1
|
Xue D, Zou H, Lv W, Madden MD, Lian X, Xu M, Pulliam C, Older EA, Hou L, Campbell A, de Rond T, Awakawa T, Yuan C, Moore BS, Li J. Discovery and Biosynthesis of Sulfenicin and Its New-to-Nature Acylsulfenic Acid Functional Group. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618611. [PMID: 39464084 PMCID: PMC11507894 DOI: 10.1101/2024.10.16.618611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Life's organic molecules are built with diverse functional groups that enable biology by fine tuning intimate connections through time and space. As such, the discovery of new-to-nature functional groups can expand our understanding of the natural world and motivate new applications in biotechnology and biomedicine. Herein we report the genome-aided discovery of sulfenicin, a novel polyketide-nonribosomal peptide hybrid natural product from a marine Streptomyces bacterium bearing a unique acylsulfenic acid functionality. Through a series of heterologous biosynthesis, functional genetics, and enzymatic reconstitution experiments, we show that this previously described synthetic functional group is biologically assembled by a set of enzymes from both primary and secondary metabolism, including a novel flavin-dependent S -hydroxylase that hydroxylates a thiocarboxylic acid's sulfur atom. While the sulfenicin biosynthetic gene cluster is presently without parallel in public databases, acylsulfenic acid-encoding enzymes are widely distributed in bacterial genomes, implying that this labile functional group may similarly have a broad distribution among specialized metabolites.
Collapse
|
2
|
Islam Z, Aldous N, Choi S, Schmidt F, Mifsud B, Abdelalim EM, Kolatkar PR. Flavin Adenine Dinucleotide (FAD) and Pyridoxal 5'-Phosphate (PLP) Bind to Sox9 and Alter the Expression of Key Pancreatic Progenitor Transcription Factors. Int J Mol Sci 2022; 23:ijms232214051. [PMID: 36430529 PMCID: PMC9694089 DOI: 10.3390/ijms232214051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Cofactor flavin adenine dinucleotide (FAD), a compound with flavin moiety and a derivative of riboflavin (vitamin B2), is shown to bind to Sox9 (a key transcription factor in early pancreatic development) and, subsequently, induce a large increase in markers of pancreatic development, including Ngn3 and PTF1a. Pyridoxal 5'-phosphate (PLP), the active form of vitamin B6, also binds to Sox9 and results in a similar increase in pancreatic development markers. Sox9 is known to be specifically important for pancreatic progenitors. Previously, there was no known link between FAD, PLP, or other co-factors and Sox9 for function. Thus, our findings show the mechanism by which FAD and PLP interact with Sox9 and result in the altered expression of pancreatic progenitor transcription factors involved in the pancreas development.
Collapse
Affiliation(s)
- Zeyaul Islam
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Noura Aldous
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 34110, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Sunkyu Choi
- Proteomics Core, Weill Cornell Medicine, Doha P.O. Box 24144, Qatar
| | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine, Doha P.O. Box 24144, Qatar
| | - Borbala Mifsud
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Essam M. Abdelalim
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 34110, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Prasanna R. Kolatkar
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 34110, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 34110, Qatar
- Correspondence: ; Tel.: +974-445-45889; Fax: +974-445-41770
| |
Collapse
|
3
|
Ceccoli RD, Bianchi DA, Carabajal MA, Rial DV. Genome mining reveals new bacterial type I Baeyer-Villiger monooxygenases with (bio)synthetic potential. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
The Roles of Auxin Biosynthesis YUCCA Gene Family in Plants. Int J Mol Sci 2019; 20:ijms20246343. [PMID: 31888214 PMCID: PMC6941117 DOI: 10.3390/ijms20246343] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022] Open
Abstract
Auxin plays essential roles in plant normal growth and development. The auxin signaling pathway relies on the auxin gradient within tissues and cells, which is facilitated by both local auxin biosynthesis and polar auxin transport (PAT). The TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA)/YUCCA (YUC) pathway is the most important and well-characterized pathway that plants deploy to produce auxin. YUCs function as flavin-containing monooxygenases (FMO) catalyzing the rate-limiting irreversible oxidative decarboxylation of indole-3-pyruvate acid (IPyA) to form indole-3-acetic acid (IAA). The spatiotemporal dynamic expression of different YUC gene members finely tunes the local auxin biosynthesis in plants, which contributes to plant development as well as environmental responses. In this review, the recent advances in the identification, evolution, molecular structures, and functions in plant development and stress response regarding the YUC gene family are addressed.
