1
|
Diniz FC, Hipkiss AR, Ferreira GC. The Potential Use of Carnosine in Diabetes and Other Afflictions Reported in Long COVID Patients. Front Neurosci 2022; 16:898735. [PMID: 35812220 PMCID: PMC9257001 DOI: 10.3389/fnins.2022.898735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Carnosine is a dipeptide expressed in both the central nervous system and periphery. Several biological functions have been attributed to carnosine, including as an anti-inflammatory and antioxidant agent, and as a modulator of mitochondrial metabolism. Some of these mechanisms have been implicated in the pathophysiology of coronavirus disease-2019 (COVID-19). COVID-19 is caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). The clinical manifestation and recovery time for COVID-19 are variable. Some patients are severely affected by SARS-CoV-2 infection and may experience respiratory failure, thromboembolic disease, neurological symptoms, kidney damage, acute pancreatitis, and even death. COVID-19 patients with comorbidities, including diabetes, are at higher risk of death. Mechanisms underlying the dysfunction of the afflicted organs in COVID-19 patients have been discussed, the most common being the so-called cytokine storm. Given the biological effects attributed to carnosine, adjuvant therapy with this dipeptide could be considered as supportive treatment in patients with either COVID-19 or long COVID.
Collapse
Affiliation(s)
- Fabiola Cardoso Diniz
- Laboratório de Erros Inatos do Metabolismo, Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Ciências Biológicas - Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, United States
| | - Alan Roger Hipkiss
- Aston Research Centre for Healthy Ageing, Aston University, Birmingham, United Kingdom
| | - Gustavo Costa Ferreira
- Laboratório de Erros Inatos do Metabolismo, Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Ciências Biológicas - Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Química Biológica, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Hipkiss AR. COVID-19 and Senotherapeutics: Any Role for the Naturally-occurring Dipeptide Carnosine? Aging Dis 2020; 11:737-741. [PMID: 32765939 PMCID: PMC7390525 DOI: 10.14336/ad.2020.0518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/25/2022] Open
Abstract
It is suggested that the non-toxic dipeptide carnosine (beta-alanyl-L-histidine) should be examined as a potential protective agent against COVID-19 infection and inflammatory consequences especially in the elderly. Carnosine is an effective anti-inflammatory agent which can also inhibit CD26 and ACE2 activity. It is also suggested that nasal administration would direct the peptide directly to the lungs and escape the attention of serum carnosinase.
Collapse
Affiliation(s)
- Alan R Hipkiss
- Aston Research Centre for Healthy Ageing (ARCHA), Aston University, Birmingham, B4 7ET, UK
| |
Collapse
|
3
|
Wang B, Yee Aw T, Stokes KY. N-acetylcysteine attenuates systemic platelet activation and cerebral vessel thrombosis in diabetes. Redox Biol 2017; 14:218-228. [PMID: 28961512 PMCID: PMC5619994 DOI: 10.1016/j.redox.2017.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/07/2017] [Accepted: 09/12/2017] [Indexed: 01/03/2023] Open
Abstract
Objective We previously demonstrated that diabetes exacerbates
stroke-induced brain injury, and that this correlates with brain methylglyoxal
(MG)-to-glutathione (GSH) status. Cerebral injury was reversed by N-acetylcysteine
(NAC). Here we tested if the pro-thrombotic phenotype seen in the systemic
circulation and brain during diabetes was associated with increased MG-glycation of
proteins, and if NAC could reverse this. Methods The streptozotocin (STZ)-induced mouse model of type 1
diabetes was used. Thrombus formation in venules and arterioles (pial circulation)
was determined by intravital videomicroscopy using the light-dye method. Circulating
blood platelet-leukocyte aggregates (PLAs) were analyzed by flow cytometry 1 wk
before other measurements. GSH and MG levels in platelets were measured by HPLC.
MG-modified proteins, glutathione peroxidase-1 (GPx-1), and superoxide dismutase-1
(SOD1) levels were detected in platelets by western blot at 20 weeks. Proteins
involved in coagulation were quantified by ELISA. NAC (2 mM) was
given in drinking water for 3 weeks before the terminal experiment. Results Thrombus development was accelerated by diabetes in a
time-dependent manner. % PLAs were significantly elevated by diabetes. Plasma
activated plasminogen activator inhibitor type 1 levels were progressively increased
with diabetes duration, with tail bleeding time reduced by 20 wks diabetes. Diabetes
lowered platelet GSH levels, GPx-1 and SOD-1 expression. This was associated with
higher MG levels, and increased MG-adduct formation in platelets. NAC treatment
partly or completely reversed the effects of diabetes. Conclusion Collectively, these results show that the diabetic blood and
brain become progressively more susceptible to platelet activation and thrombosis.
