1
|
Ma B, Zarth AT, Carlson ES, Villalta PW, Upadhyaya P, Stepanov I, Hecht SS. Methyl DNA Phosphate Adduct Formation in Rats Treated Chronically with 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone and Enantiomers of Its Metabolite 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol. Chem Res Toxicol 2018; 31:48-57. [PMID: 29131934 PMCID: PMC5770887 DOI: 10.1021/acs.chemrestox.7b00281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 11/29/2022]
Abstract
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a powerful lung carcinogen in animal models and is considered a causative factor for lung cancer in tobacco users. NNK is stereoselectively and reversibly metabolized to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which is also a lung carcinogen. Both NNK and NNAL undergo metabolic activation by α-hydroxylation on their methyl groups to form pyridyloxobutyl and pyridylhydroxybutyl DNA base and phosphate adducts, respectively. α-Hydroxylation also occurs on the α-methylene carbons of NNK and NNAL to produce methane diazohydroxide, which reacts with DNA to form methyl DNA base adducts. DNA adducts of NNK and NNAL are important in their mechanisms of carcinogenesis. In this study, we characterized and quantified methyl DNA phosphate adducts in the lung of rats treated with 5 ppm of NNK, (S)-NNAL, or (R)-NNAL in drinking water for 10, 30, 50, and 70 weeks, by using a novel liquid chromatography-nanoelectrospray ionization-high resolution tandem mass spectrometry method. A total of 23, 21, and 22 out of 32 possible methyl DNA phosphate adducts were detected in the lung tissues of rats treated with NNK, (S)-NNAL, and (R)-NNAL, respectively. Levels of the methyl DNA phosphate adducts were 2290-4510, 872-1120, and 763-1430 fmol/mg DNA, accounting for 15-38%, 8%, and 5-9% of the total measured DNA adducts in rats treated with NNK, (S)-NNAL, and (R)-NNAL, respectively. The methyl DNA phosphate adducts characterized in this study further enriched the diversity of DNA adducts formed by NNK and NNAL. These results provide important new data regarding NNK- and NNAL-derived DNA damage and new insights pertinent to future mechanistic and biomonitoring studies of NNK, NNAL, and other chemical methylating agents.
Collapse
Affiliation(s)
- Bin Ma
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Adam T. Zarth
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Erik S. Carlson
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Himmelstein MW, Boogaard PJ, Cadet J, Farmer PB, Kim JH, Martin EA, Persaud R, Shuker DEG. Creating context for the use of DNA adduct data in cancer risk assessment: II. Overview of methods of identification and quantitation of DNA damage. Crit Rev Toxicol 2010; 39:679-94. [PMID: 19743945 DOI: 10.1080/10408440903164163] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The formation of deoxyribonucleic acid (DNA) adducts can have important and adverse consequences for cellular and whole organism function. Available methods for identification of DNA damage and quantification of adducts are reviewed. Analyses can be performed on various samples including tissues, isolated cells, and intact or hydrolyzed (digested) DNA from a variety of biological samples of interest for monitoring in humans. Sensitivity and specificity are considered key factors for selecting the type of method for assessing DNA perturbation. The amount of DNA needed for analysis is dependent upon the method and ranges widely, from <1 microg to 3 mg. The methods discussed include the Comet assay, the ligation-mediated polymerase reaction, histochemical and immunologic methods, radiolabeled ((14)C- and (3)H-) binding, (32)P-postlabeling, and methods dependent on gas chromatography (GC) or high-performance liquid chromatography (HPLC) with detection by electron capture, electrochemical detection, single or tandem mass spectrometry, or accelerator mass spectrometry. Sensitivity is ranked, and ranges from approximately 1 adduct in 10(4) to 10(12) nucleotides. A brief overview of oxidatively generated DNA damage is also presented. Assay limitations are discussed along with issues that may have impact on the reliability of results, such as sample collection, processing, and storage. Although certain methodologies are mature, improving technology will continue to enhance the specificity and sensitivity of adduct analysis. Because limited guidance and recommendations exist for adduct analysis, this effort supports the HESI Committee goal of developing a framework for use of DNA adduct data in risk assessment.