Collapse
|
5
|
Fürst MJLJ, Gran-Scheuch A, Aalbers FS, Fraaije MW. Baeyer–Villiger Monooxygenases: Tunable Oxidative Biocatalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03396] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maximilian J. L. J. Fürst
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Alejandro Gran-Scheuch
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Friso S. Aalbers
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| |
Collapse
|
6
|
Mascotti ML, Kurina-Sanz M, Juri Ayub M, Fraaije MW. Insights in the kinetic mechanism of the eukaryotic Baeyer-Villiger monooxygenase BVMOAf1 from Aspergillus fumigatus Af293. Biochimie 2014; 107 Pt B:270-6. [PMID: 25230086 DOI: 10.1016/j.biochi.2014.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/05/2014] [Indexed: 12/23/2022]
Abstract
This work reports a detailed kinetic study of the recently discovered BVMOAf1 from Aspergillus fumigatus Af293. By performing steady state and pre-steady state kinetic analyses, it was demonstrated that the rate of catalysis is partially limited by the NADPH-mediated reduction of the flavin cofactor, a unique hallmark of BVMOAf1. In addition, the oxygenating C4a-(hydro)peroxyflavin intermediate could be spectrophotometrically detected and it was found to be the most stable among all analyzed BVMOs. To assess the possible influence of some residues on the kinetic features, model-inspired site-directed mutagenesis was performed. Among the mutants, the Q436A variant showed a slightly broader substrate scope and a better catalytic efficiency. In summary, this study describes for the first time the kinetic parameters for an eukaryotic BVMO.
Collapse
Affiliation(s)
- María Laura Mascotti
- INTEQUI-CONICET, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, CP 5700 San Luis, Argentina.
| | - Marcela Kurina-Sanz
- INTEQUI-CONICET, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, CP 5700 San Luis, Argentina
| | - Maximiliano Juri Ayub
- IMIBIO-SL CONICET, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, CP 5700 San Luis, Argentina
| | - Marco W Fraaije
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
7
|
Beneventi E, Niero M, Motterle R, Fraaije M, Bergantino E. Discovery of Baeyer–Villiger monooxygenases from photosynthetic eukaryotes. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
8
|
Mascotti ML, Juri Ayub M, Dudek H, Sanz MK, Fraaije MW. Cloning, overexpression and biocatalytic exploration of a novel Baeyer-Villiger monooxygenase from Aspergillus fumigatus Af293. AMB Express 2013; 3:33. [PMID: 23767684 PMCID: PMC3762062 DOI: 10.1186/2191-0855-3-33] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 06/08/2013] [Indexed: 01/14/2023] Open
Abstract
The presence of several putative Baeyer-Villiger Monooxygenases (BVMOs) encoding genes in Aspergillus fumigatus Af293 was demonstrated for the first time. One of the identified BVMO-encoding genes was cloned and successfully overexpressed fused to the cofactor regenerating enzyme phosphite dehydrogenase (PTDH). The enzyme named BVMOAf1 was extensively characterized in terms of its substrate scope and essential kinetic features. It showed high chemo-, regio- and stereoselectivity not only in the oxidation of asymmetric sulfides, (S)-sulfoxides were obtained with 99% ee, but also in the kinetic resolution of bicyclo[3.2.0]hept-2-en-6-one. This kinetic resolution process led to the production of (1S,5R) normal lactone and (1R,5S) abnormal lactone with a regioisomeric ratio of 1:1 and 99% ee each. Besides, different reaction conditions, such as pH, temperature and the presence of organic solvents, have been tested, revealing that BVMOAf1 is a relatively robust biocatalyst.
Collapse
|
9
|
Leisch H, Morley K, Lau PCK. Baeyer−Villiger Monooxygenases: More Than Just Green Chemistry. Chem Rev 2011; 111:4165-222. [DOI: 10.1021/cr1003437] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Hannes Leisch
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Krista Morley
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Peter C. K. Lau
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
10
|
Effect of IPTG amount on apo- and holo- forms of glycerophosphate oxidase expressed in Escherichia coli. Protein Expr Purif 2010; 75:133-7. [PMID: 20736068 DOI: 10.1016/j.pep.2010.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/18/2010] [Accepted: 08/18/2010] [Indexed: 11/23/2022]
Abstract
Escherichia coli has proved to be a successful host for the expression of many heterologous proteins, and much efforts have been made toward improving recombinant protein expression including the usage of strong promoters and co-expression with chaperones. But little attention was paid on the relation between expression level and function of the target protein. Glycerophosphate oxidase (GPO) is a protein with FAD cofactor (without free cysteine and disulfide bonds).It was observed that the specific activity of GPO dramatically decreased with the increase of inducer IPTG. In addition, the stability of it decreased correspondingly. The structural difference of samples expressed under varying IPTG was investigated using size-exclusion and reverse-phase high performance liquid chromatography, together with CD spectrum. It was found that the conformation of peptide and organization of subunits were not affected. The loss of specific activity and stability were correlated to incomplete attachment of FAD onto GPO. These results revealed that synthesis speed should be controlled either by reduction of IPTG amount or using weak promoters in the production of GPO.
