1
|
Abusara OH, Ibrahim AIM, Issa H, Hammad AM, Ismail WH. In Vitro Evaluation of ALDH1A3-Affinic Compounds on Breast and Prostate Cancer Cell Lines as Single Treatments and in Combination with Doxorubicin. Curr Issues Mol Biol 2023; 45:2170-2181. [PMID: 36975509 PMCID: PMC10047313 DOI: 10.3390/cimb45030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/18/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
Aldehyde dehydrogenase (ALDH) enzymes are involved in the growth and development of several tissues, including cancer cells. It has been reported that targeting the ALDH family, including the ALDH1A subfamily, enhances cancer treatment outcomes. Therefore, we aimed to investigate the cytotoxicity of ALDH1A3-affinic compounds that have been recently discovered by our group, on breast (MCF7 and MDA-MB-231) and prostate (PC-3) cancer cell lines. These compounds were investigated on the selected cell lines as single treatments and in combination with doxorubicin (DOX). Results showed that the combination treatment experiments of the selective ALDH1A3 inhibitors (compounds 15 and 16) at variable concentrations with DOX resulted in significant increases in the cytotoxic effect on the MCF7 cell line for compound 15, and to a lesser extent for compound 16 on the PC-3 cell line, compared to DOX alone. The activity of compounds 15 and 16 as single treatments on all cell lines was found to be non-cytotoxic. Therefore, our findings showed that the investigated compounds have a promising potential to target cancer cells, possibly via an ALDH-related pathway, and sensitize them to DOX treatment.
Collapse
Affiliation(s)
- Osama H. Abusara
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
- Correspondence:
| | - Ali I. M. Ibrahim
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | | | - Alaa M. Hammad
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Worood H. Ismail
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
2
|
Vassalli G. Aldehyde Dehydrogenases: Not Just Markers, but Functional Regulators of Stem Cells. Stem Cells Int 2019; 2019:3904645. [PMID: 30733805 PMCID: PMC6348814 DOI: 10.1155/2019/3904645] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/25/2018] [Indexed: 12/26/2022] Open
Abstract
Aldehyde dehydrogenase (ALDH) is a superfamily of enzymes that detoxify a variety of endogenous and exogenous aldehydes and are required for the biosynthesis of retinoic acid (RA) and other molecular regulators of cellular function. Over the past decade, high ALDH activity has been increasingly used as a selectable marker for normal cell populations enriched in stem and progenitor cells, as well as for cell populations from cancer tissues enriched in tumor-initiating stem-like cells. Mounting evidence suggests that ALDH not only may be used as a marker for stem cells but also may well regulate cellular functions related to self-renewal, expansion, differentiation, and resistance to drugs and radiation. ALDH exerts its functional actions partly through RA biosynthesis, as all-trans RA reverses the functional effects of pharmacological inhibition or genetic suppression of ALDH activity in many cell types in vitro. There is substantial evidence to suggest that the role of ALDH as a stem cell marker comes down to the specific isoform(s) expressed in a particular tissue. Much emphasis has been placed on the ALDH1A1 and ALDH1A3 members of the ALDH1 family of cytosolic enzymes required for RA biosynthesis. ALDH1A1 and ALDH1A3 regulate cellular function in both normal stem cells and tumor-initiating stem-like cells, promoting tumor growth and resistance to drugs and radiation. An improved understanding of the molecular mechanisms by which ALDH regulates cellular function will likely open new avenues in many fields, especially in tissue regeneration and oncology.
