical structure have an important influence on their final properties. Therefore, an exact knowledge of the obtained structure of derivatives is essential to achieve reaction reproducibility and to target the application.
Collapse
Affiliation(s)
- Agnieszka Piegat
- West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Polymer Institute, Division of Functional Materials and Biomaterials, 45 Piastow Ave, 70-311 Szczecin, Poland.
| | - Agata Goszczyńska
- West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Polymer Institute, Division of Functional Materials and Biomaterials, 45 Piastow Ave, 70-311 Szczecin, Poland
| | - Tomasz Idzik
- West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic and Physical Chemistry, 42 Piastow Ave, 71-065 Szczecin, Poland
| | - Agata Niemczyk
- West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Polymer Institute, Division of Functional Materials and Biomaterials, 45 Piastow Ave, 70-311 Szczecin, Poland
| |
Collapse
|
30
|
Network structure and enzymatic degradation of chitosan hydrogels determined by crosslinking methods. Carbohydr Polym 2019; 217:160-167. [DOI: 10.1016/j.carbpol.2019.04.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/04/2019] [Accepted: 04/15/2019] [Indexed: 01/29/2023]
|
31
|
Schneible JD, Singhal A, Lilova RL, Hall CK, Grafmüller A, Menegatti S. Tailoring the Chemical Modification of Chitosan Hydrogels to Fine-Tune the Release of a Synergistic Combination of Chemotherapeutics. Biomacromolecules 2019; 20:3126-3141. [PMID: 31310515 DOI: 10.1021/acs.biomac.9b00707] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Combination chemotherapy with a defined ratio and sequence of drug release is a clinically established and effective route to treat advanced solid tumors. In this context, a growing body of literature demonstrates the potential of hydrogels constructed with chemically modified polysaccharides as depots for controlled release of chemotherapeutics. Identifying the appropriate modification in terms of physicochemical properties of the functional group and its degree of substitution (χ) to achieve the desired release profile for multiple drugs is, however, a complex multivariate problem. To address this issue, we have developed a computational toolbox that models the migration of a drug pair through a hydrated network of polysaccharide chains modified with hydrophobic moieties. In this study, we chose doxorubicin (DOX) and Gemcitabine (GEM) as model drugs, as their synergistic effect against breast cancer has been thoroughly investigated, and chitosan as the model polymer. Our model describes how the modification of chitosan chains with acetyl, butanoyl, and heptanoyl moieties at different values χ governs both the structure of the hydrogel network and drug migration through it. Our experimental data confirm the in silico predictions for both single- and dual-drug release and, most notably, the counterintuitive inversion of release vs χ that occurs when switching from a single- to a dual-drug system. Consensus between predicted and experimental data indicates that acetyl modifications (χ = 32-42%) and butanoyl modifications (χ = 19-24%) provide synergistic GEM/DOX release molar ratios (i.e., 5-10). Collectively, these results demonstrate the potential of this model in guiding the design of chemotherapeutic hydrogels to combat cancer.
Collapse
Affiliation(s)
- John D Schneible
- Department of Chemical and Biomolecular Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Ankush Singhal
- Department of Theory and Biosystems , Max Planck Institute for Colloids and Interfaces , Potsdam 14476 , Germany
| | - Radina L Lilova
- Department of Chemical and Biomolecular Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Carol K Hall
- Department of Chemical and Biomolecular Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Andrea Grafmüller
- Department of Theory and Biosystems , Max Planck Institute for Colloids and Interfaces , Potsdam 14476 , Germany
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| |
Collapse
|
32
|
Hu S, de Vos P. Polymeric Approaches to Reduce Tissue Responses Against Devices Applied for Islet-Cell Encapsulation. Front Bioeng Biotechnol 2019; 7:134. [PMID: 31214587 PMCID: PMC6558039 DOI: 10.3389/fbioe.2019.00134] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022] Open
Abstract
Immunoisolation of pancreatic islets is a technology in which islets are encapsulated in semipermeable but immunoprotective polymeric membranes. The technology allows for successful transplantation of insulin-producing cells in the absence of immunosuppression. Different approaches of immunoisolation are currently under development. These approaches involve intravascular devices that are connected to the bloodstream and extravascular devices that can be distinguished in micro- and macrocapsules and are usually implanted in the peritoneal cavity or under the skin. The technology has been subject of intense fundamental research in the past decade. It has co-evolved with novel replenishable cell sources for cure of diseases such as Type 1 Diabetes Mellitus that need to be protected for the host immune system. Although the devices have shown significant success in animal models and even in human safety studies most technologies still suffer from undesired tissue responses in the host. Here we review the past and current approaches to modulate and reduce tissue responses against extravascular cell-containing micro- and macrocapsules with a focus on rational choices for polymer (combinations). Choices for polymers but also choices for crosslinking agents that induce more stable and biocompatible capsules are discussed. Combining beneficial properties of molecules in diblock polymers or application of these molecules or other anti-biofouling molecules have been reviewed. Emerging are also the principles of polymer brushes that prevent protein and cell-adhesion. Recently also immunomodulating biomaterials that bind to specific immune receptors have entered the field. Several natural and synthetic polymers and even combinations of these polymers have demonstrated significant improvement in outcomes of encapsulated grafts. Adequate polymeric surface properties have been shown to be essential but how the surface should be composed to avoid host responses remains to be identified. Current insight is that optimal biocompatible devices can be created which raises optimism that immunoisolating devices can be created that allows for long term survival of encapsulated replenishable insulin-producing cell sources for treatment of Type 1 Diabetes Mellitus.
Collapse
Affiliation(s)
- Shuixan Hu
- Division of Medical Biology, Department of Pathology and Medical Biology, Immunoendocrinology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | | |
Collapse
|
33
|
Kamari A, Yusoff SNM. N-octyl chitosan derivatives as amphiphilic carrier agents for herbicide formulations. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AbstractThis study investigates the potential of N-octyl chitosan derivatives, namely N-octyl-O-sulfate chitosan (NOOSC), N-octyl-N-succinyl chitosan (NONSC) and N-octyl-O-glycol chitosan (NOOGC) as amphiphilic carrier agents for atrazine in water-insoluble herbicide formulations. The N-octyl chitosan derivatives were characterised using several analytical instruments such as Fourier Transform Infrared (FTIR) Spectrometer, CHNS-O Elemental Analyser (CHNS-O), Transmission Electron Microscope (TEM), Thermogravimetric Analyser (TGA), Differential Scanning Calorimeter (DSC) and Fluorescence Spectrometer. The encapsulation of atrazine by N-octyl chitosan derivatives was studied using a High Performance Liquid Chromatography (HPLC). The FTIR spectra of N-octyl chitosan derivatives confirmed the presence of hydrophobic and hydrophilic groups on chitosan backbone. TEM images revealed that N-octyl chitosan derivatives have formed self-aggregates with a spherical shape. The CMC values for N-octyl chitosan derivatives were between 0.06 and 0.09 mg/mL. The encapsulation efficiency (EE) values for amphiphilic chitosan were greater than 90%. The release profiles showed different release behaviour of pure herbicide in solution as compared to atrazine-loaded N-octyl chitosan derivatives. Results suggest that the chitosan derivatives offer promising characteristics that enable them to act as effective carrier agents for atrazine. In conclusion, the application of N-octyl chitosan derivatives could reduce the use of organic solvents in herbicide formulations by 37.5%.
Collapse
Affiliation(s)
- Azlan Kamari
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia
| | - Siti Najiah Mohd Yusoff
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia
| |
Collapse
|
34
|
Hong S, Choi H, Jo S, Kim M, Lee S, Ahn S, Lee J. Modification of chitosan using hydrogen peroxide and ascorbic acid and its physicochemical properties including water solubility, oil entrapment and
in vitro
lipase activity. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Seungmi Hong
- Department of Food Science and Biotechnology Sungkyunkwan University Suwon Gyeonggi‐do 16419 Korea
| | - HyungSeok Choi
- Department of Food Science and Biotechnology Sungkyunkwan University Suwon Gyeonggi‐do 16419 Korea
| | - SeungBin Jo
- Department of Food Science and Biotechnology Sungkyunkwan University Suwon Gyeonggi‐do 16419 Korea
| | - Mi‐Ja Kim
- Department of Food and Nutrition Kangwon National University Samcheok Kangwon‐do 25945 Korea
| | - Suyong Lee
- Department of Food Science and Technology and Carbohydrate Bioproduct Research Center Sejong University Seoul 05006 Korea
| | - Sangdoo Ahn
- Department of Chemistry Chung‐Ang University Seoul 06974 Korea
| | - JaeHwan Lee
- Department of Food Science and Biotechnology Sungkyunkwan University Suwon Gyeonggi‐do 16419 Korea
| |
Collapse
|
35
|
Lin WJ, Lee SA. A novel iron-conjugated acid-modified chitosan derivatives as an oral phosphate binding agent to improve phosphorus adsorption efficacy in vitro and in vivo, synthesis and their characterization. Carbohydr Polym 2019; 212:378-386. [PMID: 30832870 DOI: 10.1016/j.carbpol.2019.02.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 01/19/2023]
Abstract
Current phosphate binders used for hyperphosphatemia treatment need large daily dose which make patients' compliance worse and the therapeutic efficacy may not conform the expectation. In this study, three polyacid modified iron-based chitosan derivatives were developed as an oral phosphate binding agent to improve phosphorus adsorption efficacy. The result showed that modification of chitosan by citric acid (CA) could facilitate the conjugation of iron by two folds (272.0 ± 12.1-315.3 ± 20.5 mg Fe/g vs. 141.0 ± 4.9-156.5 ± 8.3 mg Fe/g). All of these iron-based acid-modified chitosan had acceptable safety with cell viability >75% in the concentration up to 250 μg/mL. The stability in terms of iron release in pH 1.0 for 2 h was in the order of DPCS-NAc-CA-Fe (8.9 ± 2.3%) < DPCS-CA-Fe (19.1 ± 4.1%) < DADPCS-CA-Fe (24.6 ± 2.6%) indicating DPCS-NAc-CA-Fe was the most stable one. These iron-based acid-modified chitosan derivatives efficiently adsorbed 255.7 ± 11.3-271.2 ± 19.3 mg of phosphate especially in simulated gastro pH 1.0 in vitro. Furthermore, oral administration of DPCS-NAc-CA-Fe significantly lowered serum phosphorus level from 5.82 ± 0.45 mg/dL to 4.84 ± 0.56 mg/dL (p < 0.01) at 0.25% low feeding dose for 3 weeks without losing of weight, appetite, and activity of Wistar rats.
