1
|
Yau AWN, Chu SYC, Yap WH, Wong CL, Chia AYY, Tang YQ. Phage display screening in breast cancer: From peptide discovery to clinical applications. Life Sci 2024; 357:123077. [PMID: 39332485 DOI: 10.1016/j.lfs.2024.123077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Breast cancer is known as the most common type of cancer found in women and a leading cause of cancer death in women, with the global incidence only increasing. Breast cancer in Malaysia is also unfortunately the most prevalent in Malaysian women. Many treatment options are available for breast cancer, but there is increasing resistance developed against treatment and increased recurrence risk, emphasizing the need for new treatment options. This review will focus on the applications of phage display screening in the context of breast cancer. Phage display screening can facilitate the drug discovery process by providing rapid screening and isolation of peptides that bind to targets of interest with high specificity. Peptides derived from phage display target various types of proteins involved in breast cancer, including HER2, C5AR1, p53 and PRDM14, either for therapeutic or diagnostic purposes. Different approaches were employed as well to produce potential peptides using radiolabelling and conjugation techniques. Promising results were reported for in vitro and in vivo studies utilizing peptides derived from phage display screening. Further optimization of the protocols and factors to consider are required to mitigate the challenges involved with phage display screening of peptides for breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ashlyn Wen Ning Yau
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Sylvester Yee Chun Chu
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Wei Hsum Yap
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Chuan Loo Wong
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia; Digital Health and Medical Advancement Impact lab, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Adeline Yoke Yin Chia
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia; Digital Health and Medical Advancement Impact lab, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Yin-Quan Tang
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia; Digital Health and Medical Advancement Impact lab, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
2
|
Zhang Y, Mao M, Zhang R, Liao YT, Wu VCH. DeepPL: A deep-learning-based tool for the prediction of bacteriophage lifecycle. PLoS Comput Biol 2024; 20:e1012525. [PMID: 39418300 PMCID: PMC11521287 DOI: 10.1371/journal.pcbi.1012525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/29/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Bacteriophages (phages) are viruses that infect bacteria and can be classified into two different lifecycles. Virulent phages (or lytic phages) have a lytic cycle that can lyse the bacteria host after their infection. Temperate phages (or lysogenic phages) can integrate their phage genomes into bacterial chromosomes and replicate with bacterial hosts via the lysogenic cycle. Identifying phage lifecycles is a crucial step in developing suitable applications for phages. Compared to the complicated traditional biological experiments, several tools have been designed for predicting phage lifecycle using different algorithms, such as random forest (RF), linear support-vector classifier (SVC), and convolutional neural network (CNN). In this study, we developed a natural language processing (NLP)-based tool-DeepPL-for predicting phage lifecycles via nucleotide sequences. The test results showed that our DeepPL had an accuracy of 94.65% with a sensitivity of 92.24% and a specificity of 95.91%. Moreover, DeepPL had 100% accuracy in lifecycle prediction on the phages we isolated and biologically verified previously in the lab. Additionally, a mock phage community metagenomic dataset was used to test the potential usage of DeepPL in viral metagenomic research. DeepPL displayed a 100% accuracy for individual phage complete genomes and high accuracies ranging from 71.14% to 100% on phage contigs produced by various next-generation sequencing technologies. Overall, our study indicates that DeepPL has a reliable performance on phage lifecycle prediction using the most fundamental nucleotide sequences and can be applied to future phage and metagenomic research.
Collapse
Affiliation(s)
- Yujie Zhang
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - Mark Mao
- Clowit, LLC. Burlingame, California, United States of America
| | - Robert Zhang
- Clowit, LLC. Burlingame, California, United States of America
| | - Yen-Te Liao
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| |
Collapse
|
3
|
Pierzynowska K, Morcinek-Orłowska J, Gaffke L, Jaroszewicz W, Skowron PM, Węgrzyn G. Applications of the phage display technology in molecular biology, biotechnology and medicine. Crit Rev Microbiol 2024; 50:450-490. [PMID: 37270791 DOI: 10.1080/1040841x.2023.2219741] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 10/17/2022] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
The phage display technology is based on the presentation of peptide sequences on the surface of virions of bacteriophages. Its development led to creation of sophisticated systems based on the possibility of the presentation of a huge variability of peptides, attached to one of proteins of bacteriophage capsids. The use of such systems allowed for achieving enormous advantages in the processes of selection of bioactive molecules. In fact, the phage display technology has been employed in numerous fields of biotechnology, as diverse as immunological and biomedical applications (in both diagnostics and therapy), the formation of novel materials, and many others. In this paper, contrary to many other review articles which were focussed on either specific display systems or the use of phage display in selected fields, we present a comprehensive overview of various possibilities of applications of this technology. We discuss an usefulness of the phage display technology in various fields of science, medicine and the broad sense of biotechnology. This overview indicates the spread and importance of applications of microbial systems (exemplified by the phage display technology), pointing to the possibility of developing such sophisticated tools when advanced molecular methods are used in microbiological studies, accompanied with understanding of details of structures and functions of microbial entities (bacteriophages in this case).
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Weronika Jaroszewicz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
4
|
Riaño-Umbarila L, Olamendi-Portugal T, Romero-Moreno JA, Delgado-Prudencio G, Zamudio FZ, Becerril B, Possani LD. Toxic Peptides from the Mexican Scorpion Centruroides villegasi: Chemical Structure and Evaluation of Recognition by Human Single-Chain Antibodies. Toxins (Basel) 2024; 16:301. [PMID: 39057941 PMCID: PMC11280942 DOI: 10.3390/toxins16070301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Alternative recombinant sources of antivenoms have been successfully generated. The application of such strategies requires the characterization of the venoms for the development of specific neutralizing molecules against the toxic components. Five toxic peptides to mammals from the Mexican scorpion Centruroides villegasi were isolated by chromatographic procedures by means of gel filtration on Sephadex G-50, followed by ion-exchange columns on carboxy-methyl-cellulose (CMC) resins and finally purified by high-performance chromatography (HPLC) columns. Their primary structures were determined by Edman degradation. They contain 66 amino acids and are maintained well packed by four disulfide bridges, with molecular mass from 7511.3 to 7750.1 Da. They are all relatively toxic and deadly to mice and show high sequence identity with known peptides that are specific modifiers of the gating mechanisms of Na+ ion channels of type beta-toxin (β-ScTx). They were named Cv1 to Cv5 and used to test their recognition by single-chain variable fragments (scFv) of antibodies, using surface plasmon resonance. Three different scFvs generated in our laboratory (10FG2, HV, LR) were tested for recognizing the various new peptides described here, paving the way for the development of a novel type of scorpion antivenom.
Collapse
Affiliation(s)
- Lidia Riaño-Umbarila
- Investigadora por México, CONAHCYT, Mexico City 03940, Mexico;
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (T.O.-P.); (J.A.R.-M.); (G.D.-P.); (F.Z.Z.)
| | - Timoteo Olamendi-Portugal
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (T.O.-P.); (J.A.R.-M.); (G.D.-P.); (F.Z.Z.)
| | - José Alberto Romero-Moreno
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (T.O.-P.); (J.A.R.-M.); (G.D.-P.); (F.Z.Z.)
| | - Gustavo Delgado-Prudencio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (T.O.-P.); (J.A.R.-M.); (G.D.-P.); (F.Z.Z.)
| | - Fernando Z. Zamudio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (T.O.-P.); (J.A.R.-M.); (G.D.-P.); (F.Z.Z.)
| | - Baltazar Becerril
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (T.O.-P.); (J.A.R.-M.); (G.D.-P.); (F.Z.Z.)
| | - Lourival D. Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (T.O.-P.); (J.A.R.-M.); (G.D.-P.); (F.Z.Z.)
| |
Collapse
|
5
|
Sadraeian M, Maleki R, Moraghebi M, Bahrami A. Phage Display Technology in Biomarker Identification with Emphasis on Non-Cancerous Diseases. Molecules 2024; 29:3002. [PMID: 38998954 PMCID: PMC11243120 DOI: 10.3390/molecules29133002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 07/14/2024] Open
Abstract
In recent years, phage display technology has become vital in clinical research. It helps create antibodies that can specifically bind to complex antigens, which is crucial for identifying biomarkers and improving diagnostics and treatments. However, existing reviews often overlook its importance in areas outside cancer research. This review aims to fill that gap by explaining the basics of phage display and its applications in detecting and treating various non-cancerous diseases. We focus especially on its role in degenerative diseases, inflammatory and autoimmune diseases, and chronic non-communicable diseases, showing how it is changing the way we diagnose and treat illnesses. By highlighting important discoveries and future possibilities, we hope to emphasize the significance of phage display in modern healthcare.
Collapse
Affiliation(s)
- Mohammad Sadraeian
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Reza Maleki
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Mahta Moraghebi
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Abasalt Bahrami
- Department of Chemistry and Biochemistry, Bioengineering, and Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Wahid B, Tiwana MS. Bacteriophage-based bioassays: an expected paradigm shift in microbial diagnostics. Future Microbiol 2024; 19:811-824. [PMID: 38900594 PMCID: PMC11290765 DOI: 10.2217/fmb-2023-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/01/2024] [Indexed: 06/22/2024] Open
Abstract
Bacteriophages, as abundant and specific agents, hold significant promise as a solution to combat the growing threat of antimicrobial resistance. Their unique ability to selectively lyse bacterial cells without harming humans makes them a compelling alternative to traditional antibiotics and point-of-care diagnostics. The article reviews the current landscape of diagnostic technologies, identify gaps and highlight emerging possibilities demonstrates a comprehensive approach to advancing clinical diagnosis of microbial pathogens and covers an overview of existing phage-based bioassays. Overall, the provided data in this review effectively communicates the potential of bacteriophages in transforming therapeutic and diagnostic paradigms, offering a holistic perspective on the benefits and opportunities they present in combating microbial infections and enhancing public health.
Collapse
Affiliation(s)
- Braira Wahid
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton VIC Australia
| | | |
Collapse
|
7
|
Jahandar-Lashaki S, Farajnia S, Faraji-Barhagh A, Hosseini Z, Bakhtiyari N, Rahbarnia L. Phage Display as a Medium for Target Therapy Based Drug Discovery, Review and Update. Mol Biotechnol 2024:10.1007/s12033-024-01195-6. [PMID: 38822912 DOI: 10.1007/s12033-024-01195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Phage libraries are now amongst the most prominent approaches for the identification of high-affinity antibodies/peptides from billions of displayed phages in a specific library through the biopanning process. Due to its ability to discover potential therapeutic candidates that bind specifically to targets, phage display has gained considerable attention in targeted therapy. Using this approach, peptides with high-affinity and specificity can be identified for potential therapeutic or diagnostic use. Furthermore, phage libraries can be used to rapidly screen and identify novel antibodies to develop immunotherapeutics. The Food and Drug Administration (FDA) has approved several phage display-derived peptides and antibodies for the treatment of different diseases. In the current review, we provided a comprehensive insight into the role of phage display-derived peptides and antibodies in the treatment of different diseases including cancers, infectious diseases and neurological disorders. We also explored the applications of phage display in targeted drug delivery, gene therapy, and CAR T-cell.