Collapse
|
11
|
Krueger SK, Henderson MC, Siddens LK, VanDyke JE, Benninghoff AD, Karplus PA, Furnes B, Schlenk D, Williams DE. Characterization of sulfoxygenation and structural implications of human flavin-containing monooxygenase isoform 2 (FMO2.1) variants S195L and N413K. Drug Metab Dispos 2009; 37:1785-91. [PMID: 19420133 DOI: 10.1124/dmd.109.027201] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Catalytically active human flavin-containing monooxygenase isoform 2 (FMO2.1) is encoded by an allele detected only in individuals of African or Hispanic origin. Genotyping and haplotyping studies indicate that S195L and N413K occasionally occur secondary to the functional FMO2*1 allele encoding reference protein Gln472. Sulfoxygenation under a range of conditions reveals the role these alterations may play in individuals expressing active FMO2 and provides insight into FMO structure. Expressed S195L lost rather than gained activity as pH was increased or when cholate was present. The activity of S195L was mostly eliminated after heating at 45 degrees C for 5 min in the absence of NADPH, but activity was preserved if NADPH was present. By contrast, Gln472 was less sensitive to heat, a response not affected by NADPH. A major consequence of the S195L mutation was a mean 12-fold increase in K(m) for NADPH compared with Gln472. Modeling an S213L substitution, the equivalent site, in the structural model of FMO from the Methylophaga bacterium leads to disruption of interactions with NADP(+). N413K had the same pattern of activity as Gln472 in response to pH, cholate, and magnesium, but product formation was always elevated by comparison. N413K also lost more activity when heated than Gln472; however, NADPH attenuated this loss. The major effects of N413K were increases in velocity and k(cat) compared with Gln472. Although these allelic variants are expected to occur infrequently as mutations to the FMO2*1 allele, they contribute to our overall understanding of mammalian FMO structure and function.
Collapse
Affiliation(s)
- Sharon K Krueger
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Torres Pazmiño DE, Baas BJ, Janssen DB, Fraaije MW. Kinetic mechanism of phenylacetone monooxygenase from Thermobifida fusca. Biochemistry 2008; 47:4082-93. [PMID: 18321069 DOI: 10.1021/bi702296k] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phenylacetone monooxygenase (PAMO) from Thermobifida fusca is a FAD-containing Baeyer-Villiger monooxygenase (BVMO). To elucidate the mechanism of conversion of phenylacetone by PAMO, we have performed a detailed steady-state and pre-steady-state kinetic analysis. In the catalytic cycle ( k cat = 3.1 s (-1)), rapid binding of NADPH ( K d = 0.7 microM) is followed by a transfer of the 4( R)-hydride from NADPH to the FAD cofactor ( k red = 12 s (-1)). The reduced PAMO is rapidly oxygenated by molecular oxygen ( k ox = 870 mM (-1) s (-1)), yielding a C4a-peroxyflavin. The peroxyflavin enzyme intermediate reacts with phenylacetone to form benzylacetate ( k 1 = 73 s (-1)). This latter kinetic event leads to an enzyme intermediate which we could not unequivocally assign and may represent a Criegee intermediate or a C4a-hydroxyflavin form. The relatively slow decay (4.1 s (-1)) of this intermediate yields fully reoxidized PAMO and limits the turnover rate. NADP (+) release is relatively fast and represents the final step of the catalytic cycle. This study shows that kinetic behavior of PAMO is significantly different when compared with that of sequence-related monooxygenases, e.g., cyclohexanone monooxygenase and liver microsomal flavin-containing monooxygenase. Inspection of the crystal structure of PAMO has revealed that residue R337, which is conserved in other BVMOs, is positioned close to the flavin cofactor. The analyzed R337A and R337K mutant enzymes were still able to form and stabilize the C4a-peroxyflavin intermediate. The mutants were unable to convert either phenylacetone or benzyl methyl sulfide. This demonstrates that R337 is crucially involved in assisting PAMO-mediated Baeyer-Villiger and sulfoxidation reactions.