Collapse
Affiliation(s)
- Wen Jen Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; Drug Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Shu An Lee
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
36
|
Pu S, Li J, Sun L, Zhong L, Ma Q. An in vitro comparison of the antioxidant activities of chitosan and green synthesized gold nanoparticles. Carbohydr Polym 2019; 211:161-172. [DOI: 10.1016/j.carbpol.2019.02.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/06/2018] [Accepted: 02/01/2019] [Indexed: 12/24/2022]
|
37
|
Salamanna F, Giavaresi G, Parrilli A, Martini L, Nicoli Aldini N, Abatangelo G, Frizziero A, Fini M. Effects of intra-articular hyaluronic acid associated to Chitlac (arty-duo®) in a rat knee osteoarthritis model. J Orthop Res 2019; 37:867-876. [PMID: 30816583 DOI: 10.1002/jor.24259] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/20/2019] [Indexed: 02/04/2023]
Abstract
Among conventional osteoarthritis (OA) treatments, intra-articular (i.a) viscosupplementation with hyaluronic acid (HA) is used to restore joint viscoelasticity. However, the rapid clearance and elimination of HA may limit its application. The aim of this study was to verify the improved efficacy of HA within the joint, using a lactose-modified chitosan (chitlac) as a potentially chondroprotective additive. Four weeks after induction of experimental OA by destabilization of the medial meniscus (DMM), 12-week-old Sprague Dawley male rats (n = 30), received once a week, for three weeks, i.a injections of: (i) HA associated to chitlac (ARTY-DUO®), (ii) HA; and (iii) sodium chloride (NaCl). Five animals for each group were euthanized 4 weeks after the first i.a injection, while the remaining five were euthanized 8 weeks after the first i.a injection. The restoration of physiological joint microenvironment was tested by histology, histomorphometry, immunohistochemistry, and microtomography (micro-CT). At 4 and even more at 8 weeks, histological analysis showed a significant decrease in OARSI and Mankin scores, with weaker matrix metalloproteinase (MMP)-3, MMP-13, and Galectin-3 in ARTY-DUO® group versus NaCl and HA groups. A reduction in Galectin-1 and a stronger Collagen II staining was seen in both ARTY-DUO® and HA versus NaCl. A reduction in Kreen-modified score, for synovium inflammation, was observed in the ARTY-DUO® group. Micro-CT measurements did not shown significant differences between the groups. The present results show that i.a ARTY-DUO® injections produce a significant improvement in knee articular cartilage degeneration and synovium inflammation in a rat model of DMM-induced OA. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Francesca Salamanna
- Laboratory Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Gianluca Giavaresi
- Laboratory Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Annapaola Parrilli
- Laboratory Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Lucia Martini
- Laboratory Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicolò Nicoli Aldini
- Laboratory Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Antonio Frizziero
- Department of Physical Medicine and Rehabilitation, University of Padua, Padua, Italy
| | - Milena Fini
- Laboratory Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
38
|
Dadou SM, El-Barghouthi MI, Antonijevic MD, Chowdhry BZ, Badwan AA. Elucidation of the Controlled-Release Behavior of Metoprolol Succinate from Directly Compressed Xanthan Gum/Chitosan Polymers: Computational and Experimental Studies. ACS Biomater Sci Eng 2019; 6:21-37. [DOI: 10.1021/acsbiomaterials.8b01028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Suha M. Dadou
- Department of Pharmaceutical, Chemical & Environmental Science, Faculty of Engineering & Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, United Kingdom
| | - Musa I. El-Barghouthi
- Department of Chemistry, The Hashemite University, P.O. Box 150459, Zarqa 13115, Jordan
- Department of Chemistry, Isra University, Amman 11622, Jordan
| | - Milan D. Antonijevic
- Department of Pharmaceutical, Chemical & Environmental Science, Faculty of Engineering & Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, United Kingdom
| | - Babur Z. Chowdhry
- Department of Pharmaceutical, Chemical & Environmental Science, Faculty of Engineering & Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, United Kingdom
| | - Adnan A. Badwan
- Research and Innovation Centre, The Jordanian Pharmaceutical Manufacturing Company (PLC), P.O. Box
94, Naor 11710, Jordan
| |
Collapse
|
39
|
Naumov VS, Ignatov SK. Dissolution of chitosan nanocrystals in aqueous media of different acidity. Molecular dynamic study. Carbohydr Polym 2019; 207:619-627. [PMID: 30600047 DOI: 10.1016/j.carbpol.2018.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/18/2018] [Accepted: 12/09/2018] [Indexed: 12/12/2022]
Abstract
The process of dissolution of chitosan nanocrystals with molecular mass of polymer up to 12.8 kDa in aqueous media of various pH was studied by molecular dynamic simulations with the use of the improved force field GROMOS 56ACARBO_CHT specially developed for the chitosan polymers description. The effect of the media acidity and polymer molecular weight on the dissolution process kinetics has been studied and the regression expressions for kinetic parameters were established. The calculated solution viscosity, Mark-Houwink-Sakurada equation parameters, and pH values of the dissolution beginning are in good agreement with the available experimental data. The uniform/non-uniform distribution of protonated amino groups and hydrogen bonds along the polymeric chains is found to be of key importance parameter for the dissolution process which can be considered as a criterion of dissolution ability.
Collapse
Affiliation(s)
- Vladimir S Naumov
- N.I. Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia.
| | - Stanislav K Ignatov
- N.I. Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia
| |
Collapse
|
40
|
Minh NC, Nguyen VH, Schwarz S, Stevens WF, Trung TS. Preparation of water soluble hydrochloric chitosan from low molecular weight chitosan in the solid state. Int J Biol Macromol 2019; 121:718-726. [DOI: 10.1016/j.ijbiomac.2018.10.130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/08/2018] [Accepted: 10/15/2018] [Indexed: 12/19/2022]
|
41
|
Hamedi H, Moradi S, Hudson SM, Tonelli AE. Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydr Polym 2018; 199:445-460. [DOI: 10.1016/j.carbpol.2018.06.114] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 01/06/2023]
|
42
|
Yusoff SNM, Kamari A, Ishak S, Halim ALA. N-hexanoyl-O-glycol chitosan as a carrier agent for water-insoluble herbicide. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1742-6596/1097/1/012053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Correia CR, Reis RL, Mano JF. Design Principles and Multifunctionality in Cell Encapsulation Systems for Tissue Regeneration. Adv Healthc Mater 2018; 7:e1701444. [PMID: 30102458 DOI: 10.1002/adhm.201701444] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 07/16/2018] [Indexed: 12/12/2022]
Abstract
Cell encapsulation systems are being increasingly applied as multifunctional strategies to regenerate tissues. Lessons afforded with encapsulation systems aiming to treat endocrine diseases seem to be highly valuable for the tissue engineering and regenerative medicine (TERM) systems of today, in which tissue regeneration and biomaterial integration are key components. Innumerous multifunctional systems for cell compartmentalization are being proposed to meet the specific needs required in the TERM field. Herein is reviewed the variable geometries proposed to produce cell encapsulation strategies toward tissue regeneration, including spherical and fiber-shaped systems, and other complex shapes and arrangements that better mimic the highly hierarchical organization of native tissues. The application of such principles in the TERM field brings new possibilities for the development of highly complex systems, which holds tremendous promise for tissue regeneration. The complex systems aim to recreate adequate environmental signals found in native tissue (in particular during the regenerative process) to control the cellular outcome, and conferring multifunctional properties, namely the incorporation of bioactive molecules and the ability to create smart and adaptative systems in response to different stimuli. The new multifunctional properties of such systems that are being employed to fulfill the requirements of the TERM field are also discussed.