Collapse
Affiliation(s)
- Giuseppe Vassalli
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
- Center for Molecular Cardiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
3
|
Sun J, Fu J, Li L, Chen C, Wang H, Hou Y, Xu Y, Pi J. Nrf2 in alcoholic liver disease. Toxicol Appl Pharmacol 2018; 357:62-69. [PMID: 30165058 DOI: 10.1016/j.taap.2018.08.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 12/19/2022]
Abstract
Alcoholic liver disease (ALD) is a leading cause of morbidity and mortality of liver disorders and a major health issue globally. ALD refers to a spectrum of liver pathologies ranging from steatosis, steatohepatitis, fibrosis, cirrhosis and even hepatocellular carcinoma. Various mechanisms, including oxidative stress, protein and DNA modification, inflammation and impaired lipid metabolism, have been implicated in the pathogenesis of ALD. Further, reactive oxygen species (ROS) in particular, have been identified as a key component in the initiation and progression of ALD. Nuclear factor erythroid 2 like 2 (Nrf2) is a master regulator of the intracellular adaptive antioxidant response to oxidative stress, and aids in the detoxification of a variety of toxicants. Given its cytoprotective role, Nrf2 has been extensively studied as a therapeutic target for ALD. Paradoxically, however, emerging evidence have revealed that Nrf2 may be implicated in the progression of ALD. In this review, we summarize the role of Nrf2 in the development of ALD and discuss the underlying mechanisms. Clearly, more comprehensive studies with proper animal and cell models and in human are needed to verify the potential therapeutic role of Nrf2 in ALD.
Collapse
Affiliation(s)
- Jing Sun
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Lu Li
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Chengjie Chen
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Huihui Wang
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Yuanyuan Xu
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
4
|
Khatri R, Shah P, Guha R, Rassool FV, Tomkinson AE, Brodie A, Jaiswal AK. Aromatase Inhibitor-Mediated Downregulation of INrf2 (Keap1) Leads to Increased Nrf2 and Resistance in Breast Cancer. Mol Cancer Ther 2015; 14:1728-37. [PMID: 25976679 DOI: 10.1158/1535-7163.mct-14-0672] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 05/05/2015] [Indexed: 12/23/2022]
Abstract
Aromatase inhibitors are effective drugs that reduce or eliminate hormone-sensitive breast cancer. However, despite their efficacy, resistance to these drugs can occur in some patients. The INrf2 (Keap1):Nrf2 complex serves as a sensor of drug/radiation-induced oxidative/electrophilic stress. INrf2 constitutively suppresses Nrf2 by functioning as an adapter protein for the Cul3/Rbx1-mediated ubiquitination/degradation of Nrf2. Upon stress, Nrf2 dissociates from INrf2, is stabilized, translocates to the nucleus, and coordinately induces a battery of cytoprotective gene expression. Current studies investigated the role of Nrf2 in aromatase inhibitor resistance. RT-PCR and immunoblot assays showed that aromatase inhibitor-resistant breast cancer LTLTCa and AnaR cells express lower INrf2 and higher Nrf2 protein levels, as compared with drug-sensitive MCF-7Ca and AC1 cells, respectively. The increase in Nrf2 was due to lower ubiquitination/degradation of Nrf2 in aromatase inhibitor-resistant cells. Higher Nrf2-mediated levels of biotransformation enzymes, drug transporters, and antiapoptotic proteins contributed to reduced efficacy of drugs and aversion to apoptosis that led to drug resistance. shRNA inhibition of Nrf2 in LTLTCa (LTLTCa-Nrf2KD) cells reduced resistance and sensitized cells to aromatase inhibitor exemestane. Interestingly, LTLTCa-Nrf2KD cells also showed reduced levels of aldehyde dehydrogenase, a marker of tumor-initiating cells and significantly decreased mammosphere formation, as compared with LTLTCa-Vector control cells. The results together suggest that persistent aromatase inhibitor treatment downregulated INrf2 leading to higher expression of Nrf2 and Nrf2-regulated cytoprotective proteins that resulted in increased aromatase inhibitor drug resistance. These findings provide a rationale for the development of Nrf2 inhibitors to overcome resistance and increase efficacy of aromatase inhibitors.