Collapse
Affiliation(s)
- Daniel E Torres Pazmiño
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | |
Collapse
|
13
|
Krueger SK, Williams DE. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol Ther 2005; 106:357-87. [PMID: 15922018 PMCID: PMC1828602 DOI: 10.1016/j.pharmthera.2005.01.001] [Citation(s) in RCA: 401] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2005] [Indexed: 10/25/2022]
Abstract
Flavin-containing monooxygenase (FMO) oxygenates drugs and xenobiotics containing a "soft-nucleophile", usually nitrogen or sulfur. FMO, like cytochrome P450 (CYP), is a monooxygenase, utilizing the reducing equivalents of NADPH to reduce 1 atom of molecular oxygen to water, while the other atom is used to oxidize the substrate. FMO and CYP also exhibit similar tissue and cellular location, molecular weight, substrate specificity, and exist as multiple enzymes under developmental control. The human FMO functional gene family is much smaller (5 families each with a single member) than CYP. FMO does not require a reductase to transfer electrons from NADPH and the catalytic cycle of the 2 monooxygenases is strikingly different. Another distinction is the lack of induction of FMOs by xenobiotics. In general, CYP is the major contributor to oxidative xenobiotic metabolism. However, FMO activity may be of significance in a number of cases and should not be overlooked. FMO and CYP have overlapping substrate specificities, but often yield distinct metabolites with potentially significant toxicological/pharmacological consequences. The physiological function(s) of FMO are poorly understood. Three of the 5 expressed human FMO genes, FMO1, FMO2 and FMO3, exhibit genetic polymorphisms. The most studied of these is FMO3 (adult human liver) in which mutant alleles contribute to the disease known as trimethylaminuria. The consequences of these FMO genetic polymorphisms in drug metabolism and human health are areas of research requiring further exploration.
Collapse
Key Words
- flavin monooxygenase
- drug metabolism
- fmo
- bvmos, baeyer–villiger monooxygenases
- cyp, cytochrome p450
- dbm, dinucleotide-binding motif
- fadpnr, fad-dependent pyridine nucleotide reductase prints signature
- fmo, flavin-containing monooxygenase
- fmoxygenase, fmo prints signature
- gr, glutathione reductase
- pamo, phenylacetone monooxygenase
- pndrdtasei, pyridine nucleotide disulfide reductase class-i prints signature
- ros, reactive oxygen species
- snp, single-nucleotide polymorphism
- tmau, trimethylaminuria
Collapse
Affiliation(s)
- Sharon K. Krueger
- Department of Environmental and Molecular Toxicology and The Linus Pauling Institute, Oregon State University, United States
| | - David E. Williams
- Department of Environmental and Molecular Toxicology and The Linus Pauling Institute, Oregon State University, United States
| |
Collapse
|
14
|
Malito E, Alfieri A, Fraaije MW, Mattevi A. Crystal structure of a Baeyer-Villiger monooxygenase. Proc Natl Acad Sci U S A 2004; 101:13157-62. [PMID: 15328411 PMCID: PMC516541 DOI: 10.1073/pnas.0404538101] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Indexed: 11/18/2022] Open
Abstract
Flavin-containing Baeyer-Villiger monooxygenases employ NADPH and molecular oxygen to catalyze the insertion of an oxygen atom into a carbon-carbon bond of a carbonylic substrate. These enzymes can potentially be exploited in a variety of biocatalytic applications given the wide use of Baeyer-Villiger reactions in synthetic organic chemistry. The catalytic activity of these enzymes involves the formation of two crucial intermediates: a flavin peroxide generated by the reaction of the reduced flavin with molecular oxygen and the "Criegee" intermediate resulting from the attack of the flavin peroxide onto the substrate that is being oxygenated. The crystal structure of phenylacetone monooxygenase, a Baeyer-Villiger monooxygenase from the thermophilic bacterium Thermobifida fusca, exhibits a two-domain architecture resembling that of the disulfide oxidoreductases. The active site is located in a cleft at the domain interface. An arginine residue lays above the flavin ring in a position suited to stabilize the negatively charged flavin-peroxide and Criegee intermediates. This amino acid residue is predicted to exist in two positions; the "IN" position found in the crystal structure and an "OUT" position that allows NADPH to approach the flavin to reduce the cofactor. Domain rotations are proposed to bring about the conformational changes involved in catalysis. The structural studies highlight the functional complexity of this class of flavoenzymes, which coordinate the binding of three substrates (molecular oxygen, NADPH, and phenylacetone) in proximity of the flavin cofactor with formation of two distinct catalytic intermediates.
Collapse
Affiliation(s)
- Enrico Malito
- Department of Genetics and Microbiology, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | | | | | | |
Collapse
|