Collapse
Affiliation(s)
- Clara R. Correia
- 3B's Research Group – Biomaterials, Biodegradables, and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group – Biomaterials, Biodegradables, and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - João F. Mano
- 3B's Research Group – Biomaterials, Biodegradables, and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|
44
|
Yusoff SNM, Kamari A. N-deoxycholic acid-O-glycol chitosan as a potential carrier agent for botanical pesticide rotenone. J Appl Polym Sci 2018. [DOI: 10.1002/app.46855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- S. N. M. Yusoff
- Department of Chemistry, Faculty Science and Mathematics; Universiti Pendidikan Sultan Idris 35900; Tanjong Malim Malaysia
| | - A. Kamari
- Department of Chemistry, Faculty Science and Mathematics; Universiti Pendidikan Sultan Idris 35900; Tanjong Malim Malaysia
| |
Collapse
|
45
|
Ahsan SM, Thomas M, Reddy KK, Sooraparaju SG, Asthana A, Bhatnagar I. Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 2018; 110:97-109. [DOI: 10.1016/j.ijbiomac.2017.08.140] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/16/2017] [Accepted: 08/27/2017] [Indexed: 12/30/2022]
|
46
|
Alfaro L, Chotiko A, Chouljenko A, Janes M, King JM, Sathivel S. Development of water-soluble chitosan powder and its antimicrobial effect against inoculated Listeria innocua NRRL B-33016 on shrimp. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.10.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Zhang J, Xu WR, Zhang Y, Li W, Hu J, Zheng F, Wu Y. Liquefied chitin/polyvinyl alcohol based blend membranes: Preparation and characterization and antibacterial activity. Carbohydr Polym 2018; 180:175-181. [DOI: 10.1016/j.carbpol.2017.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/11/2017] [Accepted: 10/03/2017] [Indexed: 10/18/2022]
|
48
|
Sahariah P, Másson M. Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure–Activity Relationship. Biomacromolecules 2017; 18:3846-3868. [DOI: 10.1021/acs.biomac.7b01058] [Citation(s) in RCA: 434] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Priyanka Sahariah
- Faculty
of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Már Másson
- Faculty
of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| |
Collapse
|
49
|
Tiew SX, Misran M. Encapsulation of salicylic acid in acylated low molecular weight chitosan for sustained release topical application. J Appl Polym Sci 2017. [DOI: 10.1002/app.45273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shu Xian Tiew
- Department of Chemistry; Faculty of Science, University of Malaya; 50603 Kuala Lumpur Malaysia
- International Halal Research University of Malaya (IHRUM), Academy of Islamic Studies, University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Misni Misran
- Department of Chemistry; Faculty of Science, University of Malaya; 50603 Kuala Lumpur Malaysia
- International Halal Research University of Malaya (IHRUM), Academy of Islamic Studies, University of Malaya; 50603 Kuala Lumpur Malaysia
| |
Collapse
|
50
|
Blagodatskikh IV, Kulikov SN, Vyshivannaya OV, Bezrodnykh EA, Tikhonov VE. N-Reacetylated Oligochitosan: pH Dependence of Self-Assembly Properties and Antibacterial Activity. Biomacromolecules 2017; 18:1491-1498. [DOI: 10.1021/acs.biomac.7b00039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Inesa V. Blagodatskikh
- A. N. Nesmeyanov
Institute of Organoelement Compounds of Russian Academy of Sciences,
Russia, Vavilov street 28, Moscow, 119991 Russia
| | - Sergey N. Kulikov
- Kazan Federal University, Kremlyovskaya
street 18, Kazan, 420008 Russia
- Kazan Scientific
Research Institute of Epidemiology and Microbiology, Bolshaya Krasnaya street 67, Kazan, 420015 Russia
| | - Oxana V. Vyshivannaya
- A. N. Nesmeyanov
Institute of Organoelement Compounds of Russian Academy of Sciences,
Russia, Vavilov street 28, Moscow, 119991 Russia
| | - Evgeniya A. Bezrodnykh
- A. N. Nesmeyanov
Institute of Organoelement Compounds of Russian Academy of Sciences,
Russia, Vavilov street 28, Moscow, 119991 Russia
| | - Vladimir E. Tikhonov
- A. N. Nesmeyanov
Institute of Organoelement Compounds of Russian Academy of Sciences,
Russia, Vavilov street 28, Moscow, 119991 Russia
| |
Collapse
|