1
|
Biswas S, Karim S, Bhunia P, Banerjee S, Das AK, Das D. UV-assisted photochemical transformation of a tetranuclear copper(II) complex: a DFT supported study on β-lactamase inhibitory activity towards antibiotic resistance. Dalton Trans 2024; 53:9979-9994. [PMID: 38812408 DOI: 10.1039/d4dt00357h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Herein, we present a dark-green crystalline tetranuclear Cu(II) Schiff base complex {C1 = [Cu4L4](ClO4)4(DMF)4(H2O)} using a N,N,O donor ligand (HL), namely 2-(((2-hydroxypropyl)imino)methyl)-6-methoxyphenol. Spectro-photometrical investigation on the β-lactamase-like activity of this coordinately saturated system revealed its catalytic inefficiency towards hydrolysis of nitrocefin as a model substrate. This complex has attracted significant interest as a promising photo-catalyst owing to its narrow band gap (2.40 eV) as predicted from DFT calculations and its higher responsivity towards UV light. Therefore, C1 is effectively involved in the photocatalytic reduction of perchlorate to Cl- in the presence of a hole scavenger (H2O-MeOH) under prolonged UV irradiation and itself becomes photo-cleaved to yield a new dark-brown colored chlorobridged dinuclear crystalline complex C2 {[CuL(H2O)2Cl3]H2O}. Furthermore, C2 was deployed as a functional β-lactamase model and was found to show a remarkable catalytic proficiency towards the hydrolysis of nitrocefin in 70 : 30 (V/V) MeOH-H2O medium. This pro-catalyst C2 has been speculated to generate an aqua bridged active catalyst that plays a crucial factor in hydrolysis. This phenomenon was again experimentally established by potentiometric pH titration where C2 displays only one pKa value (7.11) in the basic pH range, indicating the deprotonation of the bridged water molecule. Based on several other kinetic studies, it may be postulated that the hydrolysis of nitrocefin is initiated by the nucleophilic attack of a bridging hydroxide, followed by very fast protonation of the intermediate to furnish the hydrolyzed product. It is noteworthy that the rate of nitrocefin hydrolysis is greatly inhibited in the presence of external chloride concentration. To the best of our knowledge, this is the first report on the photochemical behavior of such a tetranuclear copper(II) Schiff base complex. Our current interest is focused on inventing a potent β-lactamase inhibitory therapeutic as well as elucidating its mechanism through comprehensive chemical analysis.
Collapse
Affiliation(s)
- Sneha Biswas
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India.
| | - Suhana Karim
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India.
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Pradip Bhunia
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India.
| | - Soumadip Banerjee
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Abhijit K Das
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Debasis Das
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India.
| |
Collapse
|
2
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
3
|
Zhang Y, Qiao P, Li S, Feng X, Bian L. Molecular recognition and binding of beta-lactamase II from Bacillus cereus with penicillin V and sulbactam by spectroscopic analysis in combination with docking simulation. LUMINESCENCE 2017; 32:932-941. [PMID: 28185399 DOI: 10.1002/bio.3274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/22/2016] [Accepted: 11/26/2016] [Indexed: 11/10/2022]
Abstract
The molecular recognition and binding interaction of beta-lactamase II from Bacillus cereus (Bc II) with penicillin V (PV) and sulbactam (Sul) at 277 K were studied by spectroscopic analysis and molecular docking. The results showed that a non-fluorescence static complex was separately formed between Bc II and two ligands, the molecular ratio of Bc II to PV or Sul was both 1:1 in the binding and the binding constants were 2.00 × 106 and 3.98 × 105 (L/mol), respectively. The negative free energy changes and apparent activation energies indicated that both the binding processes were spontaneous. Molecular docking showed that in the binding process, the whole Sul molecule entered into the binding pocket of Bc II while only part of the whole PV molecule entered into the pocket due to a long side chain, and electrostatic interactions were the major contribution to the binding processes. In addition, a weak conformational change of Bc II was also observed in the molecular recognition and binding process of Bc II with PV or Sul. This study may provide some valuable information for exploring the recognition and binding of proteins with ligands in the binding process and for the design of novel super-antibiotics.