NAC, given after the establishment of diabetes, may offer protection against the risk
for stroke by altering both systemic and vascular prothrombotic responses via
enhancing platelet GSH, and GSH-dependent MG elimination, as well as correcting
levels of antioxidants such as SOD1 and GPx-1. Diabetes elevates dicarbonyl stress leading to enhanced
thrombosis in the brain. Glutathione levels decrease leading to impaired elimination
of methylglyoxal in platelets during diabetes. Platelet proteins are glycated and platelets form
aggregates with leukocytes in diabetes. Diabetes increases circulating levels of plasminogen
activator inhibitor-1. NAC, via GSH synthesis, reverses the platelet activation,
protein glycation and pro-coagulation responses & protects against
thrombosis in the diabetic brain.
Collapse
Affiliation(s)
- Bin Wang
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA; Center for Cardiovascular Diseases and Sciences, LSU Health Sciences Center, 1501 Kings Hwy, Shreveport, LA 71130, USA; Department of Geriatrics, Union hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tak Yee Aw
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA; Center for Cardiovascular Diseases and Sciences, LSU Health Sciences Center, 1501 Kings Hwy, Shreveport, LA 71130, USA
| | - Karen Y Stokes
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA; Center for Cardiovascular Diseases and Sciences, LSU Health Sciences Center, 1501 Kings Hwy, Shreveport, LA 71130, USA; Center for Molecular and Tumor Virology, LSU Health Sciences Center, 1501 Kings Hwy, Shreveport, LA 71130, USA.
| |
Collapse
|
4
|
Abbas G, Al-Harrasi AS, Hussain H, Hussain J, Rashid R, Choudhary MI. Antiglycation therapy: Discovery of promising antiglycation agents for the management of diabetic complications. PHARMACEUTICAL BIOLOGY 2015; 54:198-206. [PMID: 25853955 DOI: 10.3109/13880209.2015.1028080] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT During diabetes mellitus, non-enzymatic reaction between amino groups of protein and carbonyl of reducing sugars (Millard reaction) is responsible for the major diabetic complications. Various efforts have been made to influence the process of protein glycation. OBJECTIVES This review article provides an extensive survey of various studies published in scientific literature to understand the process of protein glycation and its measurement. Moreover, evaluation and identification of potential inhibitors (antiglycation agents) of protein glycation from natural and synthetic sources and their mechanism of action in vitro and in vivo are also addressed. METHOD In this review article, the mechanism involved in the formation of advanced glycation end products (AGEs) is discussed, while in second and third parts, promising antiglycation agents of natural and synthetic sources have been reviewed, respectively. Finally, in vivo studies have been addressed. This review is mainly compiled from important databases such as Science, Direct, Chemical Abstracts, SciFinder, and PubMed. RESULTS During the last two decades, various attempts have been made to inhibit the process of protein glycation. New potent inhibitors of protein glycation belonging to different classes such as flavonoids, alkaloids, terpenes, benzenediol Schiff bases, substituted indol, and thio compounds have been identified. CONCLUSION Antiglycation therapy will be an effective strategy in future to prevent the formation of AGEs for the management of late diabetic complications Current review article highlighted various compounds of natural and synthetic origins identified previously to inhibit the protein glycation and formation of AGEs in vitro and in vivo.
Collapse
Affiliation(s)
- Ghulam Abbas
- a Department of Biological Sciences and Chemistry , University of Nizwa , Nizwa , Sultanate of Oman
- b UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa , Nizwa , Sultanate of Oman
| | - Ahmed Sulaiman Al-Harrasi
- b UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa , Nizwa , Sultanate of Oman
| | - Hidayat Hussain
- b UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa , Nizwa , Sultanate of Oman
| | - Javid Hussain
- a Department of Biological Sciences and Chemistry , University of Nizwa , Nizwa , Sultanate of Oman
| | - Rehana Rashid
- c Department of Chemistry , COMSATS Institute of Information Technology , Abbottabad , Pakistan , and
| | - M Iqbal Choudhary
- d HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi , Karachi , Pakistan
| |
Collapse
|
5
|
Panaskar SN, Joglekar MM, Taklikar SS, Haldavnekar VS, Arvindekar AU. Aegle marmelos Correa leaf extract prevents secondary complications in streptozotocin-induced diabetic rats and demonstration of limonene as a potent antiglycating agent. J Pharm Pharmacol 2013; 65:884-94. [DOI: 10.1111/jphp.12044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/10/2013] [Indexed: 11/26/2022]
Abstract
Abstract
Objectives
To study the antiglycating, antidiabetic and antioxidant properties of Aegle marmelos Correa leaf extract and identify the bioactive constituent.