Collapse
Affiliation(s)
- Samaneh Jahandar-Lashaki
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aref Faraji-Barhagh
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Hosseini
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Nasim Bakhtiyari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Lee HE, Cho AH, Hwang JH, Kim JW, Yang HR, Ryu T, Jung Y, Lee S. Development, High-Throughput Profiling, and Biopanning of a Large Phage Display Single-Domain Antibody Library. Int J Mol Sci 2024; 25:4791. [PMID: 38732011 PMCID: PMC11083953 DOI: 10.3390/ijms25094791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Immunoglobulin G-based monoclonal antibodies (mAbs) have been effective in treating various diseases, but their large molecular size can limit their penetration of tissue and efficacy in multifactorial diseases, necessitating the exploration of alternative forms. In this study, we constructed a phage display library comprising single-domain antibodies (sdAbs; or "VHHs"), known for their small size and remarkable stability, using a total of 1.6 × 109 lymphocytes collected from 20 different alpacas, resulting in approximately 7.16 × 1010 colonies. To assess the quality of the constructed library, next-generation sequencing-based high-throughput profiling was performed, analyzing approximately 5.65 × 106 full-length VHH sequences, revealing 92% uniqueness and confirming the library's diverse composition. Systematic characterization of the library revealed multiple sdAbs with high affinity for three therapeutically relevant antigens. In conclusion, our alpaca sdAb phage display library provides a versatile resource for diagnostics and therapeutics. Furthermore, the library's vast natural VHH antibody repertoire offers insights for generating humanized synthetic sdAb libraries, further advancing sdAb-based therapeutics.
Collapse
Affiliation(s)
- Hee Eon Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
| | - Ah Hyun Cho
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
| | - Jae Hyeon Hwang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
| | - Ji Woong Kim
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
| | - Ha Rim Yang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
| | - Taehoon Ryu
- ATG Lifetech Inc., Seoul 08507, Republic of Korea; (T.R.); (Y.J.)
| | - Yushin Jung
- ATG Lifetech Inc., Seoul 08507, Republic of Korea; (T.R.); (Y.J.)
| | - Sukmook Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
- Department of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
9
|
Sharifi M, Alizadeh AA, Mivehroud MH, Dastmalchi S. Construction of a bacteriophage-derived vector with potential applications in targeted drug delivery and cell imaging. Biotechnol Lett 2024; 46:147-159. [PMID: 38184487 DOI: 10.1007/s10529-023-03455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 01/08/2024]
Abstract
There is a strong relationship between the dysregulation of epidermal growth factor receptor (EGFR) and the development of epithelial-derived cancers. Therefore, EGFR has usually been considered the desired target for gene therapy. Here, we propose an approach for targeting EGFR-expressing cells by phage particles capable of displaying EGF and GFP as tumor-targeting and reporting elements, respectively. For this purpose, the superfolder GFP-EGF (sfGFP-EGF) coding sequence was inserted at the N-terminus of the pIII gene in the pIT2 phagemid. The capability of the constructed phage to recognize EGFR-overexpressing cells was monitored by fluorescence microscopy, fluorescence-activated cell sorting (FACS), and cell-based ELISA experiments. FACS analysis showed a significant shift in the mean fluorescence intensity (MFI) of the cells treated with phage displaying sfGFP-EGF compared to phage displaying only sfGFP. The binding of phage displaying sfGFP-EGF to A-431 cells, monitored by fluorescence microscopy, indicated the formation of the sfGFP-EGF-EGFR complex on the surface of the treated cells. Cell-based ELISA experiments showed that phages displaying either EGF or sfGFP-EGF can specifically bind EGFR-expressing cells. The vector constructed in the current study has the potential to be engineered for gene delivery purposes as well as cell-based imaging for tumor detection.
Collapse
Affiliation(s)
- Mehdi Sharifi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Alizadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Maryam Hamzeh Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Faculty of Pharmacy, Near East University, Po. Box: 99138, Nicosia, North Cyprus, Mersin 10, Turkey.
| |
Collapse
|
10
|
Koide H, Kiyokawa C, Okishima A, Saito K, Yoshimatsu K, Fukuta T, Hoshino Y, Asai T, Nishimura Y, Miura Y, Oku N, Shea KJ. Design of an Anti-HMGB1 Synthetic Antibody for In Vivo Ischemic/Reperfusion Injury Therapy. J Am Chem Soc 2023; 145:23143-23151. [PMID: 37844138 PMCID: PMC10603801 DOI: 10.1021/jacs.3c06799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 10/18/2023]
Abstract
High-mobility group box 1 (HMGB1) is a multifunctional protein. Upon injury or infection, HMGB1 is passively released from necrotic and activated dendritic cells and macrophages, where it functions as a cytokine, acting as a ligand for RAGE, a major receptor of innate immunity stimulating inflammation responses including the pathogenesis of cerebral ischemia/reperfusion (I/R) injury. Blocking the HMGB1/RAGE axis offers a therapeutic approach to treating these inflammatory conditions. Here, we describe a synthetic antibody (SA), a copolymer nanoparticle (NP) that binds HMGB1. A lightly cross-linked N-isopropylacrylamide (NIPAm) hydrogel copolymer with nanomolar affinity for HMGB1 was selected from a small library containing trisulfated 3,4,6S-GlcNAc and hydrophobic N-tert-butylacrylamide (TBAm) monomers. Competition binding experiments with heparin established that the dominant interaction between SA and HMGB1 occurs at the heparin-binding domain. In vitro studies established that anti-HMGB1-SA inhibits HMGB1-dependent ICAM-1 expression and ERK phosphorylation of HUVECs, confirming that SA binding to HMGB1 inhibits the proteins' interaction with the RAGE receptor. Using temporary middle cerebral artery occlusion (t-MCAO) model rats, anti-HMGB1-SA was found to accumulate in the ischemic brain by crossing the blood-brain barrier. Significantly, administration of anti-HMGB1-SA to t-MCAO rats dramatically reduced brain damage caused by cerebral ischemia/reperfusion. These results establish that a statistical copolymer, selected from a small library of candidates synthesized using an "informed" selection of functional monomers, can yield a functional synthetic antibody. The knowledge gained from these experiments can facilitate the discovery, design, and development of a new category of drug.
Collapse
Affiliation(s)
- Hiroyuki Koide
- Department
of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Chiaki Kiyokawa
- Department
of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Anna Okishima
- Department
of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kaito Saito
- Department
of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Keiichi Yoshimatsu
- Department
of Chemistry, Missouri State University, 901 South National Avenue, Springfield, Missouri 65897, United States
| | - Tatsuya Fukuta
- Department
of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yu Hoshino
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Tomohiro Asai
- Department
of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuri Nishimura
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Yoshiko Miura
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Naoto Oku
- Department
of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kenneth J. Shea
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
11
|
Lü P, Qiu S, Pan Y, Shi S, Yu Q, Yu F, Miao L, Wang H, Chen K. Discovery of an Heparin-Binding Epidermal Growth Factor Domain Antibody from a Phage Library and Analysis of Its Inhibitory Effects in SKOV3 Cells. Cancer Biother Radiopharm 2023; 38:572-579. [PMID: 34529926 DOI: 10.1089/cbr.2021.0123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objective: Heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF), which binds to the EGF receptor, plays an important role in the occurrence and development of inflammation in various diseases. HB-EGF mediates the progression of ovarian cancer and is associated with disease prognosis. Thus, a specific humanized antibody to HB-EGF with high affinity is important. Methods: In this study, a humanized domain antibody (VH) against HB-EGF was discovered through phage display technology. The domain antibody was expressed in HB2151 cells and purified from the supernatant using protein L, and were used to test the its effect in invasion and migration of ovarian cancer SKOV3. Results: A domain antibody against HB-EGF was discovered, with a dissociation constant of ∼30 nM. Functional assays indicated that the domain antibody inhibited the functions of HB-EGF in promoting invasion and migration of SKOV3 cells. Conclusions: The selected domain antibody is a potential tool for developing novel drugs or therapies to combat ovarian cancer.
Collapse
Affiliation(s)
- Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Songlin Qiu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ye Pan
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Shenyan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qian Yu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Feng Yu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | | | - Huiying Wang
- Jiangsu Well Biotechnology Co., Ltd., Changzhou, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
12
|
Li Y, Yang KD, Kong DC, Ye JF. Advances in phage display based nano immunosensors for cholera toxin. Front Immunol 2023; 14:1224397. [PMID: 37781379 PMCID: PMC10534012 DOI: 10.3389/fimmu.2023.1224397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Cholera, a persistent global public health concern, continues to cause outbreaks in approximately 30 countries and territories this year. The imperative to safeguard water sources and food from Vibrio cholerae, the causative pathogen, remains urgent. The bacterium is mainly disseminated via ingestion of contaminated water or food. Despite the plate method's gold standard status for detection, its time-consuming nature, taking several days to provide results, remains a challenge. The emergence of novel virulence serotypes raises public health concerns, potentially compromising existing detection methods. Hence, exploiting Vibrio cholerae toxin testing holds promise due to its inherent stability. Immunobiosensors, leveraging antibody specificity and sensitivity, present formidable tools for detecting diverse small molecules, encompassing drugs, hormones, toxins, and environmental pollutants. This review explores cholera toxin detection, highlighting phage display-based nano immunosensors' potential. Engineered bacteriophages exhibit exceptional cholera toxin affinity, through specific antibody fragments or mimotopes, enabling precise quantification. This innovative approach promises to reshape cholera toxin detection, offering an alternative to animal-derived methods. Harnessing engineered bacteriophages aligns with ethical detection and emphasizes sensitivity and accuracy, a pivotal stride in the evolution of detection strategies. This review primarily introduces recent advancements in phage display-based nano immunosensors for cholera toxin, encompassing technical aspects, current challenges, and future prospects.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
- School of Nursing, Jilin University, Changchun, China
| | - Kai-di Yang
- School of Nursing, Jilin University, Changchun, China
| | - De-cai Kong
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
13
|
Chinta S, Vander Meer R, O’Reilly E, Choi MY. Insecticidal Effects of Receptor-Interference Isolated Bioactive Peptides on Fire Ant Colonies. Int J Mol Sci 2023; 24:13978. [PMID: 37762281 PMCID: PMC10530802 DOI: 10.3390/ijms241813978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Receptor-interference (Receptor-i) is a novel technology used to identify bioactive peptides as agonists or antagonists against a specific receptor, primarily targeting G-protein-coupled receptors (GPCRs). Using Receptor-i methodology, we targeted the pheromone biosynthesis activating neuropeptide receptor (PBAN-R) of the red imported fire ant (Solenopsis invicta). Based on previous studies, we selected four bioactive peptides cyclized with two cysteines: CVKLGSHFC, CIQQGSHFC, CERVGSHFC, and CMARYMSAC, and we conducted small-scale feeding bioassays, measuring fire ant worker mortality. All peptides reduced ant survival; however, CMARYMSAC (MARY) and CIQQGSHFC (IQQG) were the most effective and were selected for feeding trials against large, fully functional fire ant field colonies containing queen, brood, and up to 8000 workers. At the end of the experiment, day 84, synthetic peptide MARY killed over 80% of the workers and two of four queens. IQQG killed over 70% of the workers and three of four queens. The surviving two MARY queens lost an average of 21% of their starting weight. The surviving IQQG queen lost 31% of its weight. In contrast, control colony queens gained an average of 11% of their starting weight. These results provide proof-of-concept for the Receptor-i technology and will synergize applications to other agricultural and medical pests.