Collapse
Affiliation(s)
- Yeli Zhang
- College of Life Science, Northwest University, Xi'an, Shaan'xi, People's Republic of China
| | - Pan Qiao
- College of Life Science, Northwest University, Xi'an, Shaan'xi, People's Republic of China
| | - Shuaihua Li
- College of Life Science, Northwest University, Xi'an, Shaan'xi, People's Republic of China
| | - Xuan Feng
- College of Life Science, Northwest University, Xi'an, Shaan'xi, People's Republic of China
| | - Liujiao Bian
- College of Life Science, Northwest University, Xi'an, Shaan'xi, People's Republic of China
| |
Collapse
|
4
|
Tan SH, Normi YM, Leow ATC, Salleh AB, Murad AMA, Mahadi NM, Rahman MBA. Danger lurking in the "unknowns": structure-to-function studies of hypothetical protein Bleg1_2437 from Bacillus lehensis G1 alkaliphile revealed an evolutionary divergent B3 metallo-beta-lactamase. J Biochem 2017; 161:167-186. [PMID: 28175318 DOI: 10.1093/jb/mvw058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/22/2016] [Indexed: 11/12/2022] Open
Abstract
The effectiveness of β-lactam antibiotics as chemotherapeutic agents to treat bacterial infections is gradually threatened with the emergence of antibiotic resistance mechanism among pathogenic bacteria through the production metallo-β-lactamase (MBL). In this study, we discovered a novel hypothetical protein (HP) termed Bleg1_2437 from the genome of alkaliphilic Bacillus lehensis G1 which exhibited MBL-like properties of B3 subclass; but evolutionary divergent from other circulating B3 MBLs. Domain and sequence analysis of HP Bleg1_2437 revealed that it contains highly conserved Zn2+-binding residues such as H54, H56, D58, H59, H131 and H191, important for catalysis, similar with the subclass B3 of MBL. Built 3-D Bleg1_2437 structure exhibited an αββα sandwich layer similar to the well-conserved global topology of MBL superfamily. Other features include a ceiling and floor in the model which are important for accommodation and orientation of β-lactam antibiotics docked to the protein model showed interactions at varying degrees with residues in the binding pocket of Bleg1_2437. Hydrolysis activity towards several β-lactam antibiotics was proven through an in vitro assay using purified recombinant Bleg1_2437 protein. These findings highlight the presence of a clinically important and evolutionary divergent antibiotics-degrading enzyme within the pools of uncharacterized HPs.
Collapse
Affiliation(s)
- Soo Huei Tan
- Center for Enzyme and Microbial Technology (EMTECH), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Center for Enzyme and Microbial Technology (EMTECH), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Adam Thean Chor Leow
- Center for Enzyme and Microbial Technology (EMTECH), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Abu Bakar Salleh
- Center for Enzyme and Microbial Technology (EMTECH), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Abdul Munir Abdul Murad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nor Muhammad Mahadi
- Malaysia Genome Institute, Ministry of Science, Technology and Innovation, Kajang, Selangor, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Center for Enzyme and Microbial Technology (EMTECH), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Malaysia Genome Institute, Ministry of Science, Technology and Innovation, Kajang, Selangor, Malaysia.,Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Demongeot A, Mougnier SJ, Okada S, Soulié-Ziakovic C, Tournilhac F. Coordination and catalysis of Zn2+ in epoxy-based vitrimers. Polym Chem 2016. [DOI: 10.1039/c6py00752j] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Network-coordinated Zn2+ ions activate carbonyls, promote alkoxides and hold reactants close to each other for transesterification.
Collapse
Affiliation(s)
- A. Demongeot
- Laboratoire Matière Molle et Chimie
- UMR7167 CNRS-ESPCI Paris
- PSL Research University
- 75005 Paris
- France
| | - S. J. Mougnier
- Laboratoire Matière Molle et Chimie
- UMR7167 CNRS-ESPCI Paris
- PSL Research University
- 75005 Paris
- France
| | - S. Okada
- Department of Chemistry
- University of Tokyo
- Tokyo 113-0033
- Japan
| | - C. Soulié-Ziakovic
- Laboratoire Matière Molle et Chimie
- UMR7167 CNRS-ESPCI Paris
- PSL Research University
- 75005 Paris
- France
| | - F. Tournilhac
- Laboratoire Matière Molle et Chimie
- UMR7167 CNRS-ESPCI Paris
- PSL Research University
- 75005 Paris
- France
| |
Collapse
|
6
|
New symmetrical dinucleating ligand based assembly of bridged dicopper(II) and dizinc(II) centers: Synthesis, structure, spectroscopy, magnetic properties and glycoside hydrolysis. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.07.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Mitić N, Miraula M, Selleck C, Hadler KS, Uribe E, Pedroso MM, Schenk G. Catalytic mechanisms of metallohydrolases containing two metal ions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 97:49-81. [PMID: 25458355 DOI: 10.1016/bs.apcsb.2014.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At least one-third of enzymes contain metal ions as cofactors necessary for a diverse range of catalytic activities. In the case of polymetallic enzymes (i.e., two or more metal ions involved in catalysis), the presence of two (or more) closely spaced metal ions gives an additional advantage in terms of (i) charge delocalisation, (ii) smaller activation barriers, (iii) the ability to bind larger substrates, (iv) enhanced electrostatic activation of substrates, and (v) decreased transition-state energies. Among this group of proteins, enzymes that catalyze the hydrolysis of ester and amide bonds form a very prominent family, the metallohydrolases. These enzymes are involved in a multitude of biological functions, and an increasing number of them gain attention for translational research in medicine and biotechnology. Their functional versatility and catalytic proficiency are largely due to the presence of metal ions in their active sites. In this chapter, we thus discuss and compare the reaction mechanisms of several closely related enzymes with a view to highlighting the functional diversity bestowed upon them by their metal ion cofactors.
Collapse
Affiliation(s)
- Nataša Mitić
- Department of Chemistry, National University of Ireland, Maynooth, Maynooth, Co. Kildare, Ireland.
| | - Manfredi Miraula
- Department of Chemistry, National University of Ireland, Maynooth, Maynooth, Co. Kildare, Ireland; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Christopher Selleck
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kieran S Hadler
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Elena Uribe
- Department of Biochemistry and Molecular Biology, University of Concepción, Concepción, Chile
| | - Marcelo M Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
8
|
Daumann LJ, Schenk G, Gahan LR. Metallo-β-lactamases and Their Biomimetic Complexes. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Yang H, Aitha M, Marts AR, Hetrick A, Bennett B, Crowder MW, Tierney DL. Spectroscopic and mechanistic studies of heterodimetallic forms of metallo-β-lactamase NDM-1. J Am Chem Soc 2014; 136:7273-85. [PMID: 24754678 PMCID: PMC4046764 DOI: 10.1021/ja410376s] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Indexed: 11/29/2022]
Abstract
In an effort to characterize the roles of each metal ion in metallo-β-lactamase NDM-1, heterodimetallic analogues (CoCo-, ZnCo-, and CoCd-) of the enzyme were generated and characterized. UV-vis, (1)H NMR, EPR, and EXAFS spectroscopies were used to confirm the fidelity of the metal substitutions, including the presence of a homogeneous, heterodimetallic cluster, with a single-atom bridge. This marks the first preparation of a metallo-β-lactamase selectively substituted with a paramagnetic metal ion, Co(II), either in the Zn1 (CoCd-NDM-1) or in the Zn2 site (ZnCo-NDM-1), as well as both (CoCo-NDM-1). We then used these metal-substituted forms of the enzyme to probe the reaction mechanism, using steady-state and stopped-flow kinetics, stopped-flow fluorescence, and rapid-freeze-quench EPR. Both metal sites show significant effects on the kinetic constants, and both paramagnetic variants (CoCd- and ZnCo-NDM-1) showed significant structural changes on reaction with substrate. These changes are discussed in terms of a minimal kinetic mechanism that incorporates all of the data.
Collapse
Affiliation(s)
- Hao Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Mahesh Aitha
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Amy R. Marts
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Alyssa Hetrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Brian Bennett
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Michael W. Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - David L. Tierney
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
10
|
Wu B, Gallucci JC, Parquette JR, RajanBabu TV. Bimetallic catalysis in the highly enantioselective ring–opening reactions of aziridines. Chem Sci 2014. [DOI: 10.1039/c3sc52929k] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Structural and kinetic evidence for bimetallic mechanism.
Collapse
Affiliation(s)
- Bin Wu
- Department of Chemistry and Biochemistry
- The Ohio State University
- Columbus, USA
| | - Judith C. Gallucci
- Department of Chemistry and Biochemistry
- The Ohio State University
- Columbus, USA
| | - Jon R. Parquette
- Department of Chemistry and Biochemistry
- The Ohio State University
- Columbus, USA
| | - T. V. RajanBabu
- Department of Chemistry and Biochemistry
- The Ohio State University
- Columbus, USA
| |
Collapse
|
11
|
Phelan EK, Miraula M, Selleck C, Ollis DL, Schenk G, Mitić N. Metallo-β-Lactamases: A Major Threat to Human Health. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajmb.2014.43011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Daumann LJ, Schenk G, Ollis DL, Gahan LR. Spectroscopic and mechanistic studies of dinuclear metallohydrolases and their biomimetic complexes. Dalton Trans 2013; 43:910-28. [PMID: 24135968 DOI: 10.1039/c3dt52287c] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enhanced understanding of the metal ion binding and active site structural features of phosphoesterases such as the glycerophosphodiesterase from Enterobacter aerogenes (GpdQ), and the organophosphate degrading agent from Agrobacterium radiobacter (OpdA) have important consequences for potential applications. Coupled with investigations of the metalloenzymes, programs of study to synthesise and characterise model complexes based on these metalloenzymes can add to our understanding of structure and function of the enzymes themselves. This review summarises some of our work and illustrates the significance and contributions of model studies to knowledge in the area.
Collapse
Affiliation(s)
- Lena J Daumann
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|
13
|
Lisa MN, Morán-Barrio J, Guindón MF, Vila AJ. Probing the role of Met221 in the unusual metallo-β-lactamase GOB-18. Inorg Chem 2012; 51:12419-25. [PMID: 23113650 DOI: 10.1021/ic301801h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metallo-β-lactamases (MβLs) are the main mechanism of bacterial resistance against last generation β-lactam antibiotics such as carbapenems. Most MβLs display unusual structural features in their active sites, such as binuclear zinc centers without carboxylate bridging ligands and/or a Cys ligand in a catalytic zinc site. Cys221 is an essential residue for catalysis conserved in B1 and B2 lactamases, while most B3 enzymes present a Ser in this position. GOB lactamases stand as an exception within this picture, with a Met residue in position 221. Then, we obtained a series of GOB-18 point mutants in order to analyze the role of this unusual Met221 residue. We found that Met221 is essential for the protein stability, most likely due to its involvement in a hydrophobic core. In contrast to other known MβLs, residue 221 is not involved in metal binding or in catalysis in GOB enzymes, according to spectroscopic and kinetic studies. Our findings show that the essential catalytic features are maintained despite the structural heterogeneity among MβLs and suggest that a strategy to design general inhibitors should be undertaken on the basis of mechanistic rather than structural information.
Collapse
Affiliation(s)
- María-Natalia Lisa
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Predio CONICET Rosario, 2000 Rosario, Argentina
| | | | | | | |
Collapse
|
14
|
Daumann LJ, Gahan LR, Comba P, Schenk G. Cadmium(II) Complexes: Mimics of Organophosphate Pesticide Degrading Enzymes and Metallo-β-lactamases. Inorg Chem 2012; 51:7669-81. [DOI: 10.1021/ic300687y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lena J. Daumann
- School of
Chemistry and Molecular
Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lawrence. R. Gahan
- School of
Chemistry and Molecular
Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter Comba
- Anorganisch-Chemisches Institut, Universitat Heidelberg, Im Neuenheimer Feld 270, 69120
Heidelberg, Germany
| | - Gerhard Schenk
- School of
Chemistry and Molecular
Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Department
of Chemistry, National University of Ireland, Maynooth, County Kildare,
Ireland
| |
Collapse
|
15
|
Breece RM, Llarrull LI, Tioni MF, Vila AJ, Tierney DL. X-ray absorption spectroscopy of metal site speciation in the metallo-β-lactamase BcII from Bacillus cereus. J Inorg Biochem 2012; 111:182-6. [PMID: 22381913 DOI: 10.1016/j.jinorgbio.2011.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 01/25/2023]
Abstract
Cobalt and zinc binding by the subclass B1 metallo-β-lactamase BcII from Bacillus cereus is examined by X-ray absorption spectroscopy, at various levels of metal loading. The data show that a significant amount of the dinuclear enzyme is formed, even at substoichiometric levels of metal loading, whether the added metal is Zn(II) or Co(II). Increasing metal addition, from 0.5 to 1.0 to 2.0eq/mol of enzyme, are shown to result in a more ordered active site. While Zn(II) appears to show no preference for the Zn(1) (3H) or Zn(2) (DCH) sites, the extended X-ray absorption fine structure (EXAFS) suggests that Co(II) shows a slight preference for the DCH site at low levels of added Co(II). The results are discussed in the context of similar metal-binding studies of other B1 metallo-β-lactamases.
Collapse
Affiliation(s)
- Robert M Breece
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States
| | | | | | | | | |
Collapse
|
16
|
In vivo impact of Met221 substitution in GOB metallo-β-lactamase. Antimicrob Agents Chemother 2012; 56:1769-73. [PMID: 22252824 DOI: 10.1128/aac.05418-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metallo-β-lactamases (MβLs) represent one of the main mechanisms of bacterial resistance against β-lactam antibiotics. The elucidation of their mechanism has been limited mostly by the structural diversity among their active sites. All MβLs structurally characterized so far present a Cys or a Ser residue at position 221, which is critical for catalysis. GOB lactamases stand as an exception within this picture, possessing a Met residue in this location. We studied different mutants in this position, and we show that Met221 is essential for protein stability, most likely due to its involvement in a hydrophobic core. In contrast to other known MβLs, residue 221 is not involved in metal binding or in catalysis in GOB enzymes, further highlighting the structural diversity of MβLs. We also demonstrate the usefulness of protein periplasmic profiles to assess the contribution of protein stability to antibiotic resistance.
Collapse
|
17
|
Umayal M, Mugesh G. Metallo-β-lactamase and phosphotriesterase activities of some zinc(II) complexes. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.03.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Tamilselvi A, Mugesh G. Metallo-β-lactamase-Catalyzed Hydrolysis of Cephalosporins: Some Mechanistic Insights into the Effect of Heterocyclic Thiones on Enzyme Activity. Inorg Chem 2011; 50:749-56. [DOI: 10.1021/ic100253k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- A. Tamilselvi
- Department of Inorganic & Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Govindasamy Mugesh
- Department of Inorganic & Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
19
|
Interaction of heterocyclic thiols/thiones eliminated from cephalosporins with iodine and its biological implications. Bioorg Med Chem Lett 2010; 20:3692-7. [DOI: 10.1016/j.bmcl.2010.04.087] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/08/2010] [Accepted: 04/20/2010] [Indexed: 11/22/2022]
|
20
|
Breece RM, Hu Z, Bennett B, Crowder MW, Tierney DL. Motion of the zinc ions in catalysis by a dizinc metallo-beta-lactamase. J Am Chem Soc 2009; 131:11642-3. [PMID: 19653676 DOI: 10.1021/ja902534b] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report rapid-freeze-quench X-ray absorption spectroscopy of a dizinc metallo-beta-lactamase (MbetaL) reaction intermediate. The Zn(II) ions in the dinuclear active site of the S. maltophilia Class B3 MbetaL move away from each other, by approximately 0.3 A after 10 ms of reaction with nitrocefin, from 3.4 to 3.7 A. Together with our previous characterization of the resting enzyme and its nitrocefin product complex, where the Zn(II) ion separation relaxes to 3.6 A, these data indicate a scissoring motion of the active site that accompanies the ring-opening step. The average Zn(II) coordination number of 4.5 in the resting enzyme appears to be maintained throughout the reaction with nitrocefin. This is the first direct structural information available on early stage dizinc metallo-beta-lactamase catalysis.
Collapse
Affiliation(s)
- Robert M Breece
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | | | |
Collapse
|
21
|
Lisa MN, Hemmingsen L, Vila AJ. Catalytic role of the metal ion in the metallo-beta-lactamase GOB. J Biol Chem 2009; 285:4570-7. [PMID: 20007696 DOI: 10.1074/jbc.m109.063743] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metallo-beta-lactamases (MbetaLs) stand as one of the main mechanisms of bacterial resistance toward carbapenems. The rational design of an inhibitor for MbetaLs has been limited by an incomplete knowledge of their catalytic mechanism and by the structural diversity of their active sites. Here we show that the MbetaL GOB from Elizabethkingia meningoseptica is active as a monometallic enzyme by using different divalent transition metal ions as surrogates of the native Zn(II) ion. Of the metal derivatives in which Zn(II) is replaced, Co(II) and Cd(II) give rise to the most active enzymes and are shown to occupy the same binding site as the native ion. However, Zn(II) is the only metal ion capable of stabilizing an anionic intermediate that accumulates during nitrocefin hydrolysis, in which the C-N bond has already been cleaved. This finding demonstrates that the catalytic role of the metal ion in GOB is to stabilize the formation of this intermediate prior to nitrogen protonation. This role may be general to all MbetaLs, whereas nucleophile activation by a Zn(II) ion is not a conserved mechanistic feature.
Collapse
Affiliation(s)
- María-Natalia Lisa
- Departamento de Química Biológica and Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | | | | |
Collapse
|
22
|
Suárez D, Suárez E, Díaz N. Molecular dynamics and quantum mechanical calculations on the mononuclear zinc-β-lactamase from Bacillus cereus: Protonation state of the active site and imipenem binding. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.theochem.2008.12.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Mizuta T, Inami Y, Kubo K, Miyoshi K. Synthesis of binuclear complexes bound in an enlarged tetraphosphamacrocycle: two diphosphine metal units linked in front-to-front style. Inorg Chem 2009; 48:7534-6. [PMID: 19601606 DOI: 10.1021/ic9013224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A large-hole tetraphosphamacrocycle 2, with four phosphorus centers separated at the corners of a 3.7 A wide and 9.7 A long rectangle, was synthesized by a stepwise cyclization reaction between PCl-bridged [1.1]ferrocenophane and bisphenol A in a 2:2 ratio. The macrocycle 2 could incorporate two Ag(+) or Pt(0) fragments in the hole to provide binuclear complexes, which were identified as mu-2-[Ag(NCMe)(2)](2)(BF(4))(2) (3) and mu-2-[Pt(PhCCPh)](2) (5), respectively, using X-ray and spectroscopic analysis. The X-ray structure of 3 demonstrates that the macrocycle 2 serves as a framework in which two diphosphine silver units are aligned in a front-to-front style, while that of 5 indicates that 2 can also bind two bulky Pt(PhCCPh) fragments by the flexible change of its conformation.
Collapse
Affiliation(s)
- Tsutomu Mizuta
- Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| | | | | | | |
Collapse
|
24
|
Hadler KS, Mitić N, Ely F, Hanson GR, Gahan LR, Larrabee JA, Ollis DL, Schenk G. Structural Flexibility Enhances the Reactivity of the Bioremediator Glycerophosphodiesterase by Fine-Tuning Its Mechanism of Hydrolysis. J Am Chem Soc 2009; 131:11900-8. [DOI: 10.1021/ja903534f] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kieran S. Hadler
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Centre for Magnetic Resonance, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, and Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | - Nataša Mitić
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Centre for Magnetic Resonance, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, and Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | - Fernanda Ely
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Centre for Magnetic Resonance, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, and Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | - Graeme R. Hanson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Centre for Magnetic Resonance, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, and Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | - Lawrence R Gahan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Centre for Magnetic Resonance, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, and Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | - James A. Larrabee
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Centre for Magnetic Resonance, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, and Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | - David L. Ollis
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Centre for Magnetic Resonance, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, and Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Centre for Magnetic Resonance, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, and Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| |
Collapse
|
25
|
Tamilselvi A, Mugesh G. Inhibition of Peroxidase-Catalyzed Iodination by Cephalosporins: Metallo-β-Lactamase-Induced Antithyroid Activity of Antibiotics. ChemMedChem 2009; 4:512-6. [DOI: 10.1002/cmdc.200800371] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Llarrull LI, Tioni MF, Vila AJ. Metal Content and Localization during Turnover in B. cereus Metallo-β-lactamase. J Am Chem Soc 2008; 130:15842-51. [DOI: 10.1021/ja801168r] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Leticia I. Llarrull
- IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), and Biophysics Section, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Mariana F. Tioni
- IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), and Biophysics Section, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Alejandro J. Vila
- IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), and Biophysics Section, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| |
Collapse
|
27
|
Jarenmark M, Kappen S, Haukka M, Nordlander E. Symmetrical and unsymmetrical dizinc complexes as models for the active sