1
|
Gedi V, Kim EH, Oh B, Kim YP. Advanced Bioluminescence Reporter with Engineered Gaussia Luciferase via Sequence-Guided Mutagenesis. BIOSENSORS 2024; 14:528. [PMID: 39589987 PMCID: PMC11591556 DOI: 10.3390/bios14110528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
Gaussia luciferase (GLuc) is the preeminent secreted luciferase widely used in cell-based reporter assays. By employing sequence-guided mutagenesis informed by alignments of diverse copepod luciferase sequences, we identified key amino acids that significantly enhance bioluminescence (BL) intensity. Among the mutated proteins expressed in bacteria, five individual mutations (M60L, K88Q, F89Y, I90L, or S103T) independently increased BL intensity by 1.8 to 7.5-fold compared to wild-type GLuc in the presence of coelenterazine substrates. Remarkably, the combination of all five mutations in GLuc (designated as GLuc5) resulted in an unexpected 29-fold enhancement in BL intensity. Subsequent evaluation of the GLuc5-secreted reporter in transfected mammalian cells confirmed its superior BL performance across multiple cell lines. These findings suggest that the mutated residues are likely crucial for enhancing BL intensity in GLuc, supporting its potential to serve as a highly sensitive biosensor or reporter for a wide range of biological applications.
Collapse
Affiliation(s)
- Vinayakumar Gedi
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea; (V.G.); (E.H.K.); (B.O.)
| | - Eun Hye Kim
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea; (V.G.); (E.H.K.); (B.O.)
| | - Bohyun Oh
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea; (V.G.); (E.H.K.); (B.O.)
| | - Young-Pil Kim
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea; (V.G.); (E.H.K.); (B.O.)
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
2
|
Li Y, Zhao Y, Du Y, Ren X, Ding H, Wang Z. Recent advances in the development and applications of luminescent bacteria-based biosensors. LUMINESCENCE 2024; 39:e4721. [PMID: 38501275 DOI: 10.1002/bio.4721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
Luminescent bacteria-based biosensors are widely used for fast and sensitive monitoring of food safety, water quality, and other environmental pollutions. Recent advancements in biomedical engineering technology have led to improved portability, integration, and intelligence of these biotoxicity assays. Moreover, genetic engineering has played a significant role in the development of recombinant luminescent bacterial biosensors, enhancing both detection accuracy and sensitivity. This review provides an overview of recent advances in the development and applications of novel luminescent bacteria-based biosensors, and future perspectives and challenges in the cutting-edge research, market translation, and practical applications of luminescent bacterial biosensing are discussed.
Collapse
Affiliation(s)
- Yingying Li
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Yuankun Zhao
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Yiyang Du
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Xuechun Ren
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, China
| | - He Ding
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, China
| | - Zhimin Wang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
3
|
Huang CW, Lin C, Nguyen MK, Hussain A, Bui XT, Ngo HH. A review of biosensor for environmental monitoring: principle, application, and corresponding achievement of sustainable development goals. Bioengineered 2023; 14:58-80. [PMID: 37377408 DOI: 10.1080/21655979.2022.2095089] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 06/29/2023] Open
Abstract
Human health/socioeconomic development is closely correlated to environmental pollution, highlighting the need to monitor contaminants in the real environment with reliable devices such as biosensors. Recently, variety of biosensors gained high attention and employed as in-situ application, in real-time, and cost-effective analytical tools for healthy environment. For continuous environmental monitoring, it is necessary for portable, cost-effective, quick, and flexible biosensing devices. These benefits of the biosensor strategy are related to the Sustainable Development Goals (SDGs) established by the United Nations (UN), especially with reference to clean water and sources of energy. However, the relationship between SDGs and biosensor application for environmental monitoring is not well understood. In addition, some limitations and challenges might hinder the biosensor application on environmental monitoring. Herein, we reviewed the different types of biosensors, principle and applications, and their correlation with SDG 6, 12, 13, 14, and 15 as a reference for related authorities and administrators to consider. In this review, biosensors for different pollutants such as heavy metals and organics were documented. The present study highlights the application of biosensor for achieving SDGs. Current advantages and future research aspects are summarized in this paper.Abbreviations: ATP: Adenosine triphosphate; BOD: Biological oxygen demand; COD: Chemical oxygen demand; Cu-TCPP: Cu-porphyrin; DNA: Deoxyribonucleic acid; EDCs: Endocrine disrupting chemicals; EPA: U.S. Environmental Protection Agency; Fc-HPNs: Ferrocene (Fc)-based hollow polymeric nanospheres; Fe3O4@3D-GO: Fe3O4@three-dimensional graphene oxide; GC: Gas chromatography; GCE: Glassy carbon electrode; GFP: Green fluorescent protein; GHGs: Greenhouse gases; HPLC: High performance liquid chromatography; ICP-MS: Inductively coupled plasma mass spectrometry; ITO: Indium tin oxide; LAS: Linear alkylbenzene sulfonate; LIG: Laser-induced graphene; LOD: Limit of detection; ME: Magnetoelastic; MFC: Microbial fuel cell; MIP: Molecular imprinting polymers; MWCNT: Multi-walled carbon nanotube; MXC: Microbial electrochemical cell-based; NA: Nucleic acid; OBP: Odorant binding protein; OPs: Organophosphorus; PAHs: Polycyclic aromatic hydrocarbons; PBBs: Polybrominated biphenyls; PBDEs: Polybrominated diphenyl ethers; PCBs: Polychlorinated biphenyls; PGE: Polycrystalline gold electrode; photoMFC: photosynthetic MFC; POPs: Persistent organic pollutants; rGO: Reduced graphene oxide; RNA: Ribonucleic acid; SDGs: Sustainable Development Goals; SERS: Surface enhancement Raman spectrum; SPGE: Screen-printed gold electrode; SPR: Surface plasmon resonance; SWCNTs: single-walled carbon nanotubes; TCPP: Tetrakis (4-carboxyphenyl) porphyrin; TIRF: Total internal reflection fluorescence; TIRF: Total internal reflection fluorescence; TOL: Toluene-catabolic; TPHs: Total petroleum hydrocarbons; UN: United Nations; VOCs: Volatile organic compounds.
Collapse
Affiliation(s)
- Chi-Wei Huang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
- Ph.D. Program in Maritime Science and Technology, College of Maritime, National Kaohsiung University of Science and TechnologyPh.D. Program in Maritime Science and Technology, Kaohsiung, Taiwan
| | - Minh Ky Nguyen
- Ph.D. Program in Maritime Science and Technology, College of Maritime, National Kaohsiung University of Science and TechnologyPh.D. Program in Maritime Science and Technology, Kaohsiung, Taiwan
| | - Adnan Hussain
- Ph. D. Program of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Xuan-Thanh Bui
- Department Water Science & Technology, Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh City, Vietnam
- Department Water Science & Technology, Faculty of Environment & Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
| | - Huu Hao Ngo
- Department Water Science & Technology, Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney NSW, Australia
| |
Collapse
|
4
|
Whole Genome Sequencing and CRISPR/Cas9 Gene Editing of Enterotoxigenic Escherichia coli BE311 for Fluorescence Labeling and Enterotoxin Analyses. Int J Mol Sci 2022; 23:ijms23147502. [PMID: 35886856 PMCID: PMC9321511 DOI: 10.3390/ijms23147502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/07/2023] Open
Abstract
Some prevention strategies, including vaccines and antibiotic alternatives, have been developed to reduce enterotoxigenic Escherichia coli proliferation in animal production. In this study, a wild-type strain of BE311 with a virulent heat-stable enterotoxin gene identical to E. coli K99 was isolated for its high potential for gene expression ability. The whole genome of E. coli BE311 was sequenced for gene analyses and editing. Subsequently, the fluorescent gene mCherry was successfully knocked into the genome of E. coli BE311 by CRISPR/Cas9. The E. coli BE311−mCherry strain was precisely quantified through the fluorescence intensity and red colony counting. The inflammatory factors in different intestinal tissues all increased significantly after an E. coli BE311−mCherry challenge in Sprague−Dawley rats (p < 0.05). The heat-stable enterotoxin gene of E. coli BE311 was knocked out, and an attenuated vaccine host E. coli BE311-STKO was constructed. Flow cytometry showed apoptotic cell numbers were lower following a challenge of IPEC-J2 cells with E. coli BE311-STKO than with E. coli BE311. Therefore, the E. coli BE311−mCherry and E. coli BE311-STKO strains that were successfully constructed based on the gene knock-in and knock-out technology could be used as ideal candidates in ETEC challenge models and for the development of attenuated vaccines.
Collapse
|
5
|
Ye J, Guo J, Li T, Tian J, Yu M, Wang X, Majeed U, Song W, Xiao J, Luo Y, Yue T. Phage-based technologies for highly sensitive luminescent detection of foodborne pathogens and microbial toxins: A review. Compr Rev Food Sci Food Saf 2022; 21:1843-1867. [PMID: 35142431 DOI: 10.1111/1541-4337.12908] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 02/05/2023]
Abstract
Foodborne pathogens and microbial toxins are the main causes of foodborne illness. However, trace pathogens and toxins in foods are difficult to detect. Thus, techniques for their rapid and sensitive identification and quantification are urgently needed. Phages can specifically recognize and adhere to certain species of microbes or toxins due to molecular complementation between capsid proteins of phages and receptors on the host cell wall or toxins, and thus they have been successfully developed into a detection platform for pathogens and toxins. This review presents an update on phage-based luminescent detection technologies as well as their working principles and characteristics. Based on phage display techniques of temperate phages, reporter gene detection assays have been designed to sensitively detect trace pathogens by luminous intensity. By the host-specific lytic effects of virulent phages, enzyme-catalyzed chemiluminescent detection technologies for pathogens have been exploited. Notably, these phage-based luminescent detection technologies can discriminate viable versus dead microbes. Further, highly selective and sensitive immune-based assays have been developed to detect trace toxins qualitatively and quantitatively via antibody analogs displayed by phages, such as phage-ELISA (enzyme-linked immunosorbent assay) and phage-IPCR (immuno-polymerase chain reaction). This literature research may lead to novel and innocuous phage-based rapid detection technologies to ensure food safety.
Collapse
Affiliation(s)
- Jianming Ye
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Jiaqing Guo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Tairan Li
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Jiaxin Tian
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Mengxi Yu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Xiaochen Wang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Usman Majeed
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Wei Song
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Yane Luo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China.,Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, China.,Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China.,Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, China.,Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Xu C, Zhong L, Huang Z, Li C, Lian J, Zheng X, Liang Y. Real-time monitoring of Ralstonia solanacearum infection progress in tomato and Arabidopsis using bioluminescence imaging technology. PLANT METHODS 2022; 18:7. [PMID: 35033123 PMCID: PMC8761306 DOI: 10.1186/s13007-022-00841-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/06/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Ralstonia solanacearum, one of the most devastating bacterial plant pathogens, is the causal agent of bacterial wilt. Recently, several studies on resistance to bacterial wilt have been conducted using the Arabidopsis-R. solanacearum system. However, the progress of R. solanacearum infection in Arabidopsis is still unclear. RESULTS We generated a bioluminescent R. solanacearum by expressing plasmid-based luxCDABE. Expression of luxCDABE did not alter the bacterial growth and pathogenicity. The light intensity of bioluminescent R. solanacearum was linearly related to bacterial concentrations from 104 to 108 CFU·mL-1. After root inoculation with bioluminescent R. solanacearum strain, light signals in tomato and Arabidopsis were found to be transported from roots to stems via the vasculature. Quantification of light intensity from the bioluminescent strain accurately reported the difference in disease resistance between Arabidopsis wild type and resistant mutants. CONCLUSIONS Bioluminescent R. solanacearum strain spatially and quantitatively measured bacterial growth in tomato and Arabidopsis, and offered a tool for the high-throughput study of R. solanacearum-Arabidopsis interaction in the future.
Collapse
Affiliation(s)
- Cuihong Xu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lingkun Zhong
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zeming Huang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Chenying Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xuefang Zheng
- Agricultural Bioresources Research Institute, Fujian Academy of Agricultural Sciences, No. 247 Wusi Road, Fuzhou, 350003, China
| | - Yan Liang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Costa P, Gomes ATPC, Braz M, Pereira C, Almeida A. Application of the Resazurin Cell Viability Assay to Monitor Escherichia coli and Salmonella Typhimurium Inactivation Mediated by Phages. Antibiotics (Basel) 2021; 10:antibiotics10080974. [PMID: 34439024 PMCID: PMC8389016 DOI: 10.3390/antibiotics10080974] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 01/21/2023] Open
Abstract
Bacterial inactivation using bacteriophages (or phages) has emerged as an effective solution for bacterial infections, but the screening methods used to evaluate the effectiveness of the phages to inactivate bacteria are not fast, reliable or precise enough. The efficiency of bacterial inactivation by phages has been evaluated by monitoring bacterial concentration either by counting colony-forming units (CFU), a laborious and time-consuming method, or by monitoring the optical density (OD), a less sensitive method. In this study, the resazurin cell viability assay was used to monitor the viability of bacteria from different genera during the inactivation by different phages, and the results were compared with the standard methods used to assess bacterial inactivation. The results showed that the resazurin colorimetric cell viability assay produces similar results to the standard method of colony-counting and giving, and also more sensitive results than the OD method. The resazurin assay can be used to quickly obtain the results of the cell viability effect profile using two different bacterial strains and several different phages at the same time, which is extremely valuable in screening studies. Moreover, this methodology is established as an effective, accurate and rapid method when compared to the ones widely used to monitor bacterial inactivation mediated by phages.
Collapse
|
8
|
Mehta M, Liu Y, Waterland M, Holmes G. Characterization of the Degradation of Sheepskin by Monitoring Cytochrome c of Bacteria by Raman Spectroscopy. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1792476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Megha Mehta
- New Zealand Leather and Shoe Research Association (LASRA®), Palmerston North, New Zealand
| | - Yang Liu
- New Zealand Leather and Shoe Research Association (LASRA®), Palmerston North, New Zealand
| | - Mark Waterland
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Geoff Holmes
- New Zealand Leather and Shoe Research Association (LASRA®), Palmerston North, New Zealand
| |
Collapse
|
9
|
Hameed S, Xie L, Ying Y. Conventional and emerging detection techniques for pathogenic bacteria in food science: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.020] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Colino CI, Millán CG, Lanao JM. Nanoparticles for Signaling in Biodiagnosis and Treatment of Infectious Diseases. Int J Mol Sci 2018; 19:E1627. [PMID: 29857492 PMCID: PMC6032068 DOI: 10.3390/ijms19061627] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 01/09/2023] Open
Abstract
Advances in nanoparticle-based systems constitute a promising research area with important implications for the treatment of bacterial infections, especially against multidrug resistant strains and bacterial biofilms. Nanosystems may be useful for the diagnosis and treatment of viral and fungal infections. Commercial diagnostic tests based on nanosystems are currently available. Different methodologies based on nanoparticles (NPs) have been developed to detect specific agents or to distinguish between Gram-positive and Gram-negative microorganisms. Also, biosensors based on nanoparticles have been applied in viral detection to improve available analytical techniques. Several point-of-care (POC) assays have been proposed that can offer results faster, easier and at lower cost than conventional techniques and can even be used in remote regions for viral diagnosis. Nanoparticles functionalized with specific molecules may modulate pharmacokinetic targeting recognition and increase anti-infective efficacy. Quorum sensing is a stimuli-response chemical communication process correlated with population density that bacteria use to regulate biofilm formation. Disabling it is an emerging approach for combating its pathogenicity. Natural or synthetic inhibitors may act as antibiofilm agents and be useful for treating multi-drug resistant bacteria. Nanostructured materials that interfere with signal molecules involved in biofilm growth have been developed for the control of infections associated with biofilm-associated infections.
Collapse
Affiliation(s)
- Clara I Colino
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain.
- The Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain.
| | - Carmen Gutiérrez Millán
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain.
- The Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain.
| | - José M Lanao
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain.