Collapse
Affiliation(s)
- Satya Chinta
- Center for Medical, Agricultural, and Veterinary Entomology, USDA-ARS, Gainesville, FL 32608, USA; (S.C.); (E.O.)
- Foresight Science and Technology, Hopkinton, MA 01748, USA
| | - Robert Vander Meer
- Center for Medical, Agricultural, and Veterinary Entomology, USDA-ARS, Gainesville, FL 32608, USA; (S.C.); (E.O.)
| | - Erin O’Reilly
- Center for Medical, Agricultural, and Veterinary Entomology, USDA-ARS, Gainesville, FL 32608, USA; (S.C.); (E.O.)
| | - Man-Yeon Choi
- Horticultural Crops Research Laboratory, USDA-ARS, Corvallis, OR 97330, USA
| |
Collapse
|
14
|
Lim HT, Kok BH, Leow CY, Leow CH. Exploring shark VNAR antibody against infectious diseases using phage display technology. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108986. [PMID: 37541634 DOI: 10.1016/j.fsi.2023.108986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Antibody with high affinity and specificity to antigen has widely used as a tool to combat various diseases. The variable domain of immunoglobulin new antigen receptor (VNAR) naturally found in shark contains autonomous function as single-domain antibody. Due to its excellent characteristics, the small, non-complex, and highly stable have made shark VNAR can acquires the antigen-binding capability that might not be reached by conventional antibody. Phage display technology enables shark VNAR to be presented on the surface of phage, allowing the exploration of shark VNAR as an alternative antibody format to target antigens from various infectious diseases. The application of phage-displayed shark VNAR in antibody library and biopanning eventually leads to the discovery and isolation of antigen-specific VNARs with diagnostic and therapeutic potential towards infectious diseases. This review provides an overview of the shark VNAR antibody, the types of phage display technology with comparison to the other types of display system, as well as the application and case studies of phage-displayed shark VNAR antibodies against infectious diseases.
Collapse
Affiliation(s)
- Hui Ting Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Boon Hui Kok
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| |
Collapse
|
15
|
Kumari S, Singh K, Singh N, Khan S, Kumar A. Phage display and human disease detection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:151-172. [PMID: 37770169 DOI: 10.1016/bs.pmbts.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Phage display is a significant and active molecular method and has continued crucial for investigative sector meanwhile its unearthing in 1985. This practice has numerous benefits: the association among physiology and genome, the massive variety of variant proteins showed in sole collection and the elasticity of collection that can be achieved. It suggests a diversity of stages for manipulating antigen attachment; yet, variety and steadiness of exhibited library are an alarm. Additional improvements, like accumulation of non-canonical amino acids, resulting in extension of ligands that can be recognized through collection, will support in expansion of the probable uses and possibilities of technology. Epidemic of COVID-19 had taken countless lives, and while indicative prescriptions were provided to diseased individuals, still no prevention was observed for the contamination. Phage demonstration has presented an in-depth understanding into protein connections included in pathogenesis. Phage display knowledge is developing as an influential, inexpensive, quick, and effectual method to grow novel mediators for the molecular imaging and analysis of cancer.
Collapse
Affiliation(s)
- Sonu Kumari
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India
| | - Krati Singh
- Department of Biotechnology, Banasthali University, Newai, Rajasthan, India
| | - Neha Singh
- Department of Biotechnology, Banasthali University, Newai, Rajasthan, India
| | - Suphiya Khan
- Department of Biotechnology, Banasthali University, Newai, Rajasthan, India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
16
|
Characterization of the Binding Behavior of Specific Cobalt and Nickel Ion-Binding Peptides Identified by Phage Surface Display. SEPARATIONS 2022. [DOI: 10.3390/separations9110354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In recent years, the application focus of phage surface display (PSD) technology has been extended to the identification of metal ion-selective peptides. In previous studies, two phage clones—a nickel-binding one with the peptide motif CNAKHHPRCGGG and a cobalt-binding one with the peptide motif CTQMLGQLCGGG—were isolated, and their binding ability to metal-loaded NTA agarose beads was investigated. Here, the free cyclic peptides are characterized by UV/VIS spectroscopy with respect to their binding capacity for the respective target ion and in crossover experiments for the other ion by isothermal titration calorimetry (ITC) in different buffer systems. This revealed differences in selectivity and affinity. The cobalt-specific peptide is very sensitive to different buffers; it has a 20-fold higher affinity for cobalt and nickel under suitable conditions. The nickel-specific peptide binds more moderately and robustly in different buffers but only selectively to nickel.
Collapse
|
17
|
Mahdavi SZB, Oroojalian F, Eyvazi S, Hejazi M, Baradaran B, Pouladi N, Tohidkia MR, Mokhtarzadeh A, Muyldermans S. An overview on display systems (phage, bacterial, and yeast display) for production of anticancer antibodies; advantages and disadvantages. Int J Biol Macromol 2022; 208:421-442. [PMID: 35339499 DOI: 10.1016/j.ijbiomac.2022.03.113] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 03/17/2022] [Indexed: 11/05/2022]
Abstract
Antibodies as ideal therapeutic and diagnostic molecules are among the top-selling drugs providing considerable efficacy in disease treatment, especially in cancer therapy. Limitations of the hybridoma technology as routine antibody generation method in conjunction with numerous developments in molecular biology led to the development of alternative approaches for the streamlined identification of most effective antibodies. In this regard, display selection technologies such as phage display, bacterial display, and yeast display have been widely promoted over the past three decades as ideal alternatives to traditional methods. The display of antibodies on phages is probably the most widespread of these methods, although surface display on bacteria or yeast have been employed successfully, as well. These methods using various sizes of combinatorial antibody libraries and different selection strategies possessing benefits in screening potency, generating, and isolation of high affinity antibodies with low risk of immunogenicity. Knowing the basics of each method assists in the design and retrieval process of antibodies suitable for different diseases, including cancer. In this review, we aim to outline the basics of each library construction and its display method, screening and selection steps. The advantages and disadvantages in comparison to alternative methods, and their applications in antibody engineering will be explained. Finally, we will review approved or non-approved therapeutic antibodies developed by employing these methods, which may serve as therapeutic antibodies in cancer therapy.
Collapse
Affiliation(s)
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Shirin Eyvazi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Maryam Hejazi
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Serge Muyldermans
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, China..
| |
Collapse
|
18
|
Wu G, Dou X, Li D, Xu S, Zhang J, Ding Z, Xie J. Recent Progress of Fluorescence Sensors for Histamine in Foods. BIOSENSORS 2022; 12:161. [PMID: 35323431 PMCID: PMC8945960 DOI: 10.3390/bios12030161] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 05/03/2023]
Abstract
Biological amines are organic nitrogen compounds that can be produced by the decomposition of spoiled food. As an important biological amine, histamine has played an important role in food safety. Many methods have been used to detect histamine in foods. Compared with traditional analysis methods, fluorescence sensors as an adaptable detection tool for histamine in foods have the advantages of low cost, convenience, less operation, high sensitivity, and good visibility. In terms of food safety, fluorescence sensors have shown great utilization potential. In this review, we will introduce the applications and development of fluorescence sensors in food safety based on various types of materials. The performance and effectiveness of the fluorescence sensors are discussed in detail regarding their structure, luminescence mechanism, and recognition mechanism. This review may contribute to the exploration of the application of fluorescence sensors in food-related work.
Collapse
Affiliation(s)
- Gan Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (G.W.); (X.D.); (D.L.)
| | - Xilin Dou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (G.W.); (X.D.); (D.L.)
| | - Dapeng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (G.W.); (X.D.); (D.L.)
| | - Shihan Xu
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; (S.X.); (J.Z.)
| | - Jicheng Zhang
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; (S.X.); (J.Z.)
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (G.W.); (X.D.); (D.L.)
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (G.W.); (X.D.); (D.L.)
| |
Collapse
|
19
|
Davydova EK. Protein Engineering: Advances in Phage Display for Basic Science and Medical Research. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S146-S110. [PMID: 35501993 PMCID: PMC8802281 DOI: 10.1134/s0006297922140127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/03/2022]
Abstract
Functional Protein Engineering became the hallmark in biomolecule manipulation in the new millennium, building on and surpassing the underlying structural DNA manipulation and recombination techniques developed and employed in the last decades of 20th century. Because of their prominence in almost all biological processes, proteins represent extremely important targets for engineering enhanced or altered properties that can lead to improvements exploitable in healthcare, medicine, research, biotechnology, and industry. Synthetic protein structures and functions can now be designed on a computer and/or evolved using molecular display or directed evolution methods in the laboratory. This review will focus on the recent trends in protein engineering and the impact of this technology on recent progress in science, cancer- and immunotherapies, with the emphasis on the current achievements in basic protein research using synthetic antibody (sABs) produced by phage display pipeline in the Kossiakoff laboratory at the University of Chicago (KossLab). Finally, engineering of the highly specific binding modules, such as variants of Streptococcal protein G with ultra-high orthogonal affinity for natural and engineered antibody scaffolds, and their possible applications as a plug-and-play platform for research and immunotherapy will be described.
Collapse
Affiliation(s)
- Elena K Davydova
- The University of Chicago, Department of Biochemistry and Molecular Biology, Chicago, IL 60637, USA.
| |
Collapse
|
20
|
Ch'ng ACW, Lam P, Alassiri M, Lim TS. Application of phage display for T-cell receptor discovery. Biotechnol Adv 2021; 54:107870. [PMID: 34801662 DOI: 10.1016/j.biotechadv.2021.107870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/23/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
The immune system is tasked to keep our body unharmed and healthy. In the immune system, B- and T-lymphocytes are the two main components working together to stop and eliminate invading threats like virus particles, bacteria, fungi and parasite from attacking our healthy cells. The function of antibodies is relatively more direct in target recognition as compared to T-cell receptors (TCR) which recognizes antigenic peptides being presented on the major histocompatibility complex (MHC). Although phage display has been widely applied for antibody presentation, this is the opposite in the case of TCR. The cell surface TCR is a relatively large and complex molecule, making presentation on phage surfaces challenging. Even so, recombinant versions and modifications have been introduced to allow the growing development of TCR in phage display. In addition, the increasing application of TCR for immunotherapy has made it an important binding motif to be developed by phage display. This review will emphasize on the application of phage display for TCR discovery as well as the engineering aspect of TCR for improved characteristics.
Collapse
Affiliation(s)
- Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Paula Lam
- CellVec Private Limited, 118518, Singapore; National University of Singapore, Department of Physiology, 117597, Singapore; Duke-NUS Graduate Medical School, Cancer and Stem Cells Biology Program, 169857, Singapore
| | - Mohammed Alassiri
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
21
|
Jaroszewicz W, Morcinek-Orłowska J, Pierzynowska K, Gaffke L, Węgrzyn G. Phage display and other peptide display technologies. FEMS Microbiol Rev 2021; 46:6407522. [PMID: 34673942 DOI: 10.1093/femsre/fuab052] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Phage display technology, which is based on the presentation of peptide sequences on the surface of bacteriophage virions, was developed over 30 years ago. Improvements in phage display systems have allowed us to employ this method in numerous fields of biotechnology, as diverse as immunological and biomedical applications, the formation of novel materials and many others. The importance of phage display platforms was recognized by awarding the Nobel Prize in 2018 "for the phage display of peptides and antibodies". In contrast to many review articles concerning specific applications of phage display systems published in recent years, we present an overview of this technology, including a comparison of various display systems, their advantages and disadvantages, and examples of applications in various fields of science, medicine, and the broad sense of biotechnology. Other peptide display technologies, which employ bacterial, yeast and mammalian cells, as well as eukaryotic viruses and cell-free systems, are also discussed. These powerful methods are still being developed and improved; thus, novel sophisticated tools based on phage display and other peptide display systems are constantly emerging, and new opportunities to solve various scientific, medical and technological problems can be expected to become available in the near future.
Collapse
Affiliation(s)
- Weronika Jaroszewicz
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | | | - Karolina Pierzynowska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
22
|
Balmforth MR, Haigh J, Kumar V, Dai W, Tiede C, Tomlinson DC, Deuchars J, Webb ME, Turnbull WB. Piggybacking on the Cholera Toxin: Identification of a CTB-Binding Protein as an Approach for Targeted Delivery of Proteins to Motor Neurons. Bioconjug Chem 2021; 32:2205-2212. [PMID: 34565149 DOI: 10.1021/acs.bioconjchem.1c00373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A significant unmet need exists for the delivery of biologic drugs such as polypeptides or nucleic acids to the central nervous system for the treatment and understanding of neurodegenerative diseases. Naturally occurring bacterial toxins have been considered as tools to meet this need. However, due to the complexity of tethering macromolecular drugs to toxins and the inherent dangers of working with large quantities of recombinant toxins, no such route has been successfully exploited. Developing a method where a bacterial toxin's nontoxic targeting subunit can be assembled with a drug immediately prior to in vivo administration has the potential to circumvent some of these issues. Using a phage-display screen, we identified two antibody mimetics, anticholera toxin Affimer (ACTA)-A2 and ACTA-C6 that noncovalently associate with the nonbinding face of the cholera toxin B-subunit. In a first step toward the development of a nonviral motor neuron drug-delivery vehicle, we show that Affimers can be selectively delivered to motor neurons in vivo.
Collapse
Affiliation(s)
- Matthew R Balmforth
- School of Chemistry, School of Biomedical Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Jessica Haigh
- School of Chemistry, School of Biomedical Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Vajinder Kumar
- School of Chemistry and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
- Akal University, Talwandi Sabo, Punjab 151302, India
| | - Wenyue Dai
- School of Chemistry and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Christian Tiede
- School of Molecular and Cellular Biology, and Astbury Centre for Structural and Molecular Biology, University of Leeds, Faculty of Biological Sciences, Leeds LS2 9JT, U.K
| | - Darren C Tomlinson
- School of Molecular and Cellular Biology, and Astbury Centre for Structural and Molecular Biology, University of Leeds, Faculty of Biological Sciences, Leeds LS2 9JT, U.K
| | - Jim Deuchars
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Michael E Webb
- School of Chemistry and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
23
|
Puzari U, Fernandes PA, Mukherjee AK. Advances in the Therapeutic Application of Small-Molecule Inhibitors and Repurposed Drugs against Snakebite. J Med Chem 2021; 64:13938-13979. [PMID: 34565143 DOI: 10.1021/acs.jmedchem.1c00266] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The World Health Organization has declared snakebite as a neglected tropical disease. Antivenom administration is the sole therapy against venomous snakebite; however, several limitations of this therapy reinforce the dire need for an alternative and/or additional treatment against envenomation. Inhibitors against snake venoms have been explored from natural resources and are synthesized in the laboratory; however, repurposing of small-molecule therapeutics (SMTs) against the principal toxins of snake venoms to inhibit their lethality and/or obnoxious effect of envenomation has been garnering greater attention owing to their established pharmacokinetic properties, low-risk attributes, cost-effectiveness, ease of administration, and storage stability. Nevertheless, SMTs are yet to be approved and commercialized for snakebite treatment. Therefore, we have systematically reviewed and critically analyzed the scenario of small synthetic inhibitors and repurposed drugs against snake envenomation from 2005 to date and proposed novel approaches and commercialization strategies for the development of efficacious therapies against snake envenomation.
Collapse
Affiliation(s)
- Upasana Puzari
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur-784028, Assam, India
| | - Pedro Alexandrino Fernandes
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua Do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - Ashis K Mukherjee
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur-784028, Assam, India.,Institute of Advanced Study in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati-781035, Assam, India
| |
Collapse
|
24
|
Parakasikron N, Chaotham C, Chanvorachote P, Vinayanuwattikun C, Buranasudja V, Taweecheep P, Khantasup K. Development of a human antibody fragment directed against the alpha folate receptor as a promising molecule for targeted application. Drug Deliv 2021; 28:1443-1454. [PMID: 34236266 PMCID: PMC8274507 DOI: 10.1080/10717544.2021.1943055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Alpha folate receptor (FRα) is currently under investigation as a target for the treatment of patients with non-small-cell lung cancer (NSCLC), since it is highly expressed in tumor cells but is largely absent in normal tissue. In this study, a novel human variable domain of a heavy-chain (VH) antibody fragment specific to FRα was enriched and selected by phage bio-planning. The positive phage clone (3A102 VH) specifically bound to FRα and also cross-reacted with FRβ, as tested by ELISA. Clone 3A102 VH was then successfully expressed as a soluble protein in an E. coli shuffle strain. The obtained soluble 3A102 VH demonstrated a high affinity for FRα with affinity constants (Kaff) values around 7.77 ± 0.25 × 107 M−1, with specific binding against both FRα expressing NSCLC cells and NSCLC patient-derived primary cancer cells, as tested by cell ELISA. In addition, soluble 3A102 VH showed the potential desired property of a targeting molecule by being internalized into FRα-expressing cells, as observed by confocal microscopy. This study inspires the use of phage display to develop human VH antibody (Ab) fragments that might be well suited for drug targeted therapy of NSCLC and other FRα-positive cancer cells.
Collapse
Affiliation(s)
- Nattihda Parakasikron
- The Medical Microbiology Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.,Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pithi Chanvorachote
- Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.,Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chanida Vinayanuwattikun
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Visarut Buranasudja
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pornchanok Taweecheep
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kannika Khantasup
- The Medical Microbiology Program, Graduate School, Chulalongkorn University, Bangkok, Thailand.,Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.,Vaccines and Therapeutic Proteins Research Group, the Special Task Force for Activating Research (STAR), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
25
|
Eskafi AH, Bagheri KP, Behdani M, Yamabhai M, Shahbazzadeh D, Kazemi-Lomedasht F. Development and characterization of human single chain antibody against Iranian Macrovipera lebetina snake venom. Toxicon 2021; 197:106-113. [DOI: 10.1016/j.toxicon.2021.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022]
|
26
|
Liu T, Wang H, Liu Z, Zhang J, Liu Y, Zhang L, Zheng C, Liu F, Hou C, Li B. Construction and Identification of New Molecular Markers of Triple-Negative Breast Cancer Stem Cells. Front Oncol 2021; 11:647291. [PMID: 34123797 PMCID: PMC8193032 DOI: 10.3389/fonc.2021.647291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/19/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: We screened the TNBC stem cells using phage display (PD) and acquired the specific binding clones; and then the positive phage DNAs were amplified and extracted, synthesized with specific polypeptides, and labeled with fluorescein isothiocyanate (FITC). Finally, we identified the specificity of the polypeptides in vitro and in vivo. Methods: Human breast cancer cell line MDA-MB-231 and human mammary gland cell line hs578bst were chosen in our study, and MDA-MB-231 breast cancer stem cells (BCSCs) were cultured and identified by flow cytometry. The phage peptide library was screened using MDA-MB-231 BCSCs, the positive phage clones were identified by ELISA, and the DNA of the positive phages was extracted and sent to a biotechnology company for sequencing. According to the sequencing results, a specific polypeptide was synthesized and labeled with FITC. In the end, the specificity of a polypeptide to BCSCs was identified in vivo and in vitro. Results: The MDA-MB-231 BCSCs were cultured and enriched with the "serum and serum-free alternate" method. The BCSCs were found to have characteristics of CD44+/CD24-/low epithelial surface antigen (ESA) and ALDH+ with flow cytometry. The phage was enriched to 200-fold after three rounds of screening for MDA-MB-231 BCSCs. The positive phages were sequenced; then a polypeptide named M58 was synthesized according to sequencing results. Polypeptide M58 has a specific affinity to MDA-MB-231 BCSCs in vivo and in vitro. Conclusion: Specific polypeptides binding to MDA-MB-231 BCSCs were screened out by PD screening method, which laid a theoretical foundation for the targeted therapy and further research of BCSCs.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Breast Surgery, Breast Cancer Center, Tai'an Central Hospital, Tai'an, China
| | - Hongyue Wang
- Department of Central Sterile Supply, Tai'an Central Hospital, Tai'an, China
| | - Zhiyong Liu
- Department of Breast Surgery, Breast Cancer Center, Tai'an Central Hospital, Tai'an, China
| | - Jing Zhang
- Department of Ultrasonic Diagnosis, Breast Cancer Center, Tai'an Central Hospital, Tai'an, China
| | - Yan Liu
- Department of Breast Surgery, Breast Cancer Center, Tai'an Central Hospital, Tai'an, China
| | - Lin Zhang
- Department of Breast Surgery, Breast Cancer Center, Tai'an Central Hospital, Tai'an, China
| | - Chunhui Zheng
- Department of Oncology Surgery, Weifang People's Hospital, Weifang, China
| | - Fei Liu
- Department of Breast Surgery, Breast Cancer Center, Tai'an Central Hospital, Tai'an, China
| | - Chuanqiang Hou
- Department of Breast Surgery, Breast Cancer Center, Tai'an Central Hospital, Tai'an, China
| | - Baojiang Li
- Department of Breast Surgery, Breast Cancer Center, Tai'an Central Hospital, Tai'an, China
| |
Collapse
|
27
|
Choi MY, Vander Meer RK. GPCR-Based Bioactive Peptide Screening Using Phage-Displayed Peptides and an Insect Cell System for Insecticide Discovery. Biomolecules 2021; 11:biom11040583. [PMID: 33923387 PMCID: PMC8071521 DOI: 10.3390/biom11040583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 01/12/2023] Open
Abstract
The discovery of new insecticides improves integrated pest management (IPM), but is usually a long high-risk process with a low probability of success. For over two decades, insect neuropeptides (NPs) and their G-protein coupled receptors (GPCRs) have been considered as biological targets for insect pest control, because they are involved in almost all physiological processes associated with insect life stages. A key roadblock to success has been the question of how large volume chemical libraries can be efficiently screened for active compounds. New genomic and proteomic tools have advanced and facilitated the development of new approaches to insecticide discovery. In this study, we report a novel GPCR-based screening technology that uses millions of short peptides randomly generated by bacteriophages, and a method using an insect Sf9 cell expression system. The fire ant is a good model system, since bioactive peptides have been identified for a specific GPCR. The novel small peptides could interfere with the target GPCR-ligand functions. Therefore, we refer to this new mechanism as “receptor interference” (RECEPTORi). The GPCR-based bioactive peptide screening method offers multiple advantages. Libraries of phage-displayed peptides (~109 peptides) are inexpensive. An insect cell-based screening system rapidly leads to target specific GPCR agonists or antagonists in weeks. Delivery of bioactive peptides to target pests can be flexible, such as topical, ingestion, and plant-incorporated protectants. A variety of GPCR targets are available, thus minimizing the development of potential insecticide resistance. This report provides the first proof-of-concept for the development of novel arthropod pest management strategies using neuropeptides, and GPCRs.
Collapse
Affiliation(s)
- Man-Yeon Choi
- USDA-ARS, Horticultural Crops Research Laboratory, Corvallis, OR 97330, USA
- Correspondence:
| | - Robert K. Vander Meer
- USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL 32608, USA;
| |
Collapse
|
28
|
Harada LK, Júnior WB, Silva EC, Oliveira TJ, Moreli FC, Júnior JMO, Tubino M, Vila MMDC, Balcão VM. Bacteriophage-Based Biosensing of Pseudomonas aeruginosa: An Integrated Approach for the Putative Real-Time Detection of Multi-Drug-Resistant Strains. BIOSENSORS-BASEL 2021; 11:bios11040124. [PMID: 33921071 PMCID: PMC8071457 DOI: 10.3390/bios11040124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022]
Abstract
During the last decennium, it has become widely accepted that ubiquitous bacterial viruses, or bacteriophages, exert enormous influences on our planet’s biosphere, killing between 4–50% of the daily produced bacteria and constituting the largest genetic diversity pool on our planet. Currently, bacterial infections linked to healthcare services are widespread, which, when associated with the increasing surge of antibiotic-resistant microorganisms, play a major role in patient morbidity and mortality. In this scenario, Pseudomonas aeruginosa alone is responsible for ca. 13–15% of all hospital-acquired infections. The pathogen P. aeruginosa is an opportunistic one, being endowed with metabolic versatility and high (both intrinsic and acquired) resistance to antibiotics. Bacteriophages (or phages) have been recognized as a tool with high potential for the detection of bacterial infections since these metabolically inert entities specifically attach to, and lyse, bacterial host cells, thus, allowing confirmation of the presence of viable cells. In the research effort described herein, three different phages with broad lytic spectrum capable of infecting P. aeruginosa were isolated from environmental sources. The isolated phages were elected on the basis of their ability to form clear and distinctive plaques, which is a hallmark characteristic of virulent phages. Next, their structural and functional stabilization was achieved via entrapment within the matrix of porous alginate, biopolymeric, and bio-reactive, chromogenic hydrogels aiming at their use as sensitive matrices producing both color changes and/or light emissions evolving from a reaction with (released) cytoplasmic moieties, as a bio-detection kit for P. aeruginosa cells. Full physicochemical and biological characterization of the isolated bacteriophages was the subject of a previous research paper.
Collapse
Affiliation(s)
- Liliam K. Harada
- PhageLab—Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba, SP 18023-000, Brazil; (L.K.H.); (E.C.S.); (T.J.O.); (F.C.M.); (J.M.O.J.); (M.M.D.C.V.)
| | | | - Erica C. Silva
- PhageLab—Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba, SP 18023-000, Brazil; (L.K.H.); (E.C.S.); (T.J.O.); (F.C.M.); (J.M.O.J.); (M.M.D.C.V.)
| | - Thais J. Oliveira
- PhageLab—Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba, SP 18023-000, Brazil; (L.K.H.); (E.C.S.); (T.J.O.); (F.C.M.); (J.M.O.J.); (M.M.D.C.V.)
| | - Fernanda C. Moreli
- PhageLab—Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba, SP 18023-000, Brazil; (L.K.H.); (E.C.S.); (T.J.O.); (F.C.M.); (J.M.O.J.); (M.M.D.C.V.)
| | - José M. Oliveira Júnior
- PhageLab—Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba, SP 18023-000, Brazil; (L.K.H.); (E.C.S.); (T.J.O.); (F.C.M.); (J.M.O.J.); (M.M.D.C.V.)
| | - Matthieu Tubino
- Institute of Chemistry, University of Campinas, Campinas, SP 13083-970, Brazil;
| | - Marta M. D. C. Vila
- PhageLab—Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba, SP 18023-000, Brazil; (L.K.H.); (E.C.S.); (T.J.O.); (F.C.M.); (J.M.O.J.); (M.M.D.C.V.)
| | - Victor M. Balcão
- PhageLab—Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba, SP 18023-000, Brazil; (L.K.H.); (E.C.S.); (T.J.O.); (F.C.M.); (J.M.O.J.); (M.M.D.C.V.)
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
- Correspondence: ; Tel.: +55-(15)-2101-7029
| |
Collapse
|
29
|
Aloisio A, Nisticò N, Mimmi S, Maisano D, Vecchio E, Fiume G, Iaccino E, Quinto I. Phage-Displayed Peptides for Targeting Tyrosine Kinase Membrane Receptors in Cancer Therapy. Viruses 2021; 13:649. [PMID: 33918836 PMCID: PMC8070105 DOI: 10.3390/v13040649] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) regulate critical physiological processes, such as cell growth, survival, motility, and metabolism. Abnormal activation of RTKs and relative downstream signaling is implicated in cancer pathogenesis. Phage display allows the rapid selection of peptide ligands of membrane receptors. These peptides can target in vitro and in vivo tumor cells and represent a novel therapeutic approach for cancer therapy. Further, they are more convenient compared to antibodies, being less expensive and non-immunogenic. In this review, we describe the state-of-the-art of phage display for development of peptide ligands of tyrosine kinase membrane receptors and discuss their potential applications for tumor-targeted therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ileana Quinto
- Correspondence: (A.A.); (I.Q.): Tel.: +39-0961-3694057 (I.Q.)
| |
Collapse
|
30
|
Siripanthong S, Techasen A, Nantasenamat C, Malik AA, Sithithaworn P, Leelayuwat C, Jumnainsong A. Production and characterization of antibody against Opisthorchis viverrini via phage display and molecular simulation. PLoS One 2021; 16:e0248887. [PMID: 33755687 PMCID: PMC7987191 DOI: 10.1371/journal.pone.0248887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/06/2021] [Indexed: 11/23/2022] Open
Abstract
In this study, a key issue to be addressed is the safe disposal of hybridoma instability. Hybridoma technology was used to produce anti–O. viverrini monoclonal antibody. Previous studies have shown that antibody production via antibody phage display can sustain the hybridoma technique. This paper presents the utility of antibody phage display technology for producing the phage displayed KKU505 Fab fragment and using experiments in concomitant with molecular simulation for characterization. The phage displayed KKU505 Fab fragment and characterization were successfully carried out. The KKU505 hybridoma cell line producing anti–O. viverrini antibody predicted to bind to myosin was used to synthesize cDNA so as to amplify the heavy chain and the light chain sequences. The KKU505 displayed phage was constructed and characterized by a molecular modeling in which the KKU505 Fab fragment and -O. viverrini myosin head were docked computationally and it is assumed that the Fab fragment was specific to -O. viverrini on the basis of mass spectrometry and Western blot. This complex interaction was confirmed by molecular simulation. Furthermore, the KKU505 displayed phage was validated using indirect enzyme-linked immunosorbent assays (ELISA) and immunohistochemistry. It is worthy to note that ELISA and immunohistochemistry results confirmed that the Fab fragment was specific to the -O. viverrini antigen. Results indicated that the approach presented herein can generate anti–O. viverrini antibody via the phage display technology. This study integrates the use of phage display technology together with molecular simulation for further development of monoclonal antibody production. Furthermore, the presented work has profound implications for antibody production, particularly by solving the problem of hybridoma stability issues.
Collapse
Affiliation(s)
| | - Anchalee Techasen
- Liver Fluke and Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Associated Medical Sciences, Department of Clinical Microbiology, Khon Kaen University, Khon Kaen, Thailand
| | - Chanin Nantasenamat
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Aijaz Ahmad Malik
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Paiboon Sithithaworn
- Liver Fluke and Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Medicine, Department of Parasitology, Khon Kaen University, Khon Kaen, Thailand
| | - Chanvit Leelayuwat
- Faculty of Associated Medical Sciences, The Centre for Research and Development of Medical Diagnostic Laboratories and Department of Clinical Immunology and Transfusion Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Amonrat Jumnainsong
- Faculty of Associated Medical Sciences, The Centre for Research and Development of Medical Diagnostic Laboratories and Department of Clinical Immunology and Transfusion Sciences, Khon Kaen University, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
31
|
Ke Q, Kroger CJ, Clark M, Tisch RM. Evolving Antibody Therapies for the Treatment of Type 1 Diabetes. Front Immunol 2021; 11:624568. [PMID: 33679717 PMCID: PMC7930374 DOI: 10.3389/fimmu.2020.624568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/31/2020] [Indexed: 12/24/2022] Open
Abstract
Type 1 diabetes (T1D) is widely considered to be a T cell driven autoimmune disease resulting in reduced insulin production due to dysfunction/destruction of pancreatic β cells. Currently, there continues to be a need for immunotherapies that selectively reestablish persistent β cell-specific self-tolerance for the prevention and remission of T1D in the clinic. The utilization of monoclonal antibodies (mAb) is one strategy to target specific immune cell populations inducing autoimmune-driven pathology. Several mAb have proven to be clinically safe and exhibit varying degrees of efficacy in modulating autoimmunity, including T1D. Traditionally, mAb therapies have been used to deplete a targeted cell population regardless of antigenic specificity. However, this treatment strategy can prove detrimental resulting in the loss of acquired protective immunity. Nondepleting mAb have also been applied to modulate the function of immune effector cells. Recent studies have begun to define novel mechanisms associated with mAb-based immunotherapy that alter the function of targeted effector cell pools. These results suggest short course mAb therapies may have persistent effects for regaining and maintaining self-tolerance. Furthermore, the flexibility to manipulate mAb properties permits the development of novel strategies to target multiple antigens and/or deliver therapeutic drugs by a single mAb molecule. Here, we discuss current and potential future therapeutic mAb treatment strategies for T1D, and T cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
32
|
Maruyama S, Weis VM. Limitations of Using Cultured Algae to Study Cnidarian-Algal Symbioses and Suggestions for Future Studies. JOURNAL OF PHYCOLOGY 2021; 57:30-38. [PMID: 33191496 DOI: 10.1111/jpy.13102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Much of our understanding of the cellular mechanisms underlying cnidarian-algal symbiosis comes from studying the biological differences between the partners when they are engaged in symbiosis and when they are isolated from one another. When comparing the in hospite and ex hospite states in Symbiodiniaceae, the in hospite state is represented by algae sampled from hosts, and the ex hospite state is commonly represented by cultured algae. The use of cultured algae in this comparison may introduce nutrition as a confounding variable because, while hosts are kept in nutrient-depleted conditions, culture media is nutrient rich and designed to facilitate algal growth. In this perspective, we reexamine how nutrition may be a confounding variable in studies that compare the biology of Symbiodiniaceae in hospite and in culture. We also suggest several innovations in experimental design to strengthen the comparison of the two lifestyles, including the adoption of nutritional controls, alternatives to culture for the representation of Symbiodiniaceae ex hospite, and the adoption of several proteomic approaches to find novel Symbiodiniaceae genes important for symbiosis.