Methods
The effect of the chloroform extract of Aegle marmelos Correa was studied in streptozotocin-induced diabetic rats through evaluation of biochemical parameters. Antiglycation activity was assessed in vitro through measurement of total and specific advanced glycation end products, protein carbonyl formation and collagen solubility tests. Antioxidant potential was evaluated using the ferric-reducing antioxidant power assay and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) assays. Identification of the bioactive component was attempted through silica gel column chromatography and GC-MS analysis.
Results
In-vivo studies for 60 days revealed that the extract prevented kidney damage and other secondary complications. The chloroform extract at 16 μg could inhibit protein glycation by 44.33% and pentosidine formation by 59.31%, and could effectively inhibit protein carbonyl formation. It could scavenge DPPH radicals up to 85.26% (IC50: 26 μg). Bio-guided fractionation revealed limonene as the bioactive component, which could account for the antiglycating activity shown by the chloroform extract.
Conclusion
The chloroform extract of Aegle marmelos demonstrated antidiabetic antiglycating and antioxidant activity, effectively preventing kidney damage and establishment of cataracts. Limonene is reported for the first time as possessing potent antiglycating activity and is non-toxic at the concentration used.
Collapse
|
6
|
Hsieh CL, Peng CH, Chyau CC, Lin YC, Wang HE, Peng RY. Low-density lipoprotein, collagen, and thrombin models reveal that Rosemarinus officinalis L. exhibits potent antiglycative effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:2884-91. [PMID: 17385882 DOI: 10.1021/jf0631833] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Using the low-density lipoprotein (LDL), collagen, and thrombin models, we report here that the rosemary extracts (REs), either the aqueous (REw) or the acetonic (REA), all possessed many antiglycation-related features, and the effective concentrations required were as follows: 0.1 mg/mL for suppressing the relative electrophoretic mobility, 1.3 microg/mL for anticonjugated diene induction, 0.5 mg/mL for inhibition of thiobarbituric acid reactive substances production, 0.1 mg/mL for AGEs (advanced glycation end products) formation, 0.1 mg/mL to block glucose incorporation, and 0.05 mg/mL as an effective anti-antithrombin III. Using high-performance liquid chromatography/mass spectrometry, we identified five major constituents among eight major peaks, including rosmarinic acid, carnosol, 12-methoxycarnosic acid, carnosic acid, and methyl carnosate. In the LDL model, REA was proven to be more efficient than REw; yet, the reverse is true for the collagen and the thrombin III models, the reason of which was ascribed to the higher lipid-soluble antioxidant content (such as rosmarinic acid, carnosol, carnosic acid, 12-methoxycarnosic acid and methyl carnosate) in REA than in REw and the different surface lipid characteristics between LDL and collagen; although to act as anti-AGEs, both extracts were comparable. To assist the evidence, a larger 2,2-diphenyl-1-picrylhydrazyl radical scavenging capability with less total polyphenolic content was found in REA. We conclude that rosemary is an excellent multifunctional therapeutic herb; by looking at its potential potent antiglycative bioactivity, it may become a good adjuvant medicine for the prevention and treatment of diabetic, cardiovascular, and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Chiu-Lan Hsieh
- Department of Food and Nutrition, Research Institute of Biotechnology, and Division of Basic Medical Sciences, Hung-Kuang University, No. 34 Chung-Chie Road, Shalu County, Taichung Hsien, Taiwan
| | | | | | | | | | | |
Collapse
|
7
|
Hipkiss AR. Glycation, ageing and carnosine: Are carnivorous diets beneficial? Mech Ageing Dev 2005; 126:1034-9. [PMID: 15955546 DOI: 10.1016/j.mad.2005.05.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 05/02/2005] [Accepted: 05/06/2005] [Indexed: 11/23/2022]
Abstract
Non-enzymic protein glycosylation (glycation) plays important roles in ageing and in diabetes and its secondary complications. Dietary constituents may play important roles in accelerating or suppressing glycation. It is suggested that carnivorous diets contain a potential anti-glycating agent, carnosine (beta-alanyl-histidine), whilst vegetarians may lack intake of the dipeptide. The possible beneficial effects of carnosine and related structures on protein carbonyl stress, AGE formation, secondary diabetic complications and age-related neuropathology are discussed.
Collapse
Affiliation(s)
- Alan R Hipkiss
- Centre for Experimental Therapeutics, William Harvey Research Institute, John Vane Science Centre, Bart's and the London Queen Mary's School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|