- The Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
11
|
Lee J, Park C, Kim Y, Park S. Signal enhancement in ATP bioluminescence to detect bacterial pathogens via heat treatment. BIOCHIP JOURNAL 2017. [DOI: 10.1007/s13206-017-1404-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Woutersen M, van der Gaag B, Abrafi Boakye A, Mink J, Marks RS, Wagenvoort AJ, Ketelaars HAM, Brouwer B, Heringa MB. Development and Validation of an On-Line Water Toxicity Sensor with Immobilized Luminescent Bacteria for On-Line Surface Water Monitoring. SENSORS 2017; 17:s17112682. [PMID: 29165334 PMCID: PMC5713466 DOI: 10.3390/s17112682] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 11/30/2022]
Abstract
Surface water used for drinking water production is frequently monitored in The Netherlands using whole organism biomonitors, with for example Daphnia magna or Dreissena mussels, which respond to changes in the water quality. However, not all human-relevant toxic compounds can be detected by these biomonitors. Therefore, a new on-line biosensor has been developed, containing immobilized genetically modified bacteria, which respond to genotoxicity in the water by emitting luminescence. The performance of this sensor was tested under laboratory conditions, as well as under field conditions at a monitoring station along the river Meuse in The Netherlands. The sensor was robust and easy to clean, with inert materials, temperature control and nutrient feed for the reporter organisms. The bacteria were immobilized in sol-gel on either an optical fiber or a glass slide and then continuously exposed to water. Since the glass slide was more sensitive and robust, only this setup was used in the field. The sensor responded to spikes of genotoxic compounds in the water with a minimal detectable concentration of 0.01 mg/L mitomycin C in the laboratory and 0.1 mg/L mitomycin C in the field. With further optimization, which should include a reduction in daily maintenance, the sensor has the potential to become a useful addition to the currently available biomonitors.
Collapse
Affiliation(s)
- Marjolijn Woutersen
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | | | - Afua Abrafi Boakye
- PAREXEL International, The Quays, 101-105 Oxford Rd, Uxbridge UB8 1LZ, UK.
| | - Jan Mink
- VTEC Lasers & Sensors, Kastanjelaan 400, 5616 LZ Eindhoven, The Netherlands.
| | - Robert S Marks
- Department of Biotechnology Engineering, Faculty of Engineering Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
- The Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the 6egev, Beer-Sheva 84105, Israel.
| | | | - Henk A M Ketelaars
- Evides Water Company, Schaardijk 150, 3063 NH Rotterdam, The Netherlands.
| | - Bram Brouwer
- Vrije Universiteit Faculty of Earth & Life Sciences, Department of Animal Ecology, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
- BioDectection Systems, Science Park 406, 1089 XH Amsterdam, The Netherlands.
| | - Minne B Heringa
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| |
Collapse
|
13
|
New methodologies in screening of antibiotic residues in animal-derived foods: Biosensors. Talanta 2017; 175:435-442. [PMID: 28842013 DOI: 10.1016/j.talanta.2017.07.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/15/2017] [Accepted: 07/13/2017] [Indexed: 01/05/2023]
Abstract
Antibiotics are leading medicine asset for fighting against microbial infection, but also one of the important causes of death worldwide. Many antibiotics used as therapeutics and growth promotion agents in animals can lead to antibiotic residues in animal-derived food which harm the health of people. Hence, it is vital to screen antibiotic residues in animal derived foods. Typical methods for screening antibiotic residues are based on microbiological growth inhibition and immunological analyses. However these two methods have some disadvantages, such as poor sensitive, lack of specificity and etc. Therefore, it is necessary to develop simple, more efficient and high sensitive screening methods of antibiotic residues. These assays have been introduced for the screening of numerous food samples. Biosensors are emerging methods, applied in screening antibiotic residues in animal-derived foods. Two types of biosensors, whole-cell based biosensors and surface plasmon resonance-based sensors have been extensively used. Their advantages include portability, small sample requirement, high sensitivity and good specificity over the traditional screening methods.
Collapse
|
14
|
Gabriel GVM, Viviani VR. Novel application of pH-sensitive firefly luciferases as dual reporter genes for simultaneous ratiometric analysis of intracellular pH and gene expression/location. Photochem Photobiol Sci 2014; 13:1661-70. [PMID: 25285909 DOI: 10.1039/c4pp00278d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Firefly luciferases are widely used as bioluminescent reporter genes for bioimaging and biosensors. Aiming at simultaneous analyses of different gene expression and cellular events, luciferases and GFPs that exhibit distinct bioluminescence and fluorescence colors have been coupled with each promoter, making dual and multicolor reporter systems. Despite their wide use, firefly luciferase bioluminescence spectra are pH-sensitive, resulting in a typical large red shift at acidic pH, a side-effect that may affect some bioanalytical purposes. Although some intracellular pH-indicators employ dual color and fluorescent dyes, none has been considered to benefit from the characteristic spectral pH-sensitivity of firefly luciferases to monitor intracellular pH-associated stress, an important indicator of cell homeostasis. Here we demonstrate a linear relationship between the ratio of intensities in the green and red regions of the bioluminescence spectra and pH using firefly luciferases cloned in our laboratory (Macrolampis sp2 and Cratomorphus distinctus), allowing estimation of E. coli intracellular pH, thus providing a new analytical method for ratiometric intracellular pH-sensing. This is the first dual reporter system that employs a single luciferase gene to simultaneously monitor intracellular pH using spectral changes, and gene expression and/or ATP concentration using the bioluminescence intensity, showing great potential for real time bioanalysis of intracellular processes associated with metabolic changes such as apoptosis, cell death, inflammation and tissue acidification, among the other physiological changes.
Collapse
Affiliation(s)
- Gabriele V M Gabriel
- Laboratory of Biochemistry and Biotechnology of Bioluminescence, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), Sorocaba, SP, Brazil.
| | | |
Collapse
|
15
|
Azad T, Tashakor A, Hosseinkhani S. Split-luciferase complementary assay: applications, recent developments, and future perspectives. Anal Bioanal Chem 2014; 406:5541-60. [DOI: 10.1007/s00216-014-7980-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/22/2014] [Accepted: 06/16/2014] [Indexed: 12/19/2022]
|
16
|
Hou QH, Ma AZ, Li Y, Zhuang XL, Bai ZH, Zhang XK, Zhuang GQ. Assessing the effect of phosphate and silicate on Cd bioavailability in soil using an Escherichia coli cadAp::luc-based whole-cell sensor. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:890-896. [PMID: 24519239 DOI: 10.1039/c3em00598d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
An Escherichia coli cadAp::luc-based whole-cell sensor was constructed to measure cadmium (Cd) bioavailability and assess the immobilizing efficiency of phosphate and silicate on Cd. In previous induction experiments, a linear response (R(2) = 0.97, P < 0.01) from 0.1 to 5 μmol L(-1) of Cd was detected by this sensor after a 2 h incubation. The sensor was then used to estimate Cd bioavailability in soils spiked with different amounts of dipotassium phosphate (DKP, K₂HPO₄) or sodium silicate (SS, Na₂SiO₃·9H₂O). The total Cd in soil-water extracts (TSWE) was determined with ICP-MS, and the bioavailable Cd in soil-water extracts (BSWE) and bioavailable Cd in soil-water suspensions (BSWS) were measured by the E. coli cadAp::luc-based whole-cell sensor. Final results showed that spiked SS (Si : Cd = 2 : 1, mol mol(-1)) reduced the different forms of Cd (TSWE, BSWE and BSWS) from 56.47 mg kg(-1), 42.11 mg kg(-1), and 206.72 mg kg(-1) to 16.63 mg kg(-1), 15.90 mg kg(-1), and 67.57 mg kg(-1), respectively. In other words, SS had 25.68%, 19.5%, and 9.54% better immobilizing efficiency, respectively, compared with DKP. All the results supported SS was more efficient than DKP at immobilizing Cd in soil, and higher soil pH and higher solubility of the immobilizing agents may have been the major factor affecting immobilizing efficiency. In addition, the total and bioavailable Cd in soil-water extracts was only 16.13-35.41% of the sensor contact assay-determined Cd (BSWS), which indicated that the whole-cell sensor-based contact assay was more practical in assessing the risk of Cd in soil after immobilization since it would not overrate the immobilizing capacity of the agents.