Collapse
Affiliation(s)
- Matthew W Himmelstein
- DuPont Haskell Global Centers for Health and Environmental Sciences, Newark, Delaware, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Jones GDD, Le Pla RC, Farmer PB. Phosphotriester adducts (PTEs): DNA's overlooked lesion. Mutagenesis 2009; 25:3-16. [DOI: 10.1093/mutage/gep038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
4
|
Snodin DJ. Residues of genotoxic alkyl mesylates in mesylate salt drug substances: Real or imaginary problems? Regul Toxicol Pharmacol 2006; 45:79-90. [PMID: 16564608 DOI: 10.1016/j.yrtph.2006.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Indexed: 10/24/2022]
Abstract
Mesylate esters of short-chain (n = 1-3) alcohols are reactive, direct-acting, genotoxic and possibly carcinogenic alkylating agents. Their chemical and biological properties appear to correlate well with Swain-Scott s constants; for example, high S(N)1 character (low s value) is associated with enhanced carcinogenic potential, but also a rapid hydrolysis rate. Concerns over the possible formation of such esters during the preparation of mesylate salt drug substances, by addition of methane sulfonic acid (MSA) to the free base dissolved in an alcoholic solvent, have led regulatory agencies to require applicants to demonstrate that the synthetic method employed does not lead to the presence of detectable levels of alkyl mesylates. Mechanistic considerations, relating mainly to the extremely low nucleophilicity of the mesylate anion, and experimental data, both indicate that alkyl mesylates should not be formed (except from MSA impurities) during mesylate salt synthesis. Mechanistic arguments also predict that residues of alkyl halides (possibly formed in the preparation of amine hydrochlorides or hydrobromides) could represent a similar or greater potential hazard than alkyl mesylates. The perceived risk of alkyl mesylate formation seems to rely on mistaken assumptions and so the concerns appear unjustified. Further reassurance could be achieved however by applying a variety of strategies during synthesis, including pH control, and use of high-purity MSA or of a non-hydroxylic reaction solvent.
Collapse
Affiliation(s)
- David J Snodin
- PAREXEL Drug Development Consulting, The Quays, 101-105 Oxford Road, Uxbridge, Middlesex, UB8 1LZ, UK.
| |
Collapse
|
5
|
Flarakos J, Xiong W, Glick J, Vouros P. A Deoxynucleotide Derivatization Methodology for Improving LC-ESI-MS Detection. Anal Chem 2005; 77:2373-80. [PMID: 15828769 DOI: 10.1021/ac0483724] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have developed a novel LC-UV-MS derivatization method for the analysis of deoxyguanosine monophosphate adducts that demonstrates enhanced signal intensities relative to underivatized analytes in positive ion mode electrospray ionization MS. Detection of DNA nucleotide adducts is normally conducted in negative ion mode, which requires basic mobile phases that make chromatographic separations difficult and reduce MS sensitivity. Utilizing coupling reagents typically employed in peptide synthesis, several different deoxyguanosine nucleotide phosphoramidates and phosphomonoesters were synthesized in high conversion yield and under mild reaction conditions. The derivatives were characterized by MS/MS and reaction conversion yields determined from the DAD-UV traces. The derivatives were evaluated for ionization efficiencies, fragmentation patterns, and reversed-phase chromatographic properties by LC/ESI-MS/MS. Overall, the hydrophobic derivatives showed increases in ionization efficiency and improved peak shape. Rank ordering of the derivatizing agents was initially established using the dGp-modified derivatives. The best derivatizing agent, hexamethyleneimine, showed a 3-4-fold signal enhancement compared to underivatized dGp and was selected for additional evaluation. A model system using the carcinogen, N-acetoxy-2-acetylaminofluorene (AAAF), was used to synthesize a N-acetyl-(2-aminofluorenyl)-guanosine 5'-monophosphate (dGpAAF) adduct, which was subsequently derivatized with hexamethyleneimine. Detection limits for dGphex and dGpAAFhex, purified by HPLC, were 10- and 3-fold higher (S/N) than their respective underivatized analogues. Practical applicability, with similar improvements in sensitivity, was established by derivatizing adducts isolated from calf thymus DNA exposed to AAAF. Our results demonstrate the utility of simple reactions for the enhanced detection of a mononucleotide in positive ion mode ESI MS and the application of this technique for the detection of dGp-DNA adducts at the low-femtomole level.
Collapse
Affiliation(s)
- Jimmy Flarakos
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|