Collapse
Affiliation(s)
- Raju Khatri
- Department of Pharmacology and Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Preeti Shah
- Department of Pharmacology and Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Rupa Guha
- Department of Pharmacology and Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Feyruz V Rassool
- Department of Pharmacology and Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Alan E Tomkinson
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Angela Brodie
- Department of Pharmacology and Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Anil K Jaiswal
- Department of Pharmacology and Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
5
|
Pors K, Moreb JS. Aldehyde dehydrogenases in cancer: an opportunity for biomarker and drug development? Drug Discov Today 2014; 19:1953-63. [PMID: 25256776 DOI: 10.1016/j.drudis.2014.09.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/31/2014] [Accepted: 09/15/2014] [Indexed: 02/07/2023]
Abstract
Aldehyde dehydrogenases (ALDHs) belong to a superfamily of 19 isozymes that are known to participate in many physiologically important biosynthetic processes including detoxification of specific endogenous and exogenous aldehyde substrates. The high expression levels of an emerging number of ALDHs in various cancer tissues suggest that these enzymes have pivotal roles in cancer cell survival and progression. Mapping out the heterogeneity of tumours and their cancer stem cell (CSC) component will be key to successful design of strategies involving therapeutics that are targeted against specific ALDH isozymes. This review summarises recent progress in ALDH-focused cancer research and discovery of small-molecule-based inhibitors.
Collapse
Affiliation(s)
- Klaus Pors
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK.
| | - Jan S Moreb
- Hematological Malignancies, PO Box 100278, Gainesville, FL 32610-0277, USA.
| |
Collapse
|
6
|
Ushida Y, Talalay P. Sulforaphane Accelerates Acetaldehyde Metabolism by Inducing Aldehyde Dehydrogenases: Relevance to Ethanol Intolerance. Alcohol Alcohol 2013; 48:526-34. [DOI: 10.1093/alcalc/agt063] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
7
|
Marchitti SA, Orlicky DJ, Brocker C, Vasiliou V. Aldehyde dehydrogenase 3B1 (ALDH3B1): immunohistochemical tissue distribution and cellular-specific localization in normal and cancerous human tissues. J Histochem Cytochem 2010; 58:765-83. [PMID: 20729348 DOI: 10.1369/jhc.2010.955773] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aldehyde dehydrogenase (ALDH) enzymes are critical in the detoxification of endogenous and exogenous aldehydes. Our previous findings indicate that the ALDH3B1 enzyme is expressed in several mouse tissues and is catalytically active toward aldehydes derived from lipid peroxidation, suggesting a potential role against oxidative stress. The aim of this study was to elucidate by immunohistochemistry the tissue, cellular, and subcellular distribution of ALDH3B1 in normal human tissues and in tumors of human lung, colon, breast, and ovary. Our results indicate that ALDH3B1 is expressed in a tissue-specific manner and in a limited number of cell types, including hepatocytes, proximal convoluted tubule cells, cerebellar astrocytes, bronchiole ciliated cells, testis efferent ductule ciliated cells, and histiocytes. ALDH3B1 expression was upregulated in a high percentage of human tumors (lung > breast = ovarian > colon). Increased ALDH3B1 expression in tumor cells may confer a growth advantage or be the result of an induction mechanism mediated by increased oxidative stress. Subcellular localization of ALDH3B1 was predominantly cytosolic in tissues, with the exception of normal human lung and testis, in which localization appeared membrane-bound or membrane-associated. The specificity of ALDH3B1 distribution may prove to be directly related to the functional role of this enzyme in human tissues.
Collapse
Affiliation(s)
- Satori A Marchitti
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
8
|
Boyle JO, Gümüs ZH, Kacker A, Choksi VL, Bocker JM, Zhou XK, Yantiss RK, Hughes DB, Du B, Judson BL, Subbaramaiah K, Dannenberg AJ. Effects of cigarette smoke on the human oral mucosal transcriptome. Cancer Prev Res (Phila) 2010; 3:266-78. [PMID: 20179299 DOI: 10.1158/1940-6207.capr-09-0192] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Use of tobacco is responsible for approximately 30% of all cancer-related deaths in the United States, including cancers of the upper aerodigestive tract. In the current study, 40 current and 40 age- and gender-matched never smokers underwent buccal biopsies to evaluate the effects of smoking on the transcriptome. Microarray analyses were carried out using Affymetrix HGU133 Plus 2 arrays. Smoking altered the expression of numerous genes: 32 genes showed increased expression and 9 genes showed reduced expression in the oral mucosa of smokers versus never smokers. Increases were found in genes involved in xenobiotic metabolism, oxidant stress, eicosanoid synthesis, nicotine signaling, and cell adhesion. Increased numbers of Langerhans cells were found in the oral mucosa of smokers. Interestingly, smoking caused greater induction of aldo-keto reductases, enzymes linked to polycyclic aromatic hydrocarbon-induced genotoxicity, in the oral mucosa of women than men. Striking similarities in expression changes were found in oral compared with the bronchial mucosa. The observed changes in gene expression were compared with known chemical signatures using the Connectivity Map database and suggested that geldanamycin, a heat shock protein 90 inhibitor, might be an antimimetic of tobacco smoke. Consistent with this prediction, geldanamycin caused dose-dependent suppression of tobacco smoke extract-mediated induction of CYP1A1 and CYP1B1 in vitro. Collectively, these results provide new insights into the carcinogenic effects of tobacco smoke, support the potential use of oral epithelium as a surrogate tissue in future lung cancer chemoprevention trials, and illustrate the potential of computational biology to identify chemopreventive agents.
Collapse
Affiliation(s)
- Jay O Boyle
- Department of Surgery (Head and Neck Service),Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Human aldehyde dehydrogenase-catalyzed oxidation of ethylene glycol ether aldehydes. Chem Biol Interact 2009; 178:56-63. [DOI: 10.1016/j.cbi.2008.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 09/20/2008] [Accepted: 09/22/2008] [Indexed: 11/18/2022]
|
10
|
Penning TM, Lerman C. Genomics of Smoking Exposure and Cessation: Lessons for Cancer Prevention and Treatment: Fig. 1. Cancer Prev Res (Phila) 2008; 1:80-3. [DOI: 10.1158/1940-6207.capr-08-0047] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Moreb JS, Zucali JR, Ostmark B, Benson NA. Heterogeneity of aldehyde dehydrogenase expression in lung cancer cell lines is revealed by Aldefluor flow cytometry-based assay. CYTOMETRY PART B-CLINICAL CYTOMETRY 2007; 72:281-9. [PMID: 17111384 DOI: 10.1002/cyto.b.20161] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND We have been interested in studying the roles of two aldehyde dehydrogenases in the biology of lung cancer. In this study, we seek to apply Aldefluor flow cytometry-based assay for the measurement of aldehyde dehydrogenase (ALDH) activity in lung cancer cell lines, which may become a new tool that will facilitate our continued research in this field. EXPERIMENTAL DESIGN Several established lung cancer cell lines were used, including A549 cell line expressing siRNA against aldehyde dehydrogenase class-1A1 (ALDH1A1). Western blot analysis, spectrophotometry assay, and Aldefluor staining were used to measure protein or enzyme activity in these cell lines. For the purpose of measurement of ALDH activity by Aldefluor in cells with known high ALDH levels, cells were mixed 1:10 with immortalized lung epithelial cell line (Beas-2B), which is known to lack ALDH activity. To delineate dead cells, double staining using Aldefluor and propidium iodide (PI) was done. Double staining was also used to detect changes in ALDH activity in two different cell lines after treatment with 4-hydroperoxycyclophosphamide (4-HC). RESULTS Our results show a very good correlation between Aldefluor, Western blot, and spectrophotometry assays. Mixing experiments with Beas-2B cells allowed accurate assessment of ALDH activity in A549 cells at baseline and after siRNA expression, thus establishing an approach that facilitates the measurement of very high ALDH using the Aldefluor assay. Aldefluor staining was able to detect heterogeneity in ALDH expression among as well as within the same cell lines and better assess viability after 4-HC treatment when combined with PI. CONCLUSIONS Aldefluor assay can be adapted successfully to measure ALDH activity in lung cancer cells and may have the advantage of providing real time changes in ALDH activity in viable cells treated with siRNA or chemotherapy.
Collapse
Affiliation(s)
- Jan S Moreb
- Department of Medicine, Division of Hematology/Oncology, College of Medicine, University of Florida, Gainesville, Florida 32610, USA.
| | | | | | | |
Collapse
|
12
|
Moreb JS, Mohuczy D, Muhoczy D, Ostmark B, Zucali JR. RNAi-mediated knockdown of aldehyde dehydrogenase class-1A1 and class-3A1 is specific and reveals that each contributes equally to the resistance against 4-hydroperoxycyclophosphamide. Cancer Chemother Pharmacol 2006; 59:127-36. [PMID: 16614850 DOI: 10.1007/s00280-006-0233-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 03/05/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE Aldehyde dehydrogenases class-1A1 (ALDH1A1) and class-3A1 (ALDH3A1) have been associated with resistance to cyclophosphamide (CP) and its derivatives. We have previously reported the downregulation of these enzymes by all-trans retinoic acid (ATRA). METHODS In this study, we used siRNA duplexes as well as retrovirally expressed siRNA to knockdown one or both enzymes together in A549 lung cancer cell line in order to investigate the role of each one in mediating the resistance and the effect of the addition of ATRA. RESULTS The results show that significant and specific knockdown of each enzyme can be achieved and that each one contributes similarly to cell resistance to 4-hydroperoxycyclophosphamide (4-HC), an active derivative of CP. Added effects were seen when both enzymes were inhibited. The addition of ATRA also exhibited additional inhibitory effects on ALDH activity and increased 4-HC toxicity when added to single siRNA aimed at one of the enzymes. On the other hand, ATRA had minimal and insignificant additional inhibitory effects on ALDH enzyme activity when added to a combination of siRNAs against both enzymes, but still increased 4-HC toxicity beyond that seen with RNAi-mediated inhibition of both enzymes together. CONCLUSIONS We conclude that both enzymes, ALDH1A1 and ALDH3A1 will need to be blocked in order to achieve the highest sensitivity to 4-HC. Furthermore, ATRA increases 4-HC toxicity even when added to a combination of siRNAs against both enzymes, thus suggesting additional mechanisms by which ATRA can increase drug toxicity.
Collapse
Affiliation(s)
- Jan S Moreb
- Department of Medicine, Division of Hematology/Oncology, University of Florida, College of Medicine, 1600 SW Archer Road, Room R4-220, PO Box 100277, Gainesville, FL 32610, USA.
| | | | | | | | | |
Collapse
|
13
|
Cho HY, Reddy SP, Debiase A, Yamamoto M, Kleeberger SR. Gene expression profiling of NRF2-mediated protection against oxidative injury. Free Radic Biol Med 2005; 38:325-43. [PMID: 15629862 DOI: 10.1016/j.freeradbiomed.2004.10.013] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Accepted: 10/06/2004] [Indexed: 11/19/2022]
Abstract
Nuclear factor E2 p45-related factor 2 (NRF2) contributes to cellular protection against oxidative insults and chemical carcinogens via transcriptional activation of antioxidant/detoxifying enzymes. To understand the molecular basis of NRF2-mediated protection against oxidative lung injury, pulmonary gene expression profiles were characterized in Nrf2-disrupted (Nrf2(-/-)) and wild-type (Nrf2(+/+)) mice exposed to hyperoxia or air. Genes expressed constitutively higher in Nrf2(+/+) mice than in Nrf2(-/-) mice included antioxidant defense enzyme and immune cell receptor genes. Higher basal expression of heat shock protein and structural genes was detected in Nrf2(-/-) mice relative to Nrf2(+/+) mice. Hyperoxia enhanced expression of 175 genes (> or = twofold) and decreased expression of 100 genes (> or =50%) in wild-type mice. Hyperoxia-induced upregulation of many well-known/new antioxidant/defense genes (e.g., Txnrd1, Ex, Cp-2) and other novel genes (e.g., Pkc-alpha, Tcf-3, Ppar-gamma) was markedly greater in Nrf2(+/+) mice than in Nrf2(-/-) mice. In contrast, induced expression of genes encoding extracellular matrix and cytoskeletal proteins was higher in Nrf2(-/-) mice than in Nrf2(+/+) mice. These NRF2-dependent gene products might have key roles in protection against hyperoxic lung injury. Results from our global gene expression profiles provide putative downstream molecular mechanisms of oxygen tissue toxicity.
Collapse
Affiliation(s)
- Hye-Youn Cho
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
14
|
Sládek NE. Leukemic cell insensitivity to cyclophosphamide and other oxazaphosphorines mediated by aldehyde dehydrogenase(s). Cancer Treat Res 2003; 112:161-75. [PMID: 12481716 DOI: 10.1007/978-1-4615-1173-1_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Norman E Sládek
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|