Collapse
Affiliation(s)
- Qi-Hui Hou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Hou QH, Ma AZ, Lv D, Bai ZH, Zhuang XL, Zhuang GQ. The impacts of different long-term fertilization regimes on the bioavailability of arsenic in soil: integrating chemical approach with Escherichia coli arsRp::luc-based biosensor. Appl Microbiol Biotechnol 2014; 98:6137-46. [DOI: 10.1007/s00253-014-5656-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/12/2014] [Accepted: 03/02/2014] [Indexed: 10/25/2022]
|
18
|
Gabriel GV, Lopes P, Viviani V. Suitability of Macrolampis firefly and Pyrearinus click beetle luciferases for bacterial light off toxicity biosensor. Anal Biochem 2014; 445:73-9. [DOI: 10.1016/j.ab.2013.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/06/2013] [Accepted: 09/16/2013] [Indexed: 11/28/2022]
|
19
|
Anderson E, Conway M, Alloush H, O'Malley K, Smith MA, Martin A, Ruddock M, Reid C, Lamont J, Fitzgerald SP, Smith JG, Mehta P, Salisbury V. Investigation and verification of a bioluminescent biosensor for the quantitation of ara-CTP generation: a biomarker for cytosine arabinoside sensitivity in acute myeloid leukaemia. Biosens Bioelectron 2013; 52:345-53. [PMID: 24080214 DOI: 10.1016/j.bios.2013.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 01/18/2023]
Abstract
A novel whole cell bacterial biosensor, which emits light in response to the active metabolite of cytosine arabinoside (ara-C, cytarabine), ara-CTP, has been investigated and verified. The biosensor has been formulated as an ex vivo assay, designed for peripheral blood or bone marrow cells, which can produce a clinical result within a working day. The nucleoside analogue ara-C is a key agent for treatment of acute myeloid leukaemia (AML); treatment decisions are made rapidly with AML, patients often receiving same-day commencement of chemotherapy. Currently no rapid predictive test is available to select appropriate therapy for patients prior to treatment. Experiments were designed to determine optimal assay conditions using leukaemic cell lines. We observed a significant increase (~15 fold) in bioluminescence signal compared to control after 8-h incubation of the biosensor with ara-C. This corresponded to a >2-log increase in light output per bacterial cell. Interestingly, bioluminescence conferred a survival advantage to the bacteria following ara-C treatment. The assay is sensitive (lower limit of quantitation of 0.05 µM), selective, accurate (≤ 15% RE) and precise (≤ 15% coefficient of variation) over a linear concentration range of ara-CTP (0.05-0.5 µM), and detection is independent of reaction volume. Recovery of added standard was tested using ex vivo patient leukaemic cells (n=5). Stability studies on lyophilized bacterial biosensor were performed to ensure maintenance of performance over 12 months. The biosensor assay could be invaluable to the clinician, assisting with treatment selection, and potentially mitigating the risks of resistance and toxicity observed with this drug.
Collapse
Affiliation(s)
- Elizabeth Anderson
- Institute of Bio-Sensing Technology, University of the West of England, Bristol, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Luciferase reporter phage phAE85 for rapid detection of rifampicin resistance in clinical isolates of Mycobacterium tuberculosis. ASIAN PAC J TROP MED 2013; 6:728-31. [DOI: 10.1016/s1995-7645(13)60127-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/15/2013] [Accepted: 08/15/2013] [Indexed: 11/17/2022] Open
|
21
|
Pinto da Silva L, Esteves da Silva JCG. Firefly chemiluminescence and bioluminescence: efficient generation of excited states. Chemphyschem 2012; 13:2257-62. [PMID: 22532490 DOI: 10.1002/cphc.201200195] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Indexed: 01/13/2023]
Abstract
Firefly luciferase catalyzes a light-emitting reaction in which an excited-state product is formed. Both experimental and theoretical methodologies are used to study this system, and the reactions catalyzed by luciferase are relatively well characterized. However, the mechanism by which an excited-state product is formed is still unknown. This Minireview deals with the current understanding of firefly bioluminescence and chemiluminescence. Thermal decomposition of simple 1,2-dioxetanes is also discussed, due to their role in formation of the excited-state bioluminophore.
Collapse
Affiliation(s)
- Luís Pinto da Silva
- Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | | |
Collapse
|
22
|
Mohammadi S, Nikkhah M, Nazari M, Hosseinkhani S. Design of a coupled bioluminescent assay for a recombinant pyruvate kinase from a thermophilic Geobacillus. Photochem Photobiol 2011; 87:1338-45. [PMID: 21790618 DOI: 10.1111/j.1751-1097.2011.00973.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A simple and rapid method using coupled bioluminescent assay was developed to determine level of ADP. ADP is involved in many biological reactions and ADP assay can be used for assaying some reactions universally by monitoring ADP formation or depletion. ADP analysis involves incubation of ADP or extracts containing ADP with pyruvate kinase (PK) and PEP. The ATP formed by this reaction is determined by measuring the intensity of the initial light flash produced when luciferin-luciferase preparation injected into the reaction mixture. In regard to the main role of the PK in this assay, the gene of PK from a Geobacillus species has been cloned in expression vector pET28a (+), sequenced and overexpressed in Escherichia coli. Recombinant protein was purified using Ni-NTA column and then the purified PK was used in a coupled bioluminescent assay for ADP measurement. Kinetic properties of PK are determined according to a bioluminescent assay using firefly luciferase.
Collapse
Affiliation(s)
- Soheila Mohammadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | |
Collapse
|
23
|
Application of bacterial bioluminescence to assess the efficacy of fast-acting biocides. Antimicrob Agents Chemother 2011; 55:5214-20. [PMID: 21876044 DOI: 10.1128/aac.00489-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Traditional microbiological techniques are used to provide reliable data on the rate and extent of kill for a range of biocides. However, such techniques provide very limited data regarding the initial rate of kill of fast-acting biocides over very short time domains. This study describes the application of a recombinant strain of Escherichia coli expressing the Photorhabdus luminescens lux operon as a whole-cell biosensor. Light emission is linked directly to bacterial metabolism; therefore, by monitoring light output, the impact of fast-acting biocides can be assessed. Electrochemically activated solutions (ECASs), bleach, Virkon, and ethanol were assessed at three concentrations (1%, 10%, 80%) in the presence of organic soiling. Over a 2-s time course, 80% ECAS produced the greatest reduction in light output in the absence of organic load but was strongly inhibited by its presence. Eighty percent ethanol outperformed all tested biocides in the presence of organic soil. Bleach and Virkon produced similar reductions in bioluminescence at matched concentrations within the time course of the assay. It was also demonstrated that the assay can be used to rapidly assess the impact of organic soiling. The use of bioluminescent bacteria as whole-cell bioreporters allows assessment of the relative efficacies of fast-acting biocides within milliseconds of application. The assay can be used to investigate activity over short or extended time domains to confirm complete metabolic inhibition of the bioreporter. Moreover, the assay may enable further elucidation of their mechanism of action by allowing the investigation of activity over time domains precluded by traditional microbiology.
Collapse
|
24
|
Silva LPD, Da Silva JCGE. Theoretical modulation of the color of light emitted by firefly oxyluciferin. J Comput Chem 2011; 32:2654-63. [DOI: 10.1002/jcc.21845] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/29/2011] [Indexed: 12/29/2022]
|
25
|
Woutersen M, Belkin S, Brouwer B, van Wezel AP, Heringa MB. Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources? Anal Bioanal Chem 2011; 400:915-29. [PMID: 21058029 PMCID: PMC3074085 DOI: 10.1007/s00216-010-4372-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 10/21/2010] [Accepted: 10/21/2010] [Indexed: 11/26/2022]
Abstract
Biosensors based on luminescent bacteria may be valuable tools to monitor the chemical quality and safety of surface and drinking water. In this review, an overview is presented of the recombinant strains available that harbour the bacterial luciferase genes luxCDABE, and which may be used in an online biosensor for water quality monitoring. Many bacterial strains have been described for the detection of a broad range of toxicity parameters, including DNA damage, protein damage, membrane damage, oxidative stress, organic pollutants, and heavy metals. Most lux strains have sensitivities with detection limits ranging from milligrams per litre to micrograms per litre, usually with higher sensitivities in compound-specific strains. Although the sensitivity of lux strains can be enhanced by various molecular manipulations, most reported detection thresholds are still too high to detect levels of individual contaminants as they occur nowadays in European drinking waters. However, lux strains sensing specific toxic effects have the advantage of being able to respond to mixtures of contaminants inducing the same effect, and thus could be used as a sensor for the sum effect, including the effect of compounds that are as yet not identified by chemical analysis. An evaluation of the suitability of lux strains for monitoring surface and drinking water is therefore provided.
Collapse
|
26
|
Abstract
When attempting to assess the extent and the implications of environmental pollution, it is often essential to quantify not only the total concentration of the studied contaminant but also its bioavailable fraction: higher bioavailability, often correlated with increased mobility, signifies enhanced risk but may also facilitate bioremediation. Genetically engineered microorganisms, tailored to respond by a quantifiable signal to the presence of the target chemical(s), may serve as powerful tools for bioavailability assessment. This review summarizes the current knowledge on such microbial bioreporters designed to assay metal bioavailability. Numerous bacterial metal‐sensor strains have been developed over the past 15 years, displaying very high detection sensitivities for a broad spectrum of environmentally significant metal targets. These constructs are based on the use of a relatively small number of gene promoters as the sensing elements, and an even smaller selection of molecular reporter systems; they comprise a potentially useful panel of tools for simple and cost‐effective determination of the bioavailability of heavy metals in the environment, and for the quantification of the non‐bioavailable fraction of the pollutant. In spite of their inherent advantages, however, these tools have not yet been put to actual use in the evaluation of metal bioavailability in a real environmental remediation scheme. For this to happen, acceptance by regulatory authorities is essential, as is a standardization of assay conditions.
Collapse
Affiliation(s)
- Sagi Magrisso
- Institute of life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | |
Collapse
|
27
|
Hosseinkhani S. Molecular enigma of multicolor bioluminescence of firefly luciferase. Cell Mol Life Sci 2011; 68:1167-82. [PMID: 21188462 PMCID: PMC11114832 DOI: 10.1007/s00018-010-0607-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 11/29/2010] [Accepted: 11/29/2010] [Indexed: 11/26/2022]
Abstract
Firefly luciferase-catalyzed reaction proceeds via the initial formation of an enzyme-bound luciferyl adenylate intermediate. The chemical origin of the color modulation in firefly bioluminescence has not been understood until recently. The presence of the same luciferin molecule, in combination with various mutated forms of luciferase, can emit light at slightly different wavelengths, ranging from red to yellow to green. A historical perspective of development in understanding of color emission mechanism is presented. To explain the variation in the color of the bioluminescence, different factors have been discussed and five hypotheses proposed for firefly bioluminescence color. On the basis of recent results, light-color modulation mechanism of firefly luciferase propose that the light emitter is the excited singlet state of OL(-) [(1)(OL(-))*], and light emission from (1)(OL(-))* is modulated by the polarity of the active-site environment at the phenol/phenolate terminal of the benzothiazole fragment in oxyluciferin.
Collapse
Affiliation(s)
- Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, 14115-175, Tehran, Iran.
| |
Collapse
|
28
|
da Silva LP, da Silva JCGE. Kinetics of inhibition of firefly luciferase by dehydroluciferyl-coenzyme A, dehydroluciferin and L-luciferin. Photochem Photobiol Sci 2011; 10:1039-45. [PMID: 21409209 DOI: 10.1039/c0pp00379d] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The inhibition mechanisms of the firefly luciferase (Luc) by three of the most important inhibitors of the reactions catalysed by Luc, dehydroluciferyl-coenzyme A (L-CoA), dehydroluciferin (L) and L-luciferin (L-LH(2)) were investigated. Light production in the presence and absence of these inhibitors (0.5 to 2 μM) has been measured in 50 mM Hepes buffer (pH = 7.5), 10 nM Luc, 250 μM ATP and D-luciferin (D-LH(2), from 3.75 up to 120 μM). Nonlinear regression analysis with the appropriate kinetic models (Henri-Michaelis-Menten and William-Morrison equations) reveals that L-CoA is a non-competitive inhibitor of Luc (K(i) = 0.88 ± 0.03 μM), L is a tight-binding uncompetitive inhibitor (K(i) = 0.00490 ± 0.00009 μM) and L-LH(2) acts as a mixed-type non-competitive-uncompetitive inhibitor (K(i) = 0.68 ± 0.14 μM and αK(i) = 0.34 ± 0.16 μM). The K(m) values obtained for L-CoA, L and L-LH(2) were 16.1 ± 1.0, 16.6 ± 2.3 and 14.4 ± 0.96 μM, respectively. L and L-LH(2) are strong inhibitors of Luc, which may indicate an important role for these compounds in Luc characteristic flash profile. L-CoA K(i) supports the conclusion that CoA can stimulate the light emission reaction by provoking the formation of a weaker inhibitor.
Collapse
Affiliation(s)
- Luís Pinto da Silva
- Centro de Investigação em Química (UP), Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.
| | | |
Collapse
|
29
|
Alloush HM, Anderson E, Martin AD, Ruddock MW, Angell JE, Hill PJ, Mehta P, Smith MA, Smith JG, Salisbury VC. A bioluminescent microbial biosensor for in vitro pretreatment assessment of cytarabine efficacy in leukemia. Clin Chem 2010; 56:1862-70. [PMID: 20921267 DOI: 10.1373/clinchem.2010.145581] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The nucleoside analog cytarabine (Ara-C [cytosine arabinoside]) is the key agent for treating acute myeloid leukemia (AML); however, up to 30% of patients fail to respond to treatment. Screening of patient blood samples to determine drug response before commencement of treatment is needed. This project aimed to construct and evaluate a self-bioluminescent reporter strain of Escherichia coli for use as an Ara-C biosensor and to design an in vitro assay to predict Ara-C response in clinical samples. METHODS We used transposition mutagenesis to create a cytidine deaminase (cdd)-deficient mutant of E. coli MG1655 that responded to Ara-C. The strain was transformed with the luxCDABE operon and used as a whole-cell biosensor for development an 8-h assay to determine Ara-C uptake and phosphorylation by leukemic cells. RESULTS Intracellular concentrations of 0.025 μmol/L phosphorylated Ara-C were detected by significantly increased light output (P < 0.05) from the bacterial biosensor. Results using AML cell lines with known response to Ara-C showed close correlation between the 8-h assay and a 3-day cytotoxicity test for Ara-C cell killing. In retrospective tests with 24 clinical samples of bone marrow or peripheral blood, the biosensor-based assay predicted leukemic cell response to Ara-C within 8 h. CONCLUSIONS The biosensor-based assay may offer a predictor for evaluating the sensitivity of leukemic cells to Ara-C before patients undergo chemotherapy and allow customized treatment of drug-sensitive patients with reduced Ara-C dose levels. The 8-h assay monitors intracellular Ara-CTP (cytosine arabinoside triphosphate) levels and, if fully validated, may be suitable for use in clinical settings.
Collapse
Affiliation(s)
- Habib M Alloush
- Faculty of Health and Life Sciences, University of the West of England, Bristol, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chen CC, Chen YZ, Huang YJ, Sheu JT. Using silicon nanowire devices to detect adenosine triphosphate liberated from electrically stimulated HeLa cells. Biosens Bioelectron 2010; 26:2323-8. [PMID: 21030238 DOI: 10.1016/j.bios.2010.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/01/2010] [Accepted: 10/02/2010] [Indexed: 11/18/2022]
Abstract
In this study, we used a biosensor chip featuring Abl tyrosine kinase-modified silicon nanowire field-effect transistors (SiNW-FETs) to detect adenosine triphosphate (ATP) liberated from HeLa cells that had been electrically stimulated. Cells that are cultured in high-ionic-strength media or buffer environments usually undermine the sensitivity and selectively of SiNW-FET-based sensors. Therefore, we first examined the performance of the biosensor chip incorporating the SiNW-FETs in both low- and high-ionic-strength buffer solutions. Next, we stimulated, using a sinusoidal wave (1.0 V, 50 Hz, 10 min), HeLa cells that had been cultured on a cell-culture chip featuring interdigitated electrodes. The extracellular ATP concentration increased by ca. 18.4-fold after electrical stimulation. Finally, we detected the presence of extracellular ATP after removing a small amount of buffer solution from the cell-cultured chip and introducing it into the biosensor chip.
Collapse
Affiliation(s)
- C C Chen
- Institute of Nanotechnology/Materials Science and Engineering, National Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu 30050, Taiwan
| | | | | | | |
Collapse
|
31
|
Howe K, Karsi A, Germon P, Wills RW, Lawrence ML, Bailey RH. Development of stable reporter system cloning luxCDABE genes into chromosome of Salmonella enterica serotypes using Tn7 transposon. BMC Microbiol 2010; 10:197. [PMID: 20653968 PMCID: PMC2918591 DOI: 10.1186/1471-2180-10-197] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 07/23/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salmonellosis may be a food safety problem when raw food products are mishandled and not fully cooked. In previous work, we developed bioluminescent Salmonella enterica serotypes using a plasmid-based reporting system that can be used for real-time monitoring of the pathogen's growth on food products in short term studies. In this study, we report the use of a Tn7-based transposon system for subcloning of luxCDABE genes into the chromosome of eleven Salmonella enterica serotypes isolated from the broiler production continuum. RESULTS We found that the lux operon is constitutively expressed from the chromosome post-transposition and the lux cassette is stable without external pressure, i.e. antibiotic selection, for all Salmonella enterica serotypes used. Bioluminescence expression is based on an active electron transport chain and is directly related with metabolic activity. This relationship was quantified by measuring bioluminescence against a temperature gradient in aqueous solution using a luminometer. In addition, bioluminescent monitoring of two serotypes confirmed that our chicken skin model has the potential to be used to evaluate pathogen mitigation strategies. CONCLUSIONS This study demonstrated that our new stable reporting system eliminates bioluminescence variation due to plasmid instability and provides a reliable real-time experimental system to study application of preventive measures for Salmonella on food products in real-time for both short and long term studies.
Collapse
Affiliation(s)
- Kevin Howe
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
- Institute for Digital Biology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Pierre Germon
- INRA, UR 1282 Infectiologie Animale et Santé Publique, Laboratoire de Pathogénie Bactérienne, Nouzilly, France
| | - Robert W Wills
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Mark L Lawrence
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
- Institute for Digital Biology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Richard H Bailey
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
32
|
Van Dorst B, Mehta J, Bekaert K, Rouah-Martin E, De Coen W, Dubruel P, Blust R, Robbens J. Recent advances in recognition elements of food and environmental biosensors: a review. Biosens Bioelectron 2010; 26:1178-94. [PMID: 20729060 DOI: 10.1016/j.bios.2010.07.033] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/08/2010] [Accepted: 07/11/2010] [Indexed: 12/12/2022]
Abstract
A sensitive monitoring of contaminants in food and environment, such as chemical compounds, toxins and pathogens, is essential to assess and avoid risks for both, human and environmental health. To accomplish this, there is a high need for sensitive, robust and cost-effective biosensors that make real time and in situ monitoring possible. Due to their high sensitivity, selectivity and versatility, affinity-based biosensors are interesting for monitoring contaminants in food and environment. Antibodies have long been the most popular affinity-based recognition elements, however recently a lot of research effort has been dedicated to the development of novel recognition elements with improved characteristics, like specificity, stability and cost-efficiency. This review discusses three of these innovative affinity-based recognition elements, namely, phages, nucleic acids and molecular imprinted polymers and gives an overview of biosensors for food and environmental applications where these novel affinity-based recognition elements are applied.
Collapse
Affiliation(s)
- Bieke Van Dorst
- University of Antwerp, Department of Biology, Laboratory of Ecophysiology, Biochemistry and Toxicology, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Date A, Pasini P, Daunert S. Integration of spore-based genetically engineered whole-cell sensing systems into portable centrifugal microfluidic platforms. Anal Bioanal Chem 2010; 398:349-56. [PMID: 20582692 DOI: 10.1007/s00216-010-3930-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/11/2010] [Accepted: 06/14/2010] [Indexed: 11/29/2022]
Abstract
Bacterial whole-cell biosensing systems provide important information about the bioavailable amount of target analytes. They are characterized by high sensitivity and specificity/selectivity along with rapid response times and amenability to miniaturization as well as high-throughput analysis. Accordingly, they have been employed in various environmental and clinical applications. The use of spore-based sensing systems offers the unique advantage of long-term preservation of the sensing cells by taking advantage of the environmental resistance and ruggedness of bacterial spores. In this work, we have incorporated spore-based whole-cell sensing systems into centrifugal compact disk (CD) microfluidic platforms in order to develop a portable sensing system, which should enable the use of these hardy sensors for fast on-field analysis of compounds of interest. For that, we have employed two spore-based sensing systems for the detection of arsenite and zinc, respectively, and evaluated their analytical performance in the miniaturized microfluidic format. Furthermore, we have tested environmental and clinical samples on the CD microfluidic platforms using the spore-based sensors. Germination of spores and quantitative response to the analyte could be obtained in 2.5-3 h, depending on the sensing system, with detection limits of 1 x 10(-7) M for arsenite and 1 x 10(-6) M for zinc in both serum and fresh water samples. Incorporation of spore-based whole-cell biosensing systems on microfluidic platforms enabled the rapid and sensitive detection of the analytes and is expected to facilitate the on-site use of such sensing systems.
Collapse
Affiliation(s)
- Amol Date
- Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA
| | | | | |
Collapse
|
34
|
Descalzo AB, Zhu S, Fischer T, Rurack K. Optimization of the Coupling of Target Recognition and Signal Generation. ADVANCED FLUORESCENCE REPORTERS IN CHEMISTRY AND BIOLOGY II 2010. [DOI: 10.1007/978-3-642-04701-5_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Gueuné H, Thouand G, Durand MJ. A new bioassay for the inspection and identification of TBT-containing antifouling paint. MARINE POLLUTION BULLETIN 2009; 58:1734-1738. [PMID: 19818972 DOI: 10.1016/j.marpolbul.2009.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 09/04/2009] [Accepted: 09/12/2009] [Indexed: 05/28/2023]
Abstract
Since the 1960s tributyl (TBT)-based antifouling paints are widely applied to protect ship's hulls from biofouling. Due to its high toxicity to aquatic ecosystem most of the countries (28 nations in 2008) signed the AFS convention to control the use of harmful antifouling systems on ships. Nevertheless there is currently no simple method to control the presence of organotin in paint. In this study, we propose a bioassay based on the use of a recombinant bioluminescent bacteria to detect directly in paint the presence of TBT. We also propose a simple device as an inspection system to control the absence of organotin in the ship's hull paint. The presence of organotin could be revealed in less than three hours.
Collapse
Affiliation(s)
- Hervé Gueuné
- University of Nantes, UMR CNRS 6144, GEPEA, CBAC Group, IUT de Roche sur Yon, 18 bd. Gaston Defferre, 85035 La Roche sur Yon, France
| | | | | |
Collapse
|
36
|
|
37
|
East AK, Mauchline TH, Poole PS. Biosensors for ligand detection. ADVANCES IN APPLIED MICROBIOLOGY 2008; 64:137-66. [PMID: 18485284 DOI: 10.1016/s0065-2164(08)00405-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Alison K East
- Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, United Kingdom
| | | | | |
Collapse
|
38
|
Tafreshi NK, Sadeghizadeh M, Emamzadeh R, Ranjbar B, Naderi-Manesh H, Hosseinkhani S. Site-directed mutagenesis of firefly luciferase: implication of conserved residue(s) in bioluminescence emission spectra among firefly luciferases. Biochem J 2008; 412:27-33. [PMID: 18251715 DOI: 10.1042/bj20070733] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The bioluminescence colours of firefly luciferases are determined by assay conditions and luciferase structure. Owing to red light having lower energy than green light and being less absorbed by biological tissues, red-emitting luciferases have been considered as useful reporters in imaging technology. A set of red-emitting mutants of Lampyris turkestanicus (Iranian firefly) luciferase has been made by site-directed mutagenesis. Among different beetle luciferases, those from Phrixothrix (railroad worm) emit either green or red bioluminescence colours naturally. By substitution of three specific amino acids using site-specific mutagenesis in a green-emitting luciferase (from L. turkestanicus), the colour of emitted light was changed to red concomitant with decreasing decay rate. Different specific mutations (H245N, S284T and H431Y) led to changes in the bioluminescence colour. Meanwhile, the luciferase reaction took place with relative retention of its basic kinetic properties such as K(m) and relative activity. Structural comparison of the native and mutant luciferases using intrinsic fluorescence, far-UV CD spectra and homology modelling revealed a significant conformational change in mutant forms. A change in the colour of emitted light indicates the critical role of these conserved residues in bioluminescence colour determination among firefly luciferases. Relatively high specific activity and emission of red light might make these mutants suitable as reporters for the study of gene expression and bioluminescence imaging.
Collapse
Affiliation(s)
- Narges Kh Tafreshi
- Department of Genetics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
39
|
Hwang ET, Ahn JM, Kim BC, Gu MB. Construction of a nrdA::luxCDABE Fusion and Its Use in Escherichia coli as a DNA Damage Biosensor. SENSORS 2008; 8:1297-1307. [PMID: 27879766 PMCID: PMC3927504 DOI: 10.3390/s8021297] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 02/21/2008] [Indexed: 11/22/2022]
Abstract
The promoter of nrdA gene which is related with DNA synthesis was used to construct a DNA damage sensitive biosensor. A recombinant bioluminescent E. coli strain, BBTNrdA, harboring a plasmid with the nrdA promoter fused to the luxCDABE operon, was successfully constructed. Its response to various chemicals including genotoxic chemicals substantiates it as a DNA damage biosensor. In characterization, three different classes of toxicants were used: DNA damaging chemicals, oxidative stress chemicals, and phenolics. BBTNrdA only responded strongly to DNA damaging chemicals, such as nalidixic acid (NDA), mitomycin C (MMC), 1-methyl-1-nitroso-N-methylguanidine (MNNG), and 4-nitroquinoline N-oxide (4-NQO). In contrast, there were no responses from the oxidative stress chemicals and phenolics, except from hydrogen peroxide (H2O2) which is known to cause DNA damage indirectly. Therefore, the results of the study demonstrate that BBTNrdA can be used as a DNA damage biosensor.
Collapse
Affiliation(s)
- Ee Taek Hwang
- College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-Gu, Seoul, Republic of Korea
| | - Joo- Myung Ahn
- College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-Gu, Seoul, Republic of Korea
| | - Byoung Chan Kim
- Diagnostics Group, Institut Pasteur Korea, Hawolgok-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Man Bock Gu
- College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-Gu, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Karsi A, Howe K, Kirkpatrick TB, Wills R, Bailey RH, Lawrence ML. Development of bioluminescent Salmonella strains for use in food safety. BMC Microbiol 2008; 8:10. [PMID: 18211715 PMCID: PMC2257966 DOI: 10.1186/1471-2180-8-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 01/22/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salmonella can reside in healthy animals without the manifestation of any adverse effects on the carrier. If raw products of animal origin are not handled properly during processing or cooked to a proper temperature during preparation, salmonellosis can occur. In this research, we developed bioluminescent Salmonella strains that can be used for real-time monitoring of the pathogen's growth on food products. To accomplish this, twelve Salmonella strains from the broiler production continuum were transformed with the broad host range plasmid pAKlux1, and a chicken skin attachment model was developed. RESULTS Salmonella strains carrying pAKlux1 constitutively expressed the luxCDABE operon and were therefore detectable using bioluminescence. Strains were characterized in terms of bioluminescence properties and plasmid stability. To assess the usefulness of bioluminescent Salmonella strains in food safety studies, we developed an attachment model using chicken skin. The effect of washing on attachment of Salmonella strains to chicken skin was tested using bioluminescent strains, which revealed the attachment properties of each strain. CONCLUSION This study demonstrated that bioluminescence is a sensitive and effective tool to detect Salmonella on food products in real-time. Bioluminescence imaging is a promising technology that can be utilized to evaluate new food safety measures for reducing Salmonella contamination on food products.
Collapse
Affiliation(s)
- Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762-6100, USA
| | - Kevin Howe
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762-6100, USA
| | - Tasha B Kirkpatrick
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762-6100, USA
| | - Robert Wills
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762-6100, USA
| | - R Hartford Bailey
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762-6100, USA
| | - Mark L Lawrence
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762-6100, USA
| |
Collapse
|
41
|
Maslennikova IL, Golyasnaya NV. Microbioluminescent study of the general toxicity and mutagenicity of pollutants. APPL BIOCHEM MICRO+ 2007. [DOI: 10.1134/s0003683807040096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Kamidate T, Yanashita K, Tani H, Ishida A, Notani M. Firefly bioluminescent assay of ATP in the presence of ATP extractant by using liposomes. Anal Chem 2007; 78:337-42. [PMID: 16383346 DOI: 10.1021/ac058038n] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Liposomes containing phosphatidylcholine (PC) and cholesterol (Chol) were applied to the enhancer for firefly bioluminescence (BL) assay for ATP in the presence of cationic surfactants using as an extractant for the release of ATP from living cells. Benzalkonium chloride (BAC) was used as an ATP extractant. However, BAC seriously inhibited the activity of luciferase, thus resulting in the remarkable decrease in the sensitivity of the BL assay for ATP. On the other hand, we found that BAC was associated with liposomes to form cationic liposomes containing BAC. The association rate of BAC with liposomes was faster than that of BAC with luciferase. As a result, the inhibitory effect of BAC on luciferase was eliminated in the presence of liposomes. In addition, cationic liposomes thus formed enhanced BL emission. BL measurement conditions were optimized in terms of liposome charge type, liposome size, and total concentration of PC and Chol. ATP can be sensitively determined without dilution of analytical samples by using liposomes. The detection limit of ATP with and without liposomes was 100 amol and 25 fmol in aqueous ATP standard solutions containing 0.06% BAC, respectively. The method was applied to the determination of ATP in Escherichia coli extracts. The BL intensity was linear from 4 x 10(4) to 1 x 10(7) cells mL(-1) in the absence of liposomes. On the other hand, the BL intensity was linear from 4 x 10(3) to 4 x 10(6) cells mL(-1) in the presence of liposomes. The detection limit of ATP in E. coli extracts was improved by a factor of 10 via use of liposomes.
Collapse
Affiliation(s)
- Tamio Kamidate
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Japan, 060-8628.
| | | | | | | | | |
Collapse
|
43
|
Yagi K. Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol 2007; 73:1251-8. [PMID: 17111136 DOI: 10.1007/s00253-006-0718-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 09/30/2006] [Accepted: 10/12/2006] [Indexed: 11/26/2022]
Abstract
Biosensors have major advantages over chemical or physical analyses with regard to specificity, sensitivity, and portability. Recently, many types of whole-cell bacterial biosensors have been developed using recombinant DNA technology. The bacteria are genetically engineered to respond to the presence of chemicals or physiological stresses by synthesizing a reporter protein, such as luciferase, beta-galactosidase, or green fluorescent protein. In addition to an overview of conventional biosensors, this minireview discusses a novel type of biosensor using a photosynthetic bacterium as the sensor strain and the crtA gene, which is responsible for carotenoid synthesis, as the reporter. Since bacteria possess a wide variety of stress-response mechanisms, including antioxidation, heat-shock responses, nutrient-starvation, and membrane-damage responses, DNA response elements for several stress-response proteins can be fused with various reporter genes to construct a versatile set of bacterial biosensors for a variety of analytes. Portable biosensors for on-site monitoring have been developed using a freeze-dried biosensing strain, and cell array biosensors have been designed for high-throughput analysis. Moreover, in the future, the use of single-cell biosensors will permit detailed analyses of samples. Signals from such sensors could be detected with digital imaging, epifluorescence microscopy, and/or flow cytometry.
Collapse
Affiliation(s)
- Kiyohito Yagi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
44
|
Alloush HM, Lewis RJ, Salisbury VC. Bacterial Bioluminescent Biosensors: Applications in Food and Environmental Monitoring. ANAL LETT 2006. [DOI: 10.1080/00032710600713172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Abstract
The development of a fully automated on-line monitoring and control system is very important in bioprocesses. One of the most important parameters in these processes is biomass. This review discusses different methods for biomass quantification. A general definition of biomass and biovolume are presented. Interesting concepts about active but not culturable cells considerations are included as well as concepts that must be taken into account when selecting biomass quantification technology. Chemical methods have had few applications in biomass measurement to date; however, bioluminescence can selectively enumerate viable cells. Photometric methods including fluorescence and scattered light measurements are presented. Reference methods including dry and wet weight, viable counts and direct counts are discussed, as well as the physical methods of flow cytometry, impedancimetric and dielectric techniques.
Collapse
Affiliation(s)
- R E Madrid
- Departamento de Bioingeniería, FACET/INSIBIO, Universidad Nacional de Tucumán, Consejo Nacional de Investigaciones Científicas y Técnicas, Tucuman, Argentina.
| | | |
Collapse
|
46
|
Vesterlund S, Paltta J, Karp M, Ouwehand AC. Adhesion of bacteria to resected human colonic tissue: quantitative analysis of bacterial adhesion and viability. Res Microbiol 2005; 156:238-44. [PMID: 15748990 DOI: 10.1016/j.resmic.2004.08.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Accepted: 08/27/2004] [Indexed: 11/28/2022]
Abstract
Adhesion to the intestinal mucosa is considered to be one of the main selection criteria of lactic acid bacteria for probiotic use. Adhesive probiotics are, for example, considered to provide better antagonism against pathogenic bacteria when compared to non-adhesive strains. Here a new model is described for studying adhesion and interaction of probiotic and pathogenic bacteria in the intestinal mucus in which the intestinal microbiota is present. The model is based on the use of human intestinal tissue, fluorescent-tagged bacteria and confocal laser scanning microscopy (CLSM) in adhesion measurements as well as human intestinal mucus and bioluminescent-tagged bacteria in viability measurements. Use of CLSM enabled, for the first time, real-time three-dimensional observations of live probiotic bacteria in their natural environment, the intestinal mucosa. When the real-time measurement of bacterial adhesion was combined with the real-time sensitive measurement of bacterial viability, it could be studied whether or not the adherent pathogens were alive. The model was used to study the interaction between Lactobacillus rhamnosus GG and Salmonella enterica serovar Typhimurium. We show that L. rhamnosus GG did not affect the adhesion or the viability of S. enterica serovar Typhimurium. Instead S. enterica serovar Typhimurium was shown to decrease the adhesion of L. rhamnosus GG in displacement assays. Moreover, the method is suitable for studies in which the interaction of two or more bacteria is examined in an environment in which other bacteria are present.
Collapse
Affiliation(s)
- Satu Vesterlund
- Department of Biochemistry and Food Chemistry, University of Turku, Itäinen Pitkäkatu 4A, 20014 Turku, Finland.
| | | | | | | |
Collapse
|
47
|
Fadnavis NW, Seshadri R, Sheelu G, Madhuri KV. Relevance of Frank's solvent classification as typically aqueous and typically non-aqueous to activities of firefly luciferase, alcohol dehydrogenase, and alpha-chymotrypsin in aqueous binaries. Arch Biochem Biophys 2005; 433:454-65. [PMID: 15581602 DOI: 10.1016/j.abb.2004.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 10/05/2004] [Indexed: 11/24/2022]
Abstract
Effects of cosolvent concentration on activity of fire fly luciferase, alpha-chymotrypsin, and alcohol dehydrogenase from baker's yeast (Saccharomyces cerevisiae) have been studied for several solvents with varying hydrophobicities (logP from +1.0 to -1.65) and polarities (dielectric constant from 7.4 to 109). The inhibitory effect of the cosolvent is examined in light of Frank's classification of solvents into 'typically aqueous (TA)' and 'typically non-aqueous (TNA).' The solvent concentration at which the enzyme activity decreases to half, the C(50) values, for TA solvents such as 1-cyclohexyl-2-pyrrolidinone, 2-butoxyethanol, 1-methyl-2-pyrrolidinone, tetrahydrofuran, t-butanol, and ethanol correlate quite well with their critical hydrophobic interaction concentration, rather than logP, while those for TNA solvents such as acetonitrile, dimethyl formamide, formamide, and dimethyl sulfoxide correlate well with logP. The interactions of TA solvents with proteins appear to be governed mainly by hydrophobic interactions while both hydrophobic and hydrophilic interactions play important role in case of TNA solvents.
Collapse
Affiliation(s)
- Nitin Wasantrao Fadnavis
- Biotransformations Laboratory, Indian Institute of Chemical Technology, CCMB Campus, Habsiguda, Hyderabad 500007, India.
| | | | | | | |
Collapse
|
48
|
Baggett B, Roy R, Momen S, Morgan S, Tisi L, Morse D, Gillies RJ. Thermostability of Firefly Luciferases Affects Efficiency of Detection by in Vivo Bioluminescence. Mol Imaging 2004; 3:324-32. [PMID: 15802049 DOI: 10.1162/15353500200403178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Luciferase from the North American firefly (Photinis pyralis) is a useful reporter gene in vivo, allowing noninvasive imaging of tumor growth, metastasis, gene transfer, drug treatment, and gene expression. Luciferase is heat labile with an in vitro halflife of approximately 3 min at 37 degrees C. We have characterized wild type and six thermostabilized mutant luciferases. In vitro, mutants showed half-lives between 2- and 25-fold higher than wild type. Luciferase transfected mammalian cells were used to determine in vivo half-lives following cycloheximide inhibition of de novo protein synthesis. This showed increased in vivo thermostability in both wild-type and mutant luciferases. This may be due to a variety of factors, including chaperone activity, as steady-state luciferase levels were reduced by geldanamycin, an Hsp90 inhibitor. Mice inoculated with tumor cells stably transfected with mutant or wild-type luciferases were imaged. Increased light production and sensitivity were observed in the tumors bearing thermostable luciferase. Thermostable proteins increase imaging sensitivity. Presumably, as more active protein accumulates, detection is possible from a smaller number of mutant transfected cells compared to wild-type transfected cells.
Collapse
Affiliation(s)
- Brenda Baggett
- University of Arizona Cancer Center, Tucson, AZ 85724-5024, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Dube A, Jayasankar K, Prabakaran L, Kumar V, Gupta PK. Nitrogen laser irradiation (337 nm) causes temporary inactivation of clinical isolates of Mycobacterium tuberculosis. Lasers Med Sci 2004; 19:52-6. [PMID: 15278725 DOI: 10.1007/s10103-004-0304-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Accepted: 05/20/2004] [Indexed: 10/26/2022]
Abstract
We have investigated the effect of nitrogen laser irradiation (337 nm) on viability of clinical isolates of Mycobacterium tuberculosis. Bacteria were exposed to a nitrogen laser (average power 2.0 mW) in vitro at power density of 70 +/- 0.7 W/m2 for 0-30 min, and the cell viability was determined by luciferase reporter phage (LRP) assay. Immediately after laser exposure, all the clinical isolates investigated showed a dose-dependent decrease in cell viability. However, when the laser-exposed isolates were incubated in broth medium for 3 days, most of these showed significant recovery from laser-induced damage. Addition of 5.0 microg/ml acriflavine (a DNA repair inhibitor) in the incubation medium had no significant effect on recovery. This suggests that DNA damage may not be involved in the cell inactivation. Electron paramagnetic resonance (EPR) studies using 5-doxyl strearic acid (5-DS) as a probe suggest alterations in lipid regions of the cell wall. Implications of these results for understanding therapeutic effect of nitrogen laser on drug-resistant tuberculosis are discussed.
Collapse
Affiliation(s)
- Alok Dube
- Biomedical Applications Section, Laser R and D, Block D, Centre for Advanced Technology, 452013, Indore, India.
| | | | | | | | | |
Collapse
|
50
|
Mandeville R, Griffiths M, Goodridge L, McIntyre L, Toney Ilenchuk T. Diagnostic and Therapeutic Applications of Lytic Phages. ANAL LETT 2003. [DOI: 10.1081/al-120026569] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|