1
|
Bonastre-Sabater I, Lopera A, Martínez-Camarena Á, Blasco S, Doménech-Carbó A, Jiménez HR, Verdejo B, García-España E, Clares MP. Exo- or endo-1 H-pyrazole metal coordination modulated by the polyamine chain length in [1 + 1] condensation azamacrocycles. Binuclear complexes with remarkable SOD activity. Dalton Trans 2024; 53:16480-16494. [PMID: 38973348 DOI: 10.1039/d4dt01236d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The Cu2+ complexes of three [1 + 1] azacyclophane macrocycles having the 1H-pyrazole ring as the spacer and the pentaamine 1,5,8,11,15-pentaazadecane (L1) or hexaamines 1,5,8,12,15,19-hexaazanonadecane (L2) and 1,5,9,13,17,21-hexaazaheneicosane (L3) as bridges show endo- coordination of the pyrazolate bridge giving rise to discrete monomeric species. Previously reported pyrazolacyclophanes evidenced, however, exo-coordination with the formation of dimeric species of 2 : 2, 3 : 2 or even 4 : 2 Cu2+ : L stoichiometry. The complexes have been characterized in solution using potentiometric studies, UV-Vis spectroscopy, paramagnetic NMR, cyclic voltammetry and mass spectrometry. The measurements show that all three ligands have as many protonation steps in water as secondary amines are in the bridge, while they are able to form both mono- and binuclear Cu2+ species. The crystal structures of the complexes [Cu(HL1)Br]Br(1+x)(ClO4)(1-x)·yH2O (1) and [Cu2(H-1L2)Cl(ClO4)](ClO4)·H2O·C2H5OH (2) have been solved by X-ray diffraction studies. In 1 the metal ion lies at one side of the macrocyclic cavity being coordinated by one nitrogen of the pyrazolate moiety and the three consecutive nitrogen atoms of the polyamine bridge. The other nitrogen of the pyrazole ring is hydrogen-bonded to an amine group. In 2 the two metal ions are interconnected by a pyrazolate bis(monodentate) moiety and complete their coordination spheres with three amines and either a bromide or a perchlorate anion, which occupy the axial positions of distorted square pyramid geometries. Paramagnetic NMR studies of the binuclear complexes confirm the coordination pattern observed in the crystal structures. Cyclic voltamperommetry data show potentials within the adequate range to exhibit superoxide dismutase (SOD) activity. The IC50 values calculated by McCord-Fridovich enzymatic assays show that the binuclear Cu2+ complexes of L2 and L3 have SOD activities that rank amongst the highest ones reported so far.
Collapse
Affiliation(s)
- Irene Bonastre-Sabater
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular. Universidad de Valencia, Calle Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
| | - Alberto Lopera
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular. Universidad de Valencia, Calle Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
| | - Álvaro Martínez-Camarena
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular. Universidad de Valencia, Calle Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, avda. Complutense s/n, 28040 Madrid, Spain
| | - Salvador Blasco
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular. Universidad de Valencia, Calle Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
| | - Antonio Doménech-Carbó
- Departamento de Química Analítica, Universidad de Valencia, Calle Dr Moliner s/n, 46100 Burjassot, Valencia, Spain
| | - Hermas R Jiménez
- Departamento de Química Inorgánica, Universidad de Valencia, Calle Doctor Moliner s/n, 46100 Burjasot, Valencia, Spain
| | - Begoña Verdejo
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular. Universidad de Valencia, Calle Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
| | - Enrique García-España
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular. Universidad de Valencia, Calle Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
| | - M Paz Clares
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular. Universidad de Valencia, Calle Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
2
|
Ghosh R, Pradhan D, Debnath S, Mansingh A, Nagesh N, Chatterjee PB. A Hydrogen Bonded Non-Porous Organic-Inorganic Framework for Measuring Cysteine in Blood Plasma and Endogenous Cancer Cell. Chemistry 2024; 30:e202401255. [PMID: 39162779 DOI: 10.1002/chem.202401255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Indexed: 08/21/2024]
Abstract
An imbalance in cysteine (Cys) levels in the cells and plasma has been identified as the risk indicator for various human diseases. The structural similarity of cysteine with its congener homocysteine and glutathione offers challenges in its measurement. Herein, we report a hydrogen-bonded organic-inorganic framework of Cu(II) (HOIF) for the selective detection of cysteine over other biothiols. The non-fluorescent HOIF showed 12-fold green emission in the presence of cysteine. The monomeric unit of HOIF is stabilized via intermolecular hydrogen bonds, resulting in a non-porous network structure. Non-interference from homocysteine, glutathione, and other competitive bio-analytes revealed explicit affinity of HOIF for cysteine. Fluorimetric titration showed a wide working concentration window (650 nM-800 μM) for measuring cysteine in an aqueous medium. The mechanistic investigation involving HRMS, EPR, and UV-vis spectroscopic studies revealed the decomplexation of HOIF with Cys, resulting in a fluorescence turn-on response from the luminescent ligand. Validation using a commercial dye, "Cysteine Green", confirmed the prospect of HOIF for early diagnostic purposes. Utilizing the fluorescence turn-on property of HOIF in the presence of cysteine, we measured cysteine quantitatively in the blood plasma samples. Bio-imaging of endogenous cysteine in cancer cells indicated the ability of HOIF to monitor the intracellular cysteine.
Collapse
Affiliation(s)
- Riya Ghosh
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Debjani Pradhan
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Snehasish Debnath
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Arushi Mansingh
- Medical Biotechnology Complex, CSIR-CCMB, ANNEXE II, Hyderabad, India
| | - Narayana Nagesh
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
- Medical Biotechnology Complex, CSIR-CCMB, ANNEXE II, Hyderabad, India
| | - Pabitra B Chatterjee
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| |
Collapse
|
3
|
El-Sayed DS, Sinha L, Soayed AA. Experimental and theoretical quantum chemical studies of 2-(2-acetamidophenyl)-2-oxo-N-(pyridin-2-ylmethyl)acetamide and its copper(II) complex: molecular docking simulation of the designed coordinated ligand with insulin-like growth factor-1 receptor (IGF-1R). BMC Chem 2024; 18:112. [PMID: 38872213 PMCID: PMC11170805 DOI: 10.1186/s13065-024-01217-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
Newly synthesized ligand 2-(2- acetamidophenyl)-2-oxo-N-(pyridin-2-ylmethyl)acetamide and its copper(II) complex were characterized by elemental analyses, FT-IR, UV-Vis., ESR, 1H-NMR, and thermal analysis along with the theoretical quantum chemical studies. Combined experimental and theoretical DFT (density functional theory) studies showed the ligand to be a tridentate ligand with three coordinate bonds. The complex was suggested to be in a distorted octahedral structure with dx2-y2 ground state. The activation energy, ΔE*; entropy ΔS*; enthalpy ΔH* and order of reaction has been derived from differential thermogravimetric (DTA) curve, using Horowitz-Metzeger method. The nujol mull electronic spectrum of the ligand and Cu(II) complex have been recorded and the difference of the excited and ground state densities has also been theoretically calculated and plotted to investigate the movement of electrons on excitation. The Cu(II) complex was evaluated for its antibacterial activity against two bacterial species, namely Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Antifungal screening was performed against two species (Condida albicans and Aspergillus flavus). The complex under investigation was found to possess notable biological activity. Molecular docking investigation predicted different types of non-covalent interactions of the synthesized ligand towards Insulin-like growth factor 1 receptor (ID: 5FXR).
Collapse
Affiliation(s)
- Doaa S El-Sayed
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, 21321, Alexandria, Egypt.
| | - Leena Sinha
- Department of Physics, University of Lucknow, Lucknow, India
| | - Amina A Soayed
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, 21321, Alexandria, Egypt
| |
Collapse
|
4
|
Karnes JP, Kumar A, Hopkins Leseberg JA, Day VW, Blakemore JD. Trivalent Cations Slow Electron Transfer to Macrocyclic Heterobimetallic Complexes. Inorg Chem 2024; 63:8710-8729. [PMID: 38669449 DOI: 10.1021/acs.inorgchem.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Incorporation of secondary redox-inactive cations into heterobimetallic complexes is an attractive strategy for modulation of metal-centered redox chemistry, but quantification of the consequences of incorporating strongly Lewis acidic trivalent cations has received little attention. Here, a family of seven heterobimetallic complexes that pair a redox-active nickel center with La3+, Y3+, Lu3+, Sr2+, Ca2+, K+, and Na+ (in the form of their triflate salts) have been prepared on a heteroditopic ligand platform to understand how chemical behavior varies across the comprehensive series. Structural data from X-ray diffraction analysis demonstrate that the positions adopted by the secondary cations in the crown-ether-like site of the ligand relative to nickel are dependent primarily on the secondary cations' ionic radii and that the triflate counteranions are bound to the cations in all cases. Electrochemical data, in concert with electron paramagnetic resonance studies, show that nickel(II)/nickel(I) redox is modulated by the secondary metals; the heterogeneous electron-transfer rate is diminished for the derivatives incorporating trivalent metals, an effect that is dependent on steric crowding about the nickel metal center and that was quantified here with a topographical free-volume analysis. As related analyses carried out here on previously reported systems bear out similar relationships, we conclude that the placement and identity of both the secondary metal cations and their associated counteranions can afford unique changes in the (electro)chemical behavior of heterobimetallic species.
Collapse
Affiliation(s)
- Joseph P Karnes
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Amit Kumar
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Julie A Hopkins Leseberg
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Victor W Day
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - James D Blakemore
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
5
|
Stasyuk N, Gayda G, Nogala W, Holdynski M, Demkiv O, Fayura L, Sibirny A, Gonchar M. Ammonium nanochelators in conjunction with arginine-specific enzymes in amperometric biosensors for arginine assay. Mikrochim Acta 2023; 191:47. [PMID: 38133683 PMCID: PMC10987348 DOI: 10.1007/s00604-023-06114-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Amino acid L-arginine (Arg), usually presented in food products and biological liquids, can serve both as a useful indicator of food quality and an important biomarker in medicine. The biosensors based on Arg-selective enzymes are the most promising devices for Arg assay. In this research, three types of amperometric biosensors have been fabricated. They exploit arginine oxidase (ArgO), recombinant arginase I (ARG)/urease, and arginine deiminase (ADI) coupled with the ammonium-chelating redox-active nanoparticles. Cadmium-copper nanoparticles (nCdCu) as the most effective nanochelators were used for the development of ammonium chemosensors and enzyme-coupled Arg biosensors. The fabricated enzyme/nCdCu-containing bioelectrodes show wide linear ranges (up to 200 µM), satisfactory storage stabilities (14 days), and high sensitivities (A⋅M-1⋅m-2) to Arg: 1650, 1700, and 4500 for ADI-, ArgO- and ARG/urease-based sensors, respectively. All biosensors have been exploited to estimate Arg content in commercial juices. The obtained data correlate well with the values obtained by the reference method. A hypothetic scheme for mechanism of action of ammonium nanochelators in electron transfer reaction on the arginine-sensing electrodes has been proposed.
Collapse
Affiliation(s)
- Nataliya Stasyuk
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, 79005, Ukraine.
| | - Galina Gayda
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, 79005, Ukraine
| | - Wojciech Nogala
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Marcin Holdynski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Olha Demkiv
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, 79005, Ukraine
| | - Lyubov Fayura
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, 79005, Ukraine
| | - Andriy Sibirny
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, 79005, Ukraine
- Department of Biotechnology and Microbiology, Rzeszow University, 35-601, Rzeszow, Poland
| | - Mykhailo Gonchar
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, 79005, Ukraine.
| |
Collapse
|
6
|
Alamier WM, Alaghaz ANMA. Design, spectral characterization, quantum chemical investigation, biological activity of nano-sized transition metal complexes of tridentate 3-mercapto-4H-1,2,4-triazol-4-yl-aminomethylphenol Schiff base ligand. J Biomol Struct Dyn 2023:1-21. [PMID: 38133937 DOI: 10.1080/07391102.2023.2294171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023]
Abstract
A tridentate Schiff base ligand, H2MTIP, was produced by condensing salicylaldehyde with 4-amino-4H-1,2,4-triazole-3-thiol. The ligand was then used to create nanosized complexes of Pt(II), Ni(II), Cu(II), and Pd(II). The complexes have the composition [Pt/Ni/Cu/or Pd(MTIP)(H2O)], this conclusion is supported by molar conductance, magnetic moments, elemental analyses, spectral analyses. In DFT analysis, the 6-31+ g(d,p) basis set was used to fully optimize the energy with respect to the shapes of Schiff base ligand and metal complexes. Pt(II), Ni(II), Cu(II), and Pd(II) complexes have been assigned square-planar geometries. At the same time, the intense diffraction peaks in X-ray diffractograms show their crystalline features with particle sizes in the nanoscale range. The binding interaction of calf thymus DNA with these metal complexes and their insulin-like activity was examined in vitro by inhibiting α-amylase. The study investigated the in-vitro activity of several complexes and identified Pt(II) complex as the one with the highest activity. The researchers then tested this complex for in-vivo antidiabetic activity in induced diabetic rats using the STZ model, and it significantly lowered blood glucose levels. The antioxidant activity and toxicity level of Pt(II) complex were also excellent, suggesting that it could be a good candidate for further research as a possible diabetes drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Waleed M Alamier
- Department of Chemistry, College of Science, Jazan University, Jazan, Kingdom of Saudi Arabia
| | | |
Collapse
|
7
|
Ahmed S, Mahendiran D, Bhat AR, Rahiman AK. Theoretical, in Vitro Antiproliferative, and in Silico Molecular Docking and Pharmacokinetics Studies of Heteroleptic Nickel(II) and Copper(II) Complexes of Thiosemicarbazone-Based Ligands and Pefloxacin. Chem Biodivers 2023; 20:e202300702. [PMID: 37528701 DOI: 10.1002/cbdv.202300702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
Twelve new heteroleptic nickel(II) and copper(II) complexes of the type [M(L1-6 )(Pfx)2 ] (1-12), where L1-6 =2-benzylidenehydrazinecarbothioamide (L1 ), 2-benzylidene-N-methylhydrazinecarbothioamide (L2 ), 2-benzylidene-N-phenylhydrazinecarbothioamide (L3 ), 2-(4-methylbenzylidene)hydrazinecarbothioamide (L4 ), 2-(4-methylbenzylidene)-N-methylhydrazinecarbothioamide (L5 ) and 2-(4-methylbenzylidene)-N-phenylhydrazinecarbothioamide (L6 ), Pfx=pefloxacin and M=Ni(II) or Cu(II) have been synthesised, and their structures were confirmed by different spectral techniques. The spectral data and density functional theory (DFT) calculations supported the bonding of pefloxacin drug molecule via one of the carboxylate oxygen atoms and the pyridone oxygen atom, and the thiosemicarbazone ligand via the imine nitrogen and the thione sulfur atoms with the metal(II) ion, forming distorted octahedral geometry. In vitro antiproliferative activity of the synthesized complexes was evaluated against three human breast cancer (T47D, estrogen negative (MDA-MB-231) and estrogen positive (MCF-7)) as well as non-tumorigenic human breast epithelial (MCF-10a) cell lines, which showed the higher activity for the copper(II) complexes. The interaction of the synthesized complexes with an oncogenic protein H-ras (121 p) was explored by in silico molecular docking studies. Further, in silico pharmacokinetics and ADMET parameters were also analysed to predict the drug-likeness as well as non-toxic and non-carcinogenic behavior, and safe oral administration of the complexes.
Collapse
Affiliation(s)
- Sumeer Ahmed
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, 600 014, India
| | - Dharmasivam Mahendiran
- Center for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, 4111, Australia
| | - Ajmal Rashid Bhat
- Department of Chemistry, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Aziz Kalilur Rahiman
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, 600 014, India
| |
Collapse
|
8
|
Flores-Rábago KM, Rivera-Mendoza D, Vilchis-Nestor AR, Juarez-Moreno K, Castro-Longoria E. Antibacterial Activity of Biosynthesized Copper Oxide Nanoparticles (CuONPs) Using Ganoderma sessile. Antibiotics (Basel) 2023; 12:1251. [PMID: 37627671 PMCID: PMC10451715 DOI: 10.3390/antibiotics12081251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Copper oxide nanoparticles (CuONPs) were synthesized using an eco-friendly method and their antimicrobial and biocompatibility properties were determined. The supernatant and extract of the fungus Ganoderma sessile yielded small, quasi-spherical NPs with an average size of 4.5 ± 1.9 nm and 5.2 ± 2.1 nm, respectively. Nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), and zeta potential analysis. CuONPs showed antimicrobial activity against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa). The half-maximal inhibitory concentration (IC50) for E. coli was 8.5 µg/mL, for P. aeruginosa was 4.1 µg/mL, and for S. aureus was 10.2 µg/mL. The ultrastructural analysis of bacteria exposed to CuONPs revealed the presence of small CuONPs all through the bacterial cells. Finally, the toxicity of CuONPs was analyzed in three mammalian cell lines: hepatocytes (AML-12), macrophages (RAW 264.7), and kidney (MDCK). Low concentrations (<15 µg/mL) of CuONPs-E were non-toxic to kidney cells and macrophages, and the hepatocytes were the most susceptible to CuONPs-S. The results obtained suggest that the CuONPs synthesized using the extract of the fungus G. sessile could be further evaluated for the treatment of superficial infectious diseases.
Collapse
Affiliation(s)
- Karla M. Flores-Rábago
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada 22860, Mexico; (K.M.F.-R.); (D.R.-M.)
| | - Daniel Rivera-Mendoza
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada 22860, Mexico; (K.M.F.-R.); (D.R.-M.)
| | | | - Karla Juarez-Moreno
- Center for Applied Physics and Advanced Technology, UNAM, Juriquilla 76230, Mexico;
| | - Ernestina Castro-Longoria
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada 22860, Mexico; (K.M.F.-R.); (D.R.-M.)
| |
Collapse
|
9
|
Bharathi S, Mahendiran D, Ahmed S, Rahiman AK. In vitro anti-proliferative, and in silico ribonucleotide reductase and pharmacokinetics studies of heteroleptic silver(I), nickel(II) and copper(II) complexes of 4-methyl-3-thiosemicarbazones and ibuprofen. J Trace Elem Med Biol 2023; 79:127211. [PMID: 37263062 DOI: 10.1016/j.jtemb.2023.127211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/10/2022] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
OBJECTIVES The present research focuses on the in vitro anti-proliferative, and in silico ribonucleotide reductase and pharmacokinetics studies of twelve heteroleptic metal complexes of the general formulae [Ag(L1-4)(ibu)] (1-4) and [M(L1-4)(ibu)2] (5-12), where L1-4 = 2-(1-(4-substitutedphenyl)ethylidene)-N-methylhydrazinecarbothioamide, ibu = non-steroidal anti-inflammatory drug (ibuprofen), and M = Cu(II) and Ni(II). METHODS Various spectroscopic techniques were used to authenticate the structure of the synthesized complexes. UV-Vis and cyclic voltammetry techniques were used to analyse the stability and the reducing ability of the complexes. In vitro anti-proliferative studies by MTT assay, apoptotic behaviour and cellular uptake studies were investigated followed by the in silico interaction with ribonucleotide reductase (RNR) enzyme. RESULTS The spectral studies predicted distorted tetrahedral geometry around silver(I) ion and distorted octahedral geometry around nickel(II) and copper(II) ions. The reducing ability of the copper(II) complexes was analysed using ascorbic acid by UV-Vis and cyclic voltammetry techniques, which authenticate the reducing ability of the complexes and the possible interactions within the cells. The in vitro anti-proliferative activity of the synthesized complexes against three cancerous (estrogen positive (MCF-7), estrogen negative (MDA-MB-231) and pancreatic (PANC-1)) and one normal (MCF-10a) cell lines by MTT assay showed enhanced activity for copper(II) complexes 11 and 12 containing the hydrophobic substituents. The apoptotic and cellular uptake studies showed that the complex 12 is readily taken up by PANC-1 cell lines and induces ROS-mediated mitochondrial and caspase-dependent apoptosis. The in silico studies indicated hydrogen bonding, hydrophobic and π-pair (π-π, π-σ and π-cation) interactions between the complexes and the ribonucleotide reductase (RNR) enzyme. The in silico pharmacokinetics studies of the complexes predicted the drug-likeness characteristics of the complexes. CONCLUSION The synthesized complexes are found to be less toxic to normal cells and inhibit the growth of cancerous cells by inducing mitochondrial-mediated and caspase dependent apoptotic pathway in PANC-1 cells.
Collapse
Affiliation(s)
- Sundaram Bharathi
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai 600 014, India; Department of Chemistry, School of Basic Sciences, Vels Institute of Science, Technology and Advanced Studies, Chennai 600 117, India
| | - Dharmasivam Mahendiran
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai 600 014, India; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - Sumeer Ahmed
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai 600 014, India
| | - Aziz Kalilur Rahiman
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai 600 014, India.
| |
Collapse
|
10
|
Buchhorn M, Krewald V. The π-interactions of ammonia ligands evaluated by ab initio ligand field theory. Dalton Trans 2023; 52:6685-6692. [PMID: 37128808 DOI: 10.1039/d3dt00511a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ammonia and amine ligands are commonly assumed to be σ-only ligands in coordination chemistry, i.e. they are not expected to interact significantly with a metal via a π path. Ligand field analyses employing the Angular Overlap Model resulted in good fits to experimental data without a π parameter for ammonia ligands, thereby supporting this assumption. In this work, we challenge this assumption and suggest that it is an oversimplification. We use complete active space calculations for electronic structure analyses of copper ammine complexes that are in good agreement with the transitions observed in experimental UV-vis spectra. These findings lead to a reinterpretation of the experimental spectra that necessitates a significant π interaction of the ammonia ligands. The strength of the ammonia π interaction is evaluated by parameterizing the ligand field splittings of a series of metal hexammine complexes ([M(NH3)6]n+ with M = Cr, Mn, Fe, Co, Ni, Ru, Os and n = 2, 3) and selected tetrammine complexes ([M(NH3)4]n+ with M = Cr, Mn, Fe, Co, Ni and n = 2 or 3) with the Angular Overlap Model. The resulting π parameters show that ammonia is a π donor of similar strength as chloride.
Collapse
Affiliation(s)
- Moritz Buchhorn
- TU Darmstadt, Department of Chemistry, Theoretical Chemistry, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany.
| | - Vera Krewald
- TU Darmstadt, Department of Chemistry, Theoretical Chemistry, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany.
| |
Collapse
|
11
|
Sasikumar G, Subramani A, Tamilarasan R, Rajesh P, Sasikumar P, Albukhaty S, Mohammed MKA, Karthikeyan S, Al-aqbi ZT, Al-Doghachi FAJ, Taufiq-Yap YH. Catalytic, Theoretical, and Biological Investigations of Ternary Metal (II) Complexes Derived from L-Valine-Based Schiff Bases and Heterocyclic Bases. Molecules 2023; 28:molecules28072931. [PMID: 37049692 PMCID: PMC10095770 DOI: 10.3390/molecules28072931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/25/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
A new series of ternary metal complexes, including Co(II), Ni(II), Cu(II), and Zn(II), were synthesized and characterized by elemental analysis and diverse spectroscopic methods. The complexes were synthesized from respective metal salts with Schiff’s-base-containing amino acids, salicylaldehyde derivatives, and heterocyclic bases. The amino acids containing Schiff bases showed promising pharmacological properties upon complexation. Based on satisfactory elemental analyses and various spectroscopic techniques, these complexes revealed a distorted, square pyramidal geometry around metal ions. The molecular structures of the complexes were optimized by DFT calculations. Quantum calculations were performed with the density functional method for which the LACVP++ basis set was used to find the optimized molecular structure of the complexes. The metal complexes were subjected to an electrochemical investigation to determine the redox behavior and oxidation state of the metal ions. Furthermore, all complexes were utilized for catalytic assets of a multi-component Mannich reaction for the preparation of -amino carbonyl derivatives. The synthesized complexes were tested to determine their antibacterial activity against E. coli, K. pneumoniae, and S. aureus bacteria. To evaluate the cytotoxic effects of the Cu(II) complexes, lung cancer (A549), cervical cancer (HeLa), and breast cancer (MCF-7) cells compared to normal cells, cell lines such as human dermal fibroblasts (HDF) were used. Further, the docking study parameters were supported, for which it was observed that the metal complexes could be effective in anticancer applications.
Collapse
Affiliation(s)
- Gopalakrishnan Sasikumar
- Department of Chemistry, St. Joseph’s College of Engineering, Chennai 600 119, Tamil Nadu, India
| | - Annadurai Subramani
- Department of biochemistry, Dwaraka Doss Goverdhan Doss Vaishnav College, Chennai 600 106, Tamil Nadu, India
| | - Ramalingam Tamilarasan
- Department of Chemistry, Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600 062, Tamil Nadu, India
| | - Punniyamurthy Rajesh
- Department of Physics, Vels Institute of Science, Technology and Advance Studies of Basic Science, Chennai 600 017, Tamil Nadu, India
| | - Ponnusamy Sasikumar
- Department of Physics, Saveetha School of Engineering, SIMATS, Chennai 602 701, Tamil Nadu, India
- Correspondence: (P.S.); (Y.H.T.-Y.)
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan 62001, Misan, Iraq
| | - Mustafa K. A. Mohammed
- Radiological Techniques Department, Al-Mustaqbal University College, Hillah 51001, Babylon, Iraq
| | - Subramani Karthikeyan
- Department of Physics, Periyar University Centre for Post Graduate and Research Studies, Dharmapuri 636 701, Tamil Nadu, India
| | - Zaidon T. Al-aqbi
- College of Agriculture, University of Misan, Al-Amara, Amarah 62001, Misan, Iraq
| | - Faris A. J. Al-Doghachi
- Department of Chemistry, Faculty of Science, University of Basrah, Basra 61004, Basrah, Iraq
| | - Yun Hin Taufiq-Yap
- Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Faculty of Science and Natural Resources, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
- Correspondence: (P.S.); (Y.H.T.-Y.)
| |
Collapse
|
12
|
Philip S, Jayasree EG, Mohanan K. Antiproliferative studies of transition metal chelates of a pyrazolone based hydrazone derivative. J Biomol Struct Dyn 2023; 41:1730-1744. [PMID: 35021958 DOI: 10.1080/07391102.2021.2024257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pyrazolone derivatives play a significant role in the treatment of cancer. The synergic effect which emerges from the combination of pyrazolone moiety with hydrazone functionality was investigated. The objective of this study was to explore the antiproliferative potential of copper(II), cobalt(II), nickel(II) and zinc(II) metal chelates synthesized from pyrazolone based hydrazone derivative. The ligand and the metal chelates were characterized by various spectroscopic and analytical studies. The ligand was characterized by single crystal X-ray diffraction analysis.The results were in line with the spectroscopic methods. The geometry optimization of ligand and metal chelates were performed using density functional theory (DFT). The invitro cytotoxicity of ligand and metal chelates against different cancer cell lines was investigated by MTT assay. The cell-viability experiments showed that copper(II) complex is an efficient cytotoxic agent against HeLa cell line. Moreover, possible inhibition mechanism of synthesized compounds was evaluated in silico against HPV16-E6 receptor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Surya Philip
- Department of Chemistry, Mar Thoma College, Tiruvalla, Kerala, India.,Department of Chemistry, University of Kerala, Trivandrum, Kerala, India
| | | | | |
Collapse
|
13
|
Öztürk F. Structural characterization (XRD, FTIR) and magnetic studies of Cd(II)-Sulfamethoxazole-2,2′-bipyridine: DFT and Hirshfeld Surface Analysis. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.133945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Ahmed ME, Raghibi Boroujeni M, Ghosh P, Greene C, Kundu S, Bertke JA, Warren TH. Electrocatalytic Ammonia Oxidation by a Low-Coordinate Copper Complex. J Am Chem Soc 2022; 144:21136-21145. [DOI: 10.1021/jacs.2c07977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Md Estak Ahmed
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Chemistry, Georgetown University, Box 51277-1227, Washington, D.C. 20057, United States
| | - Mahdi Raghibi Boroujeni
- Department of Chemistry, Georgetown University, Box 51277-1227, Washington, D.C. 20057, United States
| | - Pokhraj Ghosh
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Chemistry, Georgetown University, Box 51277-1227, Washington, D.C. 20057, United States
| | - Christine Greene
- Department of Chemistry, Georgetown University, Box 51277-1227, Washington, D.C. 20057, United States
| | - Subrata Kundu
- Department of Chemistry, Georgetown University, Box 51277-1227, Washington, D.C. 20057, United States
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Jeffery A. Bertke
- Department of Chemistry, Georgetown University, Box 51277-1227, Washington, D.C. 20057, United States
| | - Timothy H. Warren
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Chemistry, Georgetown University, Box 51277-1227, Washington, D.C. 20057, United States
| |
Collapse
|
15
|
Preinerová K, Puchoňová M, Schoeller M, Kuchtanin V, Molnárová N, Kryštofová S, Mazúr M, Iľko I, Peterková V, Moncol J. Synthesis, characterization, Hirshfeld surface analysis, and the study of antimicrobial, and acaricidal properties of copper(II) complexes with 2-(hydroxymethyl)benzimidazole ligand. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Kumar S, Devi J, Ghule VD. Synthesis, spectral analysis, DFT-assisted studies, in vitro antioxidant and antimicrobial activity of transition metal complexes of hydrazone ligands derived from 4-nitrocinnemaldehyde. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04769-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Ahmed S, Jayathuna MA, Mahendiran D, Bharathi S, Kalilur Rahiman A. Heteroleptic silver(I), nickel(II), and copper(II) complexes of N
4
‐substituted thiosemicarbazones and ciprofloxacin: Theoretical, in vitro anti‐proliferative, and in silico molecular modeling and pharmacokinetics studies. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sumeer Ahmed
- Post‐Graduate and Research Department of Chemistry, The New College (Autonomous) University of Madras Chennai India
| | - Mugamathu Ali Jayathuna
- Post‐Graduate and Research Department of Chemistry, The New College (Autonomous) University of Madras Chennai India
| | - Dharmasivam Mahendiran
- Post‐Graduate and Research Department of Chemistry, The New College (Autonomous) University of Madras Chennai India
- Centre for Cancer Cell Biology and Drug Discovery Griffith Institute for Drug Discovery, Griffith University, Nathan Brisbane Queensland Australia
| | - Sundaram Bharathi
- Post‐Graduate and Research Department of Chemistry, The New College (Autonomous) University of Madras Chennai India
- Department of Chemistry, School of Basic Sciences Vels Institute of Science, Technology and Advanced Studies Chennai India
| | - Aziz Kalilur Rahiman
- Post‐Graduate and Research Department of Chemistry, The New College (Autonomous) University of Madras Chennai India
| |
Collapse
|
18
|
Deswal Y, Asija S, Dubey A, Deswal L, Kumar D, Kumar Jindal D, Devi J. Cobalt(II), nickel(II), copper(II) and zinc(II) complexes of thiadiazole based Schiff base ligands: Synthesis, structural characterization, DFT, antidiabetic and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132266] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
19
|
El‐Sonbati AZ, Diab MA, El‐Sayed AK, Abou‐Dobara MI, El‐Sayad SA. Synthesis, characterization, molecular docking, biological activity and DNA cleavage studies of Cu (II), Co (II), Ni (II), Mn (II) and Cd (II) Schiff base complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- A. Z. El‐Sonbati
- Chemistry Department, Faculty of Science Damietta University Damietta Egypt
| | - M. A. Diab
- Chemistry Department, Faculty of Science Damietta University Damietta Egypt
| | - A. K. El‐Sayed
- Botany and Microbiology Department, Faculty of Science Damietta University Damietta Egypt
| | - M. I. Abou‐Dobara
- Botany and Microbiology Department, Faculty of Science Damietta University Damietta Egypt
| | - S. A. El‐Sayad
- Chemistry Department, Faculty of Science Damietta University Damietta Egypt
| |
Collapse
|
20
|
Wang Y, Huynh TT, Bandara N, Cho HJ, Rogers BE, Mirica LM. 2-(4-Hydroxyphenyl)benzothiazole dicarboxylate ester TACN chelators for 64Cu PET imaging in Alzheimer's disease. Dalton Trans 2022; 51:1216-1224. [PMID: 34951428 PMCID: PMC8969080 DOI: 10.1039/d1dt02767k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Herein we report a new series of bifunctional chelators (BFCs) with high affinity for amyloid β aggregates, strong binding affinity towards Cu(II), and favorable lipophilicity for potential blood-brain barrier (BBB) penetration. The alkyl carboxylate ester pendant arms show high binding affinity towards Cu(II). The BFCs form stable 64Cu-radiolabeled complexes and exhibit favorable partition coefficient (log D) values of 0.75-0.95. Among the five compounds tested, 64Cu-YW-1 and 64Cu-YW-13 complexes exhibit significant staining of amyloid plaques in ex vivo autoradiography studies.
Collapse
Affiliation(s)
- Yujue Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Truc T. Huynh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63108, United States, Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Nilantha Bandara
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63108, United States
| | - Hong-Jun Cho
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Buck E. Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63108, United States
| | - Liviu M. Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, United States,Corresponding Author:
| |
Collapse
|
21
|
AlHaddad N, Lelong E, Suh JM, Cordier M, Lim MH, Royal G, Platas-Iglesias C, Bernard H, Tripier R. Copper(II) and Zinc(II) Complexation with N Ethylene hydroxycyclams and Consequences on the Macrocyclic Backbone Configuration. Dalton Trans 2022; 51:8640-8656. [DOI: 10.1039/d2dt00941b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a series of four cyclams and cross-bridged cyclams, N-functionalized by one hydroxyethyl arm, which may incorporate additional methyl(s) group(s). The Cu(II) and Zn(II) complexes of these ligands were...
Collapse
|
22
|
Jozefíková F, Perontsis S, Koňáriková K, Švorc Ľ, Mazúr M, Psomas G, Moncol J. In vitro biological activity of copper(II) complexes with NSAIDs and nicotinamide: Characterization, DNA- and BSA-interaction study and anticancer activity. J Inorg Biochem 2021; 228:111696. [PMID: 35030390 DOI: 10.1016/j.jinorgbio.2021.111696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 11/28/2022]
Abstract
Through the reaction of copper(II) acetate with nicotinamide (pyridine-3-carboxylic acid amide, niacinamide) and some derivatives of N-phenylanthranilic acid (fenamates), seven new mixed-ligand copper(II) compounds were isolated: [Cu(tolf-O)(tolf-O,O')nia-N)2(EtOH)] (1), [Cu(tolf-O)(tolf-O,O')(nia-N)2(MeOH)] (2), [Cu(meclf-O)(meclf-O,O')(nia-N)2(EtOH)] (3), [Cu(meclf-O)(meclf-O,O')(nia-N)2(MeOH)] (4), [Cu(meclf-O)(meclf-O,O')(nia-N)2(ACN)] (5), [Cu(mef-O)(mef-O,O')(nia-N)2(EtOH)] (6) and [Cu(mef-O)(mef-O,O')(nia-N)2(ACN)] (7) containing a molecule of relevant solvent as ligand in their primary crystal structure (tolf = tolfenamate, meclf = meclofenamate, mef = mefenamate, nia = nicotinamide, EtOH = ethanol, MeOH = methanol, ACN = acetonitrile). The structures of the complexes were determined by single-crystal X-ray analysis. The intermolecular interactions were studied by Hirshfeld surface analysis. The complexes were characterized by IR, UV-vis and EPR spectroscopy and their redox properties were determined by cyclic voltammetry. The interaction of the complexes with bovine serum albumin was studied by fluorescence emission spectroscopy and the albumin-binding constants of the compounds were calculated. The interaction of the complexes with calf-thymus DNA was monitored by diverse techniques (UV-vis spectroscopy, cyclic voltammetry, viscosity measurements) suggesting intercalation as the most possible mode of binding. DNA-competitive studies of the complexes with ethidium bromide were monitored by fluorescence emission spectroscopy. The cytotoxic effects of copper(II) complexes on lung carcinoma cells and healthy cells were determined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] colorimetric technique.
Collapse
Affiliation(s)
- Flóra Jozefíková
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Spyros Perontsis
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Katarína Koňáriková
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 81372 Bratislava, Slovakia
| | - Ľubomír Švorc
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Milan Mazúr
- Department of Physical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| | - Ján Moncol
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia.
| |
Collapse
|
23
|
Rajakkani P, Alagarraj A, Gurusamy Thangavelu SA. Tetraaza macrocyclic Schiff base metal complexes bearing pendant groups: Synthesis, characterization and bioactivity studies. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Transition metal complexes of triazole-based bioactive ligands: synthesis, spectral characterization, antimicrobial, anticancer and molecular docking studies. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [PMCID: PMC8608565 DOI: 10.1007/s11164-021-04621-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the present research work, four new heterocyclic Schiff base ligands (1–4) were synthesized by the condensation of 4-(4-amino-5-mercapto-4H-1,2,4-triazol-3-yl)phenol with salicylaldehyde derivatives in 1:1 molar ratio. The synthesized Schiff base ligands were allowed for complexation with Co(II), Ni(II), Cu(II), Zn(II) metal ions. The structure of the newly synthesized compounds (1–20) was elucidated with the help of various spectral and physicochemical techniques. Spectroscopic data confirm the tridentate nature of ligands which coordinate to the metal via deprotonated oxygen, azomethine nitrogen and thiol sulphur. Conductivity data showed the non-electrolytic nature of complexes. Furthermore, the synthesized compounds were evaluated for their in-vitro antimicrobial activity against four pathogenic bacterial strains and two pathogenic fungal strains. The observed results of microbial activity reveals that compound 3 and its complexes (13–16) were found most potent against the pathogenic strains. In addition, the anticancer activity of all the synthesized compounds was evaluated against human carcinoma cell lines i.e. HCT-116, DU145 and A549 using MTT assay. Among the tested compounds 12, 19, and 20 were found to show promising potency against the cancer cell lines. To rationalize the preferred modes of interaction of most potent compounds with the active site of human EGFR protein (PDB id: 5XGM), molecular docking studies were performed.
Collapse
|
25
|
Lelong E, Suh JM, Kim G, Esteban-Gómez D, Cordier M, Lim MH, Delgado R, Royal G, Platas-Iglesias C, Bernard H, Tripier R. Complexation of C-Functionalized Cyclams with Copper(II) and Zinc(II): Similarities and Changes When Compared to Parent Cyclam Analogues. Inorg Chem 2021; 60:10857-10872. [PMID: 34286969 DOI: 10.1021/acs.inorgchem.1c01572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report a comprehensive coordination study of the previously reported ligands cyclam, CB-cyclam, TMC, DMC, and CB-DMC and of their C-functional analogues, cyclam-E, CB-cyclam-E, TMC-E, DMC-E, and CB-DMC-E. This group of ligands includes cyclam, cross-bridged cyclams, their di- or tetramethylated derivatives, and the analogues bearing an additional hydroxyethyl group on one β-N position of the ring. The Cu(II) and Zn(II) complexes of these macrocycles have been highlighted previously for the biological interest, but the details of their structures in the solid state and in solution remained largely unexplored. In particular, we analyzed the impact that adding noncoordinating N-methyl and C-hydroxyethyl functionalities has in the structures of the complexes. All the Cu(II) and Zn(II) complexes were synthesized and investigated using single crystal X-ray diffraction and NMR, electronic absorption, and EPR spectroscopies, along with DFT studies. Dissociation kinetics experiments in acidic conditions and electrochemical studies were also performed. Special attention was paid to analyze the different configurations present in solution and in the solid state, as well as the impact of the C-appended hydroxyethyl group on the coordination behavior. Various ratios of the trans-I, trans-III, and cis-V configurations have been observed depending on the degree of N-methylation and the presence of the ethylene cross-bridge.
Collapse
Affiliation(s)
- Evan Lelong
- University Brest, UMR CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France
| | - Jong-Min Suh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Gunhee Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - David Esteban-Gómez
- Departamento de Química, Facultade de Ciencias & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Marie Cordier
- University Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226, F-35000 Rennes, France
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Rita Delgado
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Guy Royal
- CNRS, Département de Chimie Moléculaire (UMR5250), Université Grenoble Alpes, F38400 Grenoble, France
| | - Carlos Platas-Iglesias
- Departamento de Química, Facultade de Ciencias & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Hélène Bernard
- University Brest, UMR CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France
| | - Raphaël Tripier
- University Brest, UMR CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France
| |
Collapse
|
26
|
Cristiani C, Iannicelli-Zubiani EM, Bellotto M, Dotelli G, Stampino PG, Latorrata S, Ramis G, Finocchio E. Capture Mechanism of La and Cu Ions in Mixed Solutions by Clay and Organoclay. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cinzia Cristiani
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Elena Maria Iannicelli-Zubiani
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Maurizio Bellotto
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Giovanni Dotelli
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Paola Gallo Stampino
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Saverio Latorrata
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Gianguido Ramis
- Dipartimento di Ingegneria Civile, Chimica e Ambientale, Università di Genova, Via all’Opera Pia 15, 16145 Genova, Italy
| | - Elisabetta Finocchio
- Dipartimento di Ingegneria Civile, Chimica e Ambientale, Università di Genova, Via all’Opera Pia 15, 16145 Genova, Italy
| |
Collapse
|
27
|
Structural characterization, spectroscopic properties, and Hirshfeld surface analysis of two copper(II) complexes with 3,14-dimethyl and 3,14-diethyl-2,6,13,17-diazadiazoniatricyclo[16.4.0.07,12]docosa-2,13-diene. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Marchi C, Panzeri G, Pedrazzetti L, Khalil MI, Lucotti A, Parravicini J, Acciarri M, Binetti S, Magagnin L. One-step CZT electroplating from alkaline solution on flexible Mo foil for CZTS absorber. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04951-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractIn this work, Cu-Zn-Sn (CZT) is co-electrodeposited onto a flexible Mo substrate exploiting an alkaline bath (pH 10). The plating solution is studied by cyclic voltammetry, highlighting the effects of potassium pyrophosphate (K4P2O7) and EDTA-Na2 on the electrochemical behavior and stability of the metallic ionic species. The optimized synthesis results in a homogeneous precursor layer, with composition Cu 44 ± 2 at. %, Zn 28 ± 1 at. %, and Sn 28 ± 2 at. %. Soft and reactive annealing are employed respectively to promote intermetallic phase formation and sulfurization of the precursor to obtain CZTS. Microstructural (XRD, Raman), morphological (SEM), and compositional (EDX, XRF) characterization is carried out on CZT and CZTS films, showing a minor presence of secondary phases. Finally, photo-assisted water splitting tests are performed considering a CZTS/CdS/Pt photoelectrode, showing a photocurrent density of 1.01 mA cm−2 at 0 V vs. RHE under 1 sun illumination.
Graphical abstract
Collapse
|
29
|
Hanson DS, Wang Y, Zhou X, Washburn E, Ekmekci MB, Dennis D, Paripati A, Xiao D, Zhou M. Catalytic Urea Synthesis from Ammonium Carbamate Using a Copper(II) Complex: A Combined Experimental and Theoretical Study. Inorg Chem 2021; 60:5573-5589. [PMID: 33826330 DOI: 10.1021/acs.inorgchem.0c03467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The synthesis of urea fertilizer is currently the largest CO2 conversion process by volume in the industry. In this process, ammonium carbamate is an intermediate en route to urea formation. We determined that the tetraammineaquacopper(II) sulfate complex, [Cu(NH3)4(OH2)]SO4, catalyzed the formation of urea from ammonium carbamate in an aqueous solution. A urea yield of up to 18 ± 6% was obtained at 120 °C after 15 h and in a high-pressure metal reactor. No significant urea formed without the catalyst. The urea product was characterized by Fourier transform infrared (FT-IR), powder X-ray diffraction (PXRD), and quantitative 1H{13C} NMR analyses. The [Cu(NH3)4(OH2)]SO4 catalyst was then recovered at the end of the reaction in a 29% recovery yield, as verified by FT-IR, PXRD, and quantitative UV-vis spectroscopy. A precipitation method using CO2 was developed to recover and reuse 66 ± 3% of Cu(II). The catalysis mechanism was investigated by the density functional theory at the B3LYP/6-31G** level with an SMD continuum solvent model. We determined that the [Cu(NH3)4]2+ complex is likely an effective catalyst structure. The study of the catalysis mechanism suggests that the coordinated carbamate with [Cu(NH3)4]2+ is likely the starting point of the catalyzed reaction, and carbamic acid can be involved as a transient intermediate that facilitates the removal of an OH group. Our work has paved the way for the rational design of catalysts for urea synthesis from the greenhouse gas CO2.
Collapse
Affiliation(s)
- Danielle S Hanson
- Department of Natural Sciences, Lawrence Technological University, 21000 West Ten Mile Road, Southfield, Michigan 48075, United States
| | - Yigui Wang
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical Engineering, University of New Haven, 300 Boston Post Road, West Haven, Connecticut 06516, United States
| | - Xinrui Zhou
- Department of Natural Sciences, Lawrence Technological University, 21000 West Ten Mile Road, Southfield, Michigan 48075, United States
| | - Erik Washburn
- Department of Natural Sciences, Lawrence Technological University, 21000 West Ten Mile Road, Southfield, Michigan 48075, United States
| | - Merve B Ekmekci
- Department of Natural Sciences, Lawrence Technological University, 21000 West Ten Mile Road, Southfield, Michigan 48075, United States
| | - Donovan Dennis
- Department of Natural Sciences, Lawrence Technological University, 21000 West Ten Mile Road, Southfield, Michigan 48075, United States
| | - Amay Paripati
- Department of Natural Sciences, Lawrence Technological University, 21000 West Ten Mile Road, Southfield, Michigan 48075, United States
| | - Dequan Xiao
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical Engineering, University of New Haven, 300 Boston Post Road, West Haven, Connecticut 06516, United States
| | - Meng Zhou
- Department of Natural Sciences, Lawrence Technological University, 21000 West Ten Mile Road, Southfield, Michigan 48075, United States
| |
Collapse
|
30
|
Puchoňová M, Maroszová J, Mazúr M, Valigura D, Moncol J. Structures with different supramolecular interactions and spectral properties of monomeric, dimeric and polymeric benzoatocopper(II) complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Knighton RC, Troadec T, Mazan V, Le Saëc P, Marionneau-Lambot S, Le Bihan T, Saffon-Merceron N, Le Bris N, Chérel M, Faivre-Chauvet A, Elhabiri M, Charbonnière LJ, Tripier R. Cyclam-Based Chelators Bearing Phosphonated Pyridine Pendants for 64Cu-PET Imaging: Synthesis, Physicochemical Studies, Radiolabeling, and Bioimaging. Inorg Chem 2021; 60:2634-2648. [PMID: 33496592 DOI: 10.1021/acs.inorgchem.0c03492] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we present the preparation of two novel cyclam-based macrocycles (te1pyp and cb-te1pyp), bearing phosphonate-appended pyridine side arms for the coordination of copper(II) ions in the context of 64Cu PET imaging. The two ligands have been prepared through conventional protection-alkylation sequences on cyclam, and their coordination properties have been thoroughly investigated. The corresponding copper complexes have been fully characterized in the solid state (X-ray diffraction analysis) and in solution (EPR and UV-vis spectroscopies). Potentiometric studies combined with spectrometry have also allowed us to determine their thermodynamic stability constants, confirming their high affinity for copper(II) cations. The kinetic inertness of the complexes has been verified by acid-assisted dissociation experiments, enabling their use in 64Cu-PET imaging in mice for the first time. Indeed, the two ligands could be quantitatively radiolabeled under mild conditions, and the resulting 64Cu complexes have demonstrated excellent stability in serum. PET imaging demonstrated a set of features emerging from the combination of picolinates and phosphonate units: high stability in vivo, fast clearance from the body via renal elimination, and most interestingly, very low fixation in the liver. This is in contrast with what was observed for monopicolinate cyclam (te1pa), which had a non-negligible accumulation in the liver, owing probably to its different charge and lipophilicity. These results thus pave the way for the use of such phosphonated pyridine chelators for in vivo 64Cu-PET imaging.
Collapse
Affiliation(s)
- Richard C Knighton
- Univ. Brest, UMR CNRS 6521, 6 Avenue Victor Le Gorgeu, 29200 Brest, France
| | - Thibault Troadec
- Univ. Brest, UMR CNRS 6521, 6 Avenue Victor Le Gorgeu, 29200 Brest, France
| | - Valérie Mazan
- Université de Strasbourg, CNRS, UMR 7042-LIMA, Equipe de Chimie Bioorganique et Médicinale, ECPM, 25 rue Becquerel, Strasbourg 67087, France
| | - Patricia Le Saëc
- Université de Nantes, CHRU de Nantes, Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Unité INSERM 1232-CNRS 6299, 8 quai Moncousu, BP 70721, 44007 Nantes Cedex, France
| | - Séverine Marionneau-Lambot
- Université de Nantes, CHRU de Nantes, Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Unité INSERM 1232-CNRS 6299, 8 quai Moncousu, BP 70721, 44007 Nantes Cedex, France
| | - Thomas Le Bihan
- Univ. Brest, UMR CNRS 6521, 6 Avenue Victor Le Gorgeu, 29200 Brest, France
| | | | - Nathalie Le Bris
- Univ. Brest, UMR CNRS 6521, 6 Avenue Victor Le Gorgeu, 29200 Brest, France
| | - Michel Chérel
- Université de Nantes, CHRU de Nantes, Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Unité INSERM 1232-CNRS 6299, 8 quai Moncousu, BP 70721, 44007 Nantes Cedex, France
| | - Alain Faivre-Chauvet
- Université de Nantes, CHRU de Nantes, Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Unité INSERM 1232-CNRS 6299, 8 quai Moncousu, BP 70721, 44007 Nantes Cedex, France
| | - Mourad Elhabiri
- Université de Strasbourg, CNRS, UMR 7042-LIMA, Equipe de Chimie Bioorganique et Médicinale, ECPM, 25 rue Becquerel, Strasbourg 67087, France
| | - Loïc J Charbonnière
- UMR 7178, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, ECPM, , 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | - Raphaël Tripier
- Univ. Brest, UMR CNRS 6521, 6 Avenue Victor Le Gorgeu, 29200 Brest, France
| |
Collapse
|
32
|
Aldulmani SA. Spectral, modeling, dna binding/cleavage and biological activity studies on the newly synthesized 4-[(Furan-2-ylmethylene)amino]-3-[(2‑hydroxy‑benzylidene)amino]-phenyl}-phenyl-methanone and some bivalent metal(II) chelates. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Zhao C, Luo Z, Kong D, Peng H, Li D, Esmaeili N. Excellent role of
Cu
2
O
on fire safety of epoxy resin with ammonium polyphosphate based on the construction of self‐intumescent flame retardant system. J Appl Polym Sci 2021. [DOI: 10.1002/app.50503] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cheng‐Shou Zhao
- Faculty of Geosciences and Environmental Engineering Southwest Jiaotong University Chengdu China
| | - Zhen‐Jun Luo
- Faculty of Geosciences and Environmental Engineering Southwest Jiaotong University Chengdu China
| | - De‐Yan Kong
- Faculty of Geosciences and Environmental Engineering Southwest Jiaotong University Chengdu China
| | - Hua‐qiao Peng
- The Second Research Institute of Civil Aviation Administration of China Chengdu China
| | - De‐Fu Li
- Faculty of Geosciences and Environmental Engineering Southwest Jiaotong University Chengdu China
| | - Nima Esmaeili
- Institute for Materials Research and Innovation University of Bolton Bolton UK
| |
Collapse
|
34
|
Saha S, Sahil ST, Mazumder MMR, Stephens AM, Cronin B, Duin EC, Jurss JW, Farnum BH. Synthesis, characterization, and electrocatalytic activity of bis(pyridylimino)isoindoline Cu(ii) and Ni(ii) complexes. Dalton Trans 2021; 50:926-935. [DOI: 10.1039/d0dt03030a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Similar structure observed between Cu(ii) and Ni(ii) based bis(pyridylimino)isoindole complexes, yet greatly different levels of catalytic activity.
Collapse
Affiliation(s)
- Soumen Saha
- Department of Chemistry and Biochemistry
- Auburn University
- Auburn
- USA
| | - Sha Tamanna Sahil
- Department of Chemistry and Biochemistry
- University of Mississippi
- University
- USA
| | | | | | - Bryan Cronin
- Department of Chemistry and Biochemistry
- Auburn University
- Auburn
- USA
| | - Evert C. Duin
- Department of Chemistry and Biochemistry
- Auburn University
- Auburn
- USA
| | - Jonah W. Jurss
- Department of Chemistry and Biochemistry
- University of Mississippi
- University
- USA
| | - Byron H. Farnum
- Department of Chemistry and Biochemistry
- Auburn University
- Auburn
- USA
| |
Collapse
|
35
|
Synthesis, characterization, antioxidant and antidiabetic studies of Cu(II) and Zn(II) complexes of tolfenamic acid/mefenamic acid with 1-methylimidazole. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Jozefikova F, Kuckova L, Lokaj J, Mazur M, Moncol J. Hydrogen bonding supramolecular networks of copper(II) 2-choronicotinate complexes with picolinamide, nicotinamide, N-methyl-nicotinamide, 2-pyridylmethanol and 4-pyridylmethanol: Hirshfeld surface analysis and spectral properties. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Puchoňová M, Maroszová J, Vasková Z, Mazúr M, Valigura D, Koman M, Moncol J. One dimensional carboxylatocopper(II) coordination polymers with 4-pyridylmethanol. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Alves RC, Lucena GN, de Farias RL, da Silva PB, da Silva IC, Pavan FR, Chorilli M, da Costa Ferreira AM, Galvão Frem RC. Copper(II) biocompatible coordination solids as potential platforms for diclofenac delivery systems. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Al‐Mohaimeed AM, Al‐Farraj ES, Al‐Onazi WA, Alothman AA, Almarhoon ZM. Synthesis, characterization, density functional theory, thermal, antimicrobial efficacy, and
DNA
binding/cleavage studies of Cu(
II
), Cr(
III
), Fe(
III
), Ni(
II
), Co(
II
), Zn(
II
), and Pt(
IV
) complexes with a derivative of 2‐hydroxyphenoxymethylfuran‐5‐carbaldehyde. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Amal M. Al‐Mohaimeed
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| | - Eida S. Al‐Farraj
- Department of Chemistry, College of Science Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh Saudi Arabia
| | - Wedad A. Al‐Onazi
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| | - Asma A. Alothman
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| | - Zainab M. Almarhoon
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| |
Collapse
|
40
|
Bharathi S, Mahendiran D, Senthil Kumar R, Kalilur Rahiman A. In Vitro Antioxidant and Insulin Mimetic Activities of Heteroleptic Oxovanadium(IV) Complexes with Thiosemicarbazones and Naproxen. ChemistrySelect 2020. [DOI: 10.1002/slct.202000911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sundaram Bharathi
- Post-Graduate and Research Department of ChemistryThe New College (Autonomous), University of Madras Chennai 600 014 India
| | - Dharmasivam Mahendiran
- Post-Graduate and Research Department of ChemistryThe New College (Autonomous), University of Madras Chennai 600 014 India
- Molecular Pharmacology and Pathology Program, Department of PathologyBosch Institute, University of Sydney NSW 2006 Australia
| | - Raju Senthil Kumar
- Department of Pharmaceutical ChemistrySwamy Vivekanandha College of Pharmacy, Elayampalayam Tiruchengodu 637 205 India
| | - Aziz Kalilur Rahiman
- Post-Graduate and Research Department of ChemistryThe New College (Autonomous), University of Madras Chennai 600 014 India
| |
Collapse
|
41
|
Fayed TA, Gaber M, Abu El‐Reash GM, El‐Gamil MM. Structural, DFT/B3LYP and molecular docking studies of binuclear thiosemicarbazide Copper (II) complexes and their biological investigations. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5800] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tarek A. Fayed
- Department of Chemistry, Faculty of ScienceTanta University Tanta Egypt
| | - Mohamed Gaber
- Department of Chemistry, Faculty of ScienceTanta University Tanta Egypt
| | - Gaber M. Abu El‐Reash
- Department of Chemistry, Faculty of ScienceMansoura University Mansoura, P.O.Box 70 Mansoura Egypt
| | - Mohammed M. El‐Gamil
- Department of Toxic and Narcotic Drug, Forensic Medicine, Mansoura Laboratory, Medico legal OrganizationMinistry of Justice Egypt
| |
Collapse
|
42
|
Revathi N, Sankarganesh M, Dhaveethu Raja J, Vinoth Kumar GG, Sakthivel A, Rajasekaran R. Bio-active mixed ligand Cu(II) and Zn(II) complexes of pyrimidine derivative Schiff base: DFT calculation, antimicrobial, antioxidant, DNA binding, anticancer and molecular docking studies. J Biomol Struct Dyn 2020; 39:3012-3024. [DOI: 10.1080/07391102.2020.1759454] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nagaraj Revathi
- Department of Chemistry, Ramco Institute of Technology, Virudhunagar, Tamil Nadu, India
- Department of Chemistry, Manonmanium Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Murugesan Sankarganesh
- Department of Chemistry, K. Ramakrishnan College of Technology, Trichy, Tamil Nadu, India
| | | | | | - Arumugam Sakthivel
- Department of Chemistry, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India
| | - Ramalingam Rajasekaran
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| |
Collapse
|
43
|
Kuriakose D, Prathapachandra Kurup M. Supramolecular frameworks formed via hydrogen bonding and non-covalent interactions and interaction energy calculations of solvent coordinated cis-dioxomolybdenum(VI) complexes derived from ONO donor aroylhydrazone: Cytotoxicity studies. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Muthuramalingam S, Anandababu K, Velusamy M, Mayilmurugan R. Benzene Hydroxylation by Bioinspired Copper(II) Complexes: Coordination Geometry versus Reactivity. Inorg Chem 2020; 59:5918-5928. [DOI: 10.1021/acs.inorgchem.9b03676] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sethuraman Muthuramalingam
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Karunanithi Anandababu
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Marappan Velusamy
- Department of Chemistry, North Eastern Hill University, Shillong 793022, India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| |
Collapse
|
45
|
Alothman AA, Almarhoon ZM. Nano-sized some transition metal complexes of Schiff base ligand based on 1-aminoquinolin-2(1H)-one. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Kuriakose D, Kurup MP. Mononuclear and binuclear dioxidomolybdenum(VI) complexes of ONO appended aroylhydrazone: Crystal structures, interaction energy calculation and cytotoxicity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
47
|
Dhanaraj CJ, Remya DS. Synthesis, spectral-characterization, biological and DFT studies of mixed ligand metal(II) complexes of 1,10-phenanthroline bearing 2-aminothiazole moiety. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1720731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Chellaian Justin Dhanaraj
- Department of Chemistry, University College of Engineering Nagercoil, Anna University, Nagercoil, Tamil Nadu, India
| | - Dharmasingh Sobhanabai Remya
- Department of Chemistry, University College of Engineering Nagercoil, Anna University, Nagercoil, Tamil Nadu, India
| |
Collapse
|
48
|
Syntheses, crystal structures and spectroscopic properties of two Cu2+-doped single crystals containing 3,14-diethyl-2,6,13,17-tetraazatricyclo[16.4.0.07,12]docosane. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Halaška J, Lokaj J, Jomová K, Růžičková Z, Mazúr M, Moncol J. Formation of supramolecular hydrogen-bonding chains and networks from copper (II) halogenobenzoates with N-methylnicotinamide: Supramolecular isomerism. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Chakraborty M, Mondal A, Chattopadhyay SK. Structural divergence in binuclear Cu(ii) pyridoxal Schiff base complexes probed by co-ligands: catecholase mimetic activity and sulphide ion sensing. NEW J CHEM 2020. [DOI: 10.1039/d0nj00719f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three Cu(ii) complexes showing efficient catecholase activity, with pronounced solvent sensitivity, S2−sensing ability in micromolar concentrations, and coligand dependent denticity of the pyridoxal Schiff base ligand are reported.
Collapse
Affiliation(s)
- Moumita Chakraborty
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Shibpur
- Howrah 711103
- India
| | - Antu Mondal
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Shibpur
- Howrah 711103
- India
| | | |
Collapse
|