Collapse
Affiliation(s)
- Shumpei Maruyama
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, Oregon, 97331, USA
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, Oregon, 97331, USA
| |
Collapse
|
33
|
Zhou X, Smith QR, Liu X. Brain penetrating peptides and peptide-drug conjugates to overcome the blood-brain barrier and target CNS diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1695. [PMID: 33470550 DOI: 10.1002/wnan.1695] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Nearly one in six people worldwide suffer from disorders of the central nervous system (CNS). There is an urgent need for effective strategies to improve the success rates in CNS drug discovery and development. The lack of effective technologies for delivering drugs and genes to the brain due to the blood-brain barrier (BBB), a structural barrier that effectively blocks most neurotherapeutic agents from reaching the brain, has posed a formidable hurdle for CNS drug development. Brain-homing and brain-penetrating molecular transport vectors, such as brain permeable peptides or BBB shuttle peptides, have shown promise in overcoming the BBB and ferrying the drug molecules to the brain. The BBB shuttle peptides are discovered by phage display technology or derived from natural neurotropic proteins or certain viruses and harness the receptor-mediated transcytosis molecular machinery for crossing the BBB. Brain permeable peptide-drug conjugates (PDCs), composed of BBB shuttle peptides, linkers, and drug molecules, have emerged as a promising CNS drug delivery system by taking advantage of the endogenous transcytosis mechanism and tricking the brain into allowing these bioactive molecules to pass the BBB. Here, we examine the latest development of brain-penetrating peptide shuttles and brain-permeable PDCs as molecular vectors to deliver small molecule drug payloads across the BBB to reach brain parenchyma. Emerging knowledge of the contribution of the peptides and their specific receptors expressed on the brain endothelial cells, choice of drug payloads, the design of PDCs, brain entry mechanisms, and delivery efficiency to the brain are highlighted. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Quentin R Smith
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| |
Collapse
|
34
|
Mishra R, Guo Y, Kumar P, Cantón PE, Tavares CS, Banerjee R, Kuwar S, Bonning BC. Streamlined phage display library protocols for identification of insect gut binding peptides highlight peptide specificity. CURRENT RESEARCH IN INSECT SCIENCE 2021; 1:100012. [PMID: 36003592 PMCID: PMC9387513 DOI: 10.1016/j.cris.2021.100012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 05/10/2023]
Abstract
Phage display libraries have been used to isolate insect gut binding peptides for use as pathogen transmission blocking agents, and to provide artificial anchors for increased toxicity of bacteria-derived pesticidal proteins. Previously, phage clones displaying enriched peptides were sequenced by Sanger sequencing. Here we present a streamlined protocol for identification of insect gut binding peptides, using insect-appropriate feeding strategies, with next generation sequencing and tailored bioinformatics analyses. The bioinformatics pipeline is designed to eliminate poorly enriched and false positive peptides, and to identify peptides predicted to be stable and hydrophilic. In addition to developing streamlined protocols, we also sought to address whether candidate gut binding peptides can bind to insects from more than one order, which is an important consideration for safe, practical use of peptide-modified pesticidal proteins. To this end, we screened phage display libraries for peptides that bind to the gut epithelia of two pest insects, the Asian citrus psyllid, Diaphorina citri (Hemiptera) and beet armyworm, Spodoptera exigua (Lepidoptera), and one beneficial insect, the western honey bee, Apis mellifera (Hymenoptera). While unique peptide sequences totaling 13,427 for D. citri, 89,561 for S. exigua and 69,053 for A. mellifera were identified from phage eluted from the surface of the insect guts, final candidate pools were comprised of 53, 107 and 1423 peptides respectively. The benefits of multiple rounds of biopanning, along with peptide binding properties in relation to practical use of peptide-modified pesticidal proteins for insect pest control are discussed.
Collapse
|
35
|
Lee SC, Yoon MY. Development of a receptor-based inhibitory penta-unit-conjugated peptide to enhance anthrax toxin neutralization. Int J Biol Macromol 2020; 163:327-335. [PMID: 32619663 DOI: 10.1016/j.ijbiomac.2020.06.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/21/2022]
Abstract
Anthrax toxin is a key virulence factor for Bacillus anthracis. The cell-binding component of anthrax toxin, protective antigen (PA), mediates the entry of the toxin into cells by first binding to the extracellular von Willebrand factor A (VWA) domain of the cellular anthrax toxin receptor (ATR). Herein, we targeted the VWA domain of the cellular receptor to develop a more effective antitoxin agent for neutralization of anthrax toxin. We selected ATR-binding peptides by using a phage display: among these, we identified two novel peptides binding to the ATR with high affinity and specificity, and that neutralized anthrax toxicity in cells. Furthermore, to enhance the functional efficiency of the probes, the peptides were modified and conjugated to three polyvalent probe backbones: a 17 amino-acid-based cyclic form penta-unit, poly-d-lysine (PDL), or the M13 bacteriophage. One of the functionally modified polyvalent peptide probes, the penta-unit-conjugated probe (PUCP) produced the most potent neutralization of anthrax toxin, with half-maximal inhibitory concentration (IC50) of 20 nM. The PUCP disrupted anthrax toxin binding to its receptor and reduced endocytosis of anthrax toxin. This peptide-based approach may, therefore, represent a promising strategy to combat anthrax toxicosis and other bacterial diseases and may be efficient for disease treatment.
Collapse
Affiliation(s)
- Sang-Choon Lee
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA.
| | - Moon-Young Yoon
- Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
36
|
Rezaei ZS, Shahangian SS, Hasannia S, Sajedi RH. Development of a phage display-mediated immunoassay for the detection of vascular endothelial growth factor. Anal Bioanal Chem 2020; 412:7639-7648. [PMID: 32876721 DOI: 10.1007/s00216-020-02901-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 01/08/2023]
Abstract
Because of the critical role of vascular endothelial growth factor (VEGF) in angiogenesis and its significantly increased serum levels in early stages of cancer, VEGF is considered an important prognostic biomarker in different cancers. Herein, the amplification power of PCR combined with phage displaying anti-VEGF VHH, a sensitive real-time immunoassay, was precisely designed based on phage display-mediated immuno-PCR (PD-IPCR) for the detection of VEGF. This system benefits from strong and specific binding of antigen and antibody in a sandwich immunosorbent assay platform using avastin (anti-VEGF monoclonal antibody) as the capture antibody. The anti-VEGF phage particles were used as both anti-VEGF agent and DNA template in the PD-IPCR. Anti-VEGF phage ELISA showed a linear range of 3-250 ng/ml and a limit of detection (LOD) of 1.1 ng/ml. Using the PD-IPCR method, the linear range of VEGF detection was found to be 0.06-700 ng/ml, with a detection limit of 3 pg/ml. The recovery rate in serum ranged from 83% to 99%, with a relative standard deviation of 1.2-4.9%. These values indicate that the method has good sensitivity for use in clinical analysis. The proposed method was successfully applied to the clinical determination of VEGF in human serum samples, and the results showed excellent correlation with conventional ELISA (R2 = 0.995). The novel immunoassay provides a specific and sensitive immunoassay protocol for VEGF detection at very low levels. Graphical abstract.
Collapse
Affiliation(s)
- Zahra S Rezaei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran, 14115-154, Iran
| | - S Shirin Shahangian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Guilan, 4199613776, Iran
| | - Sadegh Hasannia
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran, 14115-154, Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran, 14115-154, Iran.
| |
Collapse
|
37
|
Cui J, Shang A, Wang W, Chen W. Rational design of a GLP-1/GIP/Gcg receptor triagonist to correct hyperglycemia, obesity and diabetic nephropathy in rodent animals. Life Sci 2020; 260:118339. [PMID: 32841660 DOI: 10.1016/j.lfs.2020.118339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 12/25/2022]
Abstract
AIMS To design and screen a potent GLP-1/GIP/Gcg receptors triagonist with therapeutic potential in rodent animals with diabetes and obesity. MAIN METHODS First, we obtained a 12-mer dual GIP/Gcg receptor agonist from a large combinatorial peptide library via high-throughput screening technique and then fused to the Exendin (9-39) to generate a potent GLP-1/GIP/Gcg triagonist. Further site fatty chain modification was performed to improve the druggability via enhancing in vivo stability and cyclic half-life. In vitro signaling and functional assays in cell lines expressing each receptor and in vivo efficacy evaluation in rodent model animals with hyperglycemia and obesity were all carefully performed. KEY FINDINGS We screened and obtained a potent GLP-1/GIP/Gcg triagonist, termed XFL0, which promotes in vitro GLP-1, GIP, Gcg receptor activation comparable to native GLP-1, GIP and glucagon, respectively. Site-specific fatty acid modification significantly enhanced plasma stability of XFL0 and exhibited no obvious impact on receptor activation. The selected XFL0 conjugates termed XFL6, showed glucose-dependent insulin secretion and improved glucose tolerance by acting on all GLP-1, GIP and Gcg receptors in gene-deficient mice of which the effects were all significantly greater than any single receptor agonist. After chronic treatment in rodent animals with diabetes and obesity, XFL6 potently decreased body weight and food intake, ameliorated the hyperglycemia and hemoglobin A1c levels as well as the lipid metabolism and diabetic nephropathy related disorders. SIGNIFICANCE XFL6, as a novel GLP-1/GIP/Gcg receptor triagonist, held potential to deliver outstanding improvement in correcting hyperglycemia, obesity and diabetic nephropathy.
Collapse
Affiliation(s)
- Jie Cui
- Center for Laboratory Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Center for Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Anquan Shang
- Department of Laboratory Medicine, Tongji Hospital of Tongji University, Shanghai 200065, PR China
| | - Weiwei Wang
- Department of Pathology, Yancheng Sixth People's Hospital of Southeast University Group, Yancheng 224001, PR China
| | - Wei Chen
- Center for Laboratory Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
38
|
Bashir S, Paeshuyse J. Construction of Antibody Phage Libraries and Their Application in Veterinary Immunovirology. Antibodies (Basel) 2020; 9:E21. [PMID: 32503103 PMCID: PMC7345743 DOI: 10.3390/antib9020021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
Antibody phage display (APD) technology has revolutionized the field of immunovirology with its application in viral disease diagnostics and antiviral therapy. This robust and versatile technology allows the expression of an antibody fused to a phage coat protein on the surface of a filamentous phage. The DNA sequence coding for the antibody is packaged within the phage, linking the phenotype to genotype. Antibody phage display inherits the ability to rapidly generate and modify or improve high-affinity monoclonal antibodies, rendering it indispensable in immunology. In the last two decades, phage-display-derived antibodies have been extensively used in human medicine as diagnostic and therapeutic modalities. Recently, they are also gaining significant ground in veterinary medicine. Even though these advancements are mainly biased towards economically important animals such as chicken, cattle, and pigs, they are laying the foundation of fulfilling the unmet needs of veterinary medicine as antibody-based biologics in viral diagnostics, therapeutics, and immunoprophylaxis. This review provides a brief overview of the construction of antibody phage libraries and their application in diagnosis, prevention, and control of infectious viral diseases in veterinary medicine in detail.
Collapse
Affiliation(s)
| | - Jan Paeshuyse
- Department of Biosystems, Division of Animal and Human Health Engineering, Laboratory of Host Pathogen Interaction in Livestock, KU Leuven University, 3000 Leuven, Belgium;
| |
Collapse
|
39
|
Chen SX, He JH, Mi YJ, Shen HF, Schachner M, Zhao WJ. A mimetic peptide of α2,6-sialyllactose promotes neuritogenesis. Neural Regen Res 2020; 15:1058-1065. [PMID: 31823885 PMCID: PMC7034278 DOI: 10.4103/1673-5374.270313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/21/2019] [Accepted: 07/28/2019] [Indexed: 02/05/2023] Open
Abstract
Oxidative stress contributes to the pathogenesis of neurodegenerative diseases. With the aim to find reagents that reduce oxidative stress, a phage display library was screened for peptides mimicking α2,6-sialyllactose (6'-SL), which is known to beneficially influence neural functions. Using Sambucus nigra lectin, which specifically binds to 6'-SL, we screened a phage display library and found a peptide comprising identical sequences of 12 amino acids. Mimetic peptide, reverse peptide and scrambled peptide were tested for inhibition of 6'-SL binding to the lectin. Indeed, lectin binding to 6'-SL was inhibited by the most frequently identified mimetic peptide, but not by the reverse or scrambled peptides, showing that this peptide mimics 6'-SL. Functionally, mimetic peptide, but not the reverse or scrambled peptides, increased viability and expression of neural cell adhesion molecule L1 in SK-N-SH human neuroblastoma cells, and promoted survival and neurite outgrowth of cultured mouse cerebellar granule neurons challenged by H2O2-induced oxidative stress. The combined results indicate that the 6'-SL mimetic peptide promotes neuronal survival and neuritogenesis, thus raising hopes for the treatment of neurodegenerative diseases. This study was approved by the Medical Ethics Committee of Shantou University Medical College, China (approval No. SUMC 2014-004) on February 20, 2014.
Collapse
Affiliation(s)
- Shuang-Xi Chen
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, China
- Department of Neurology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Jia-Hui He
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yong-Jian Mi
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, China
- Department of Neurology, Chongqing Qijiang Renmin Hospital, Chongqing, China
| | - Hui-Fan Shen
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, China
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
- Correspondence to: Melitta Schachner, ; Wei-Jiang Zhao,
| | - Wei-Jiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, China
- Correspondence to: Melitta Schachner, ; Wei-Jiang Zhao,
| |
Collapse
|
40
|
Kumar R, Parray HA, Shrivastava T, Sinha S, Luthra K. Phage display antibody libraries: A robust approach for generation of recombinant human monoclonal antibodies. Int J Biol Macromol 2019; 135:907-918. [PMID: 31170490 DOI: 10.1016/j.ijbiomac.2019.06.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/02/2019] [Accepted: 06/02/2019] [Indexed: 12/29/2022]
Abstract
Monoclonal antibodies (mAbs) and their derivatives have achieved remarkable success as medicine, targeting both diagnostic and therapeutic applications associated with communicable and non-communicable diseases. In the last 3 to 4 decades, tremendous success has been manifested in the field of cancer therapy, autoimmune diseases, cardiovascular and infectious diseases. MAbs are the fastest growing class of biopharmaceuticals, with more than 25 derivatives are in clinical use and 7 of these have been isolated through phage display technology. Phage display technology has gained impetus in the field of medical and health sciences, as a large repertoire of diverse recombinant antibodies, targeting various antigens have been generated in a short span of time. A prominent number of phage display derived antibodies are already approved for therapy and significant numbers are currently in clinical trials. In this review we have discussed the various strategies employed for generation of monoclonal antibodies; their advantages, limitations and potential therapeutic applications. We also discuss the potential of phage display antibody libraries in isolation of monoclonal antibodies.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India; Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| | - Hilal Ahmed Parray
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
41
|
Yamashita T. Toward rational antibody design: recent advancements in molecular dynamics simulations. Int Immunol 2019; 30:133-140. [PMID: 29346652 DOI: 10.1093/intimm/dxx077] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 01/11/2018] [Indexed: 01/02/2023] Open
Abstract
Because antibodies have become an important therapeutic tool, rational antibody design is a challenging issue involving various science and technology fields. From the computational aspect, many types of design-assist methods have been developed, but their accuracy is not fully satisfactory. Because of recent advancements in computational power, molecular dynamics (MD) simulation has become a helpful tool to trace the motion of proteins and to characterize their properties. Thus, MD simulation has been applied to various systems involving antigen-antibody complexes and has been shown to provide accurate insight into antigen-antibody interactions and dynamics at an atomic resolution. Therefore, it is highly possible that MD simulation will play several roles complementing the conventional antibody design. In this review, we address several important features of MD simulation in the context of rational antibody design.
Collapse
Affiliation(s)
- Takefumi Yamashita
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Japan
| |
Collapse
|
42
|
Mwale PF, Lee CH, Leu SJ, Lee YC, Wu HH, Lin LT, Lin TE, Huang YJ, Yang YY. Antigenic epitopes on the outer membrane protein A of Escherichia coli identified with single-chain variable fragment (scFv) antibodies. Appl Microbiol Biotechnol 2019; 103:5285-5299. [PMID: 31028439 DOI: 10.1007/s00253-019-09761-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 10/26/2022]
Abstract
Bacterial meningitis is a severe disease that is fatal to one-third of patients. The major cause of meningitis in neonates is Escherichia coli (E. coli) K1. This bacterium synthesizes an outer membrane protein A (OmpA) that is responsible for the adhesion to (and invasion of) endothelial cells. Thus, the OmpA protein represents a potential target for developing diagnostic and therapeutic agents for meningitis. In this study, we expressed recombinant OmpA proteins with various molecular weights in E. coli. The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was performed to check the molecular size of OmpA's full length (FL) and truncated proteins. OmpA-FL protein was purified for immunizing chickens to produce immunoglobulin yolk (IgY) antibodies. We applied phage display technology to construct antibody libraries (OmpA-FL scFv-S 1.1 × 107 and OmpA-FL scFv-L 5.01 × 106) to select specific anti-OmpA-FL scFv antibodies; these were characterized by their binding ability to recombinant or endogenous OmpA using ELISA, immunofluorescent staining, and confirmed with immunoblotting. We found 12 monoclonal antibodies that react to OmpA fragments; seven scFvs recognize fragments spanning amino acid (aa) residues 1-346, aa 1-287, aa 1-167, and aa 60-192, while five scFvs recognize fragments spanning aa 1-346 and aa 1-287 only. Two fragments (aa 246-346 and aa 287-346) were not recognized with any of the 12 scFvs. Together, the data suggest three antigenic epitopes (60 aa-160 aa, 161 aa-167 aa, 193 aa-245 aa) recognized by monoclonal antibodies. These scFv antibodies show strong reactivity against OmpA proteins. We believe that antibodies show promising diagnostic agents for E. coli K1 meningitis.
Collapse
Affiliation(s)
- Pharaoh Fellow Mwale
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, #250 Wu-Hsing Street, Taipei, Taiwan, 110
| | - Chi-Hsin Lee
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, #250 Wu-Hsing Street, Taipei, Taiwan, 110
| | - Sy-Jye Leu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ching Lee
- The Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsueh-Hsia Wu
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, #250 Wu-Hsing Street, Taipei, Taiwan, 110
| | - Liang-Tzung Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yun-Ju Huang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, #250 Wu-Hsing Street, Taipei, Taiwan, 110
| | - Yi-Yuan Yang
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, #250 Wu-Hsing Street, Taipei, Taiwan, 110. .,Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
43
|
Zambrano-Mila MS, Sánchez Blacio KE, Santiago Vispo N. Peptide Phage Display: Molecular Principles and Biomedical Applications. Ther Innov Regul Sci 2019. [DOI: 10.1177/2168479019837624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marlon S. Zambrano-Mila
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | | | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| |
Collapse
|
44
|
Gomes M, Alvarez MA, Quellis LR, Becher ML, Castro JMDA, Gameiro J, Caporrino MC, Moura-da-Silva AM, de Oliveira Santos M. Expression of an scFv antibody fragment in Nicotiana benthamiana and in vitro assessment of its neutralizing potential against the snake venom metalloproteinase BaP1 from Bothrops asper. Toxicon 2019; 160:38-46. [PMID: 30802471 DOI: 10.1016/j.toxicon.2019.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/24/2019] [Accepted: 02/13/2019] [Indexed: 11/29/2022]
Abstract
Human accidents with venomous snakes represent an overwhelming public health problem, mainly in rural populations of underdeveloped countries. Their high incidence and the severity of the accidents result in 81,000 to 138,000 deaths per year. The treatment is based on the administration of purified antibodies, produced by hyper immunization of animals to generate immunoglobulins (Igs), and then obtained by fractionating hyper immune plasma. The use of recombinant antibodies is an alternative to conventional treatment of snakebite envenoming, particularly the Fv fragment, named the single-chain variable fragment (scFv). We have produced recombinant single chain variable fragment scFv against the venom of the pit viper Bothrops asper at high levels expressed transiently and stably in transgenic plants and in vitro cultures that is reactive to BaP1 (a metalloproteinase from B. asper venom). The yield from stably transformed plants was significantly (p > 0.05) higher than the results in from transient expression. In addition, scFvBaP1 yields from systems derived from stable transformation were: transgenic callus 62 μg/g (±2); biomass from cell suspension cultures 83 μg/g (±0.2); culture medium from suspensions 71.75 mg/L (±6.18). The activity of scFvBaP1 was confirmed by binding and neutralization of the fibrin degradation induced by BnP1 toxins from B. neuwiedi and by Atroxlysin Ia from B. atrox venoms. In the present work, we demonstrated the potential use of plant cells to produce scFvBaP1 to be used in the future as a biotechnological alternative to horse immunization protocols to produce anti-venoms to be used in human therapy against snakebites.
Collapse
Affiliation(s)
- Marinna Gomes
- Laboratorio de Genética, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, S/n - Martelos, Juiz de Fora, MG, 36036-330, Brazil
| | | | - Leonardo Ramos Quellis
- Laboratorio de Genética, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, S/n - Martelos, Juiz de Fora, MG, 36036-330, Brazil
| | - Melina Laguia Becher
- CONICET-Universidade Maimónides (CEBBAD), Hidalgo 775, Lab 603, Buenos Aires, Argentina
| | - Juciane Maria de Andrade Castro
- Laboratorio de Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, S/n - Martelos, Juiz de Fora, MG, 36036-330, Brazil
| | - Jacy Gameiro
- Laboratorio de Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, S/n - Martelos, Juiz de Fora, MG, 36036-330, Brazil
| | - Maria Cristina Caporrino
- Laboratorio de Imunopatologia, Instituto Butantan, Av. Vital Brazil, 1500, Butantã, CEP 05503-900 São Paulo, SP, Brazil
| | - Ana Maria Moura-da-Silva
- Laboratorio de Imunopatologia, Instituto Butantan, Av. Vital Brazil, 1500, Butantã, CEP 05503-900 São Paulo, SP, Brazil
| | - Marcelo de Oliveira Santos
- Laboratorio de Genética, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, S/n - Martelos, Juiz de Fora, MG, 36036-330, Brazil.
| |
Collapse
|
45
|
Loers G, Liao Y, Hu C, Xue W, Shen H, Zhao W, Schachner M. Identification and characterization of synthetic chondroitin-4-sulfate binding peptides in neuronal functions. Sci Rep 2019; 9:1064. [PMID: 30705359 PMCID: PMC6355858 DOI: 10.1038/s41598-018-37685-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/28/2018] [Indexed: 02/05/2023] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs), up-regulated in and around the glial scar after mammalian spinal cord injury, have been suggested to be key inhibitory molecules for functional recovery by impeding axonal regrowth/sprouting and synaptic rearrangements. CSPG-mediated inhibition is mainly associated with the glycosaminoglycan chains of CSPGs, and chondroitin-4-sulfate (C4S) is the predominant sulfated structure that regulates axonal guidance and growth in the adult nervous system. With the aim to find molecules that neutralize the inhibitory functions of C4S, we screened a phage display library for peptides binding to C4S. From the phage clones binding to C4S we selected three peptides for further analysis. We observed that these peptides bind to C4S, but not chondroitin-6-sulfate, heparin sulfate or dermatan sulfate, in a concentration-dependent and saturable manner, whereas the scrambled peptides showed highly reduced or no binding to C4S. The C4S-binding peptides, but not their scrambled counterparts, when added to cultures of mouse cerebellar neurons and human neuroblastoma cells, neutralized the inhibitory functions of the C4S- and CSPG-coated substrate on cell adhesion, neuronal migration and neurite outgrowth. These results indicate that the C4S-binding peptides neutralize several inhibitory functions of CSPGs, suggesting that they may be beneficial in repairing mammalian nervous system injuries.
Collapse
Affiliation(s)
- Gabriele Loers
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Yonghong Liao
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Chengliang Hu
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Weikang Xue
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Huifan Shen
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Weijiang Zhao
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China.
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China.
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
46
|
Ren L, Li Q, Ma Z, Wang Y, Li H, Shen L, Yu J, Fang X. Quantum dots tethered membrane type 3 matrix metalloproteinase-targeting peptide for tumor optical imaging. J Mater Chem B 2018; 6:7719-7727. [PMID: 32254894 DOI: 10.1039/c8tb02025f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Membrane type matrix metalloproteinases (MT-MMPs) play important roles in malignant tumor progression through the degradation of the extracellular matrix and signal transduction. However, a member of the family, MT3-MMP, has attracted the least concern compared with other MT-MMPs. Here, a novel MT3-MMP-targeting peptide with high affinity and specificity has been developed by a phage-display peptide screening technology and multiple biophysics measurements, including single-molecule recognition force spectroscopy and isothermal titration calorimetry. The binding peptides are conjugated on the surface of CdSe/ZnS quantum dots (QDs) and consequently acted as a ligand that specifically targets MT3-MMP overexpressed tumor cells. The imaging nanoprobes used QDs as the photographic developer for optical imaging in vivo. The nanoprobes exhibited a desirable targeting effect and generated good biodistribution profiles for visualization and imaging of MT3-MMP overexpressed tumor. The peptide could be useful to evaluate the distribution and expression of MT3-MMP. Furthermore, the peptide-functionalized QDs show potential application for cancer diagnosis.
Collapse
Affiliation(s)
- Li Ren
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Street, Changchun, Jilin 130062, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Jamal M, Bukhari SMAUS, Andleeb S, Ali M, Raza S, Nawaz MA, Hussain T, Rahman SU, Shah SSA. Bacteriophages: an overview of the control strategies against multiple bacterial infections in different fields. J Basic Microbiol 2018; 59:123-133. [PMID: 30485461 DOI: 10.1002/jobm.201800412] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/24/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022]
Abstract
Bacteriophages (phages/viruses) need host bacteria to replicate and propagate. Primarily, a bacteriophage contains a head/capsid to encapsidate the genetic material. Some phages contain tails. Phages encode endolysins to hydrolyze bacterial cell wall. The two main classes of phages are lytic or virulent and lysogenic or temperate. In comparison with antibiotics, to deal with bacterial infections, phage therapy is thought to be more effective. In 1921, the use of phages against bacterial infections was first demonstrated. Later on, in humans, phage therapy was used to treat skin infections caused by Pseudomonas species. Furthermore, phages were successfully employed against infections in animals - calves, lambs, and pigs infected with Escherichia coli. In agriculture, for instance, phages have successfully been used e.g., Apple blossom infection, caused by Erwinia amylovora, was effectively catered with the use of bacteriophages. Bacteriophages were also used to control E. coli, Salmonella, Listeria, and Campylobacter contamination in food. Comparatively, phage display is a recently discovered technology, whereby, bacteriophages play a significant role. This review is an effort to collect almost recent and relevant information regarding applications and complications associated with the use of bacteriophages.
Collapse
Affiliation(s)
- Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University, Garden Campus, Mardan, Pakistan
| | - Sayed M A U S Bukhari
- Department of Microbiology, Abdul Wali Khan University, Garden Campus, Mardan, Pakistan
| | - Saadia Andleeb
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Ali
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Sana Raza
- Institute of Health Sciences, Mardan, Pakistan
| | - Muhammad A Nawaz
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir (Upper), Pakistan
| | - Tahir Hussain
- Department of Microbiology, Abdul Wali Khan University, Garden Campus, Mardan, Pakistan
| | - Sadeeq U Rahman
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Garden Campus, Mardan, Pakistan
| | - Syed S A Shah
- Department of Zoology, Abdul Wali Khan University, Garden Campus, Mardan, Pakistan
| |
Collapse
|
48
|
Lakzaei M, Rasaee MJ, Fazaeli AA, Aminian M. A comparison of three strategies for biopanning of phage-scFv library against diphtheria toxin. J Cell Physiol 2018; 234:9486-9494. [PMID: 30417355 DOI: 10.1002/jcp.27636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022]
Abstract
The biopanning process is a critical step in phage display for isolating peptides or proteins with specific binding properties. Conventional panning methods are sometimes not so effective and may result in nonspecific or low-yield positive results. In this study, three different strategies including soluble antibody-capturing, pH-stepwise elution, and conventional panning were used for enrichment of specific clones against diphtheria toxoid. The reactivity of the selected clones was evaluated using an indirect enzyme-linked immunosorbent assay. The positive clones were screened using Vero cell viability assay. The neutralizing clones were expressed in HB2151 strain of Escherichia coli and soluble single-chain fragment variable (scFv) fragments were purified by nickel-nitrilotriacetic acid affinity chromatography. Finally, the ability of scFv fragments for neutralizing diphtheria toxin (DT) were evaluated again using Vero cell viability assay. After four rounds of panning, the soluble antibody-capturing method yielded 15 positive phage-scFv clones against diphtheria toxoid. Conventional panning and pH-stepwise elution model resulted from nine and five positive phage-scFv clones, respectively. Among all positive clones, three clones were able to neutralize DT in Vero cell viability assay. Two of these clones belonged to a soluble antibody-capturing method and one of them came from conventional panning. Three neutralizing clones were used for soluble expression and purification of scFvs fragments. It was found that these soluble scFv fragments possessed neutralizing activity ranging from 0.15 to 0.6 µg against two-fold cytotoxic dose 99% of DT. In conclusion, the results of our study indicate that soluble antibody-capturing method is an efficient method for isolation of specific scFv fragments.
Collapse
Affiliation(s)
- Mostafa Lakzaei
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohhamad Javad Rasaee
- Department of Medical Biotechnology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Akbar Fazaeli
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Aminian
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Yin W, Yu X, Kang X, Zhao Y, Zhao P, Jin H, Fu X, Wan Y, Peng C, Huang Y. Remodeling Tumor-Associated Macrophages and Neovascularization Overcomes EGFR T790M -Associated Drug Resistance by PD-L1 Nanobody-Mediated Codelivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802372. [PMID: 30307695 DOI: 10.1002/smll.201802372] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Precision medicine has made a significant breakthrough in the past decade. The most representative success is the molecular targeting therapy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) in non-small-cell lung cancer (NSCLC) with oncogenic drivers, approved by the US Food and Drug Administration (FDA) as first-line therapeutics for substituting chemotherapy. However, the rapidly developed TKI resistance invariably leads to unsustainable treatment. For example, gefitinib is the first choice for advanced NSCLC with EGFR mutation, but most patients would soon develop secondary EGFRT790M mutation and acquire gefitinib resistance. TKI resistance is a severe emergency issue to be solved in NSCLC, but there are a few investigations of nanomedicine reported to address this pressing problem. To overcome EGFRT790M -associated drug resistance, a novel delivery and therapeutic strategy is developed. A PD-L1 nanobody is identified, and first used as a targeting ligand for liposomal codelivery. It is found that simvastatin/gefitinib combination nanomedicine can remodel the tumor microenvironment (e.g., neovascularization regulation, M2-macrophage repolarization, and innate immunity), and display the effectiveness of reversing the gefitinib resistance and enhancing the EGFRT790M -mutated NSCLC treatment outcomes. The novel simvastatin-based nanomedicine provides a clinically translatable strategy for tackling the major problem in NSCLC treatment and demonstrates the promise of an old drug for new application.
Collapse
Affiliation(s)
- Weimin Yin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- Nanchang University College of Pharmacy, 461 Bayi Rd, Nanchang, 330006, China
| | - Xiaolu Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuejia Kang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yuge Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- Nanchang University College of Pharmacy, 461 Bayi Rd, Nanchang, 330006, China
| | - Pengfei Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- Nanchang University College of Pharmacy, 461 Bayi Rd, Nanchang, 330006, China
| | - Hongyue Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuhong Fu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- Nanchang University College of Pharmacy, 461 Bayi Rd, Nanchang, 330006, China
| | - Yakun Wan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
| | - Chengyuan Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
50
|
Fang YM, Lin DQ, Yao SJ. Review on biomimetic affinity chromatography with short peptide ligands and its application to protein purification. J Chromatogr A 2018; 1571:1-15. [DOI: 10.1016/j.chroma.2018.07.082] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/12/2018] [Accepted: 07/29/2018] [Indexed: 10/28/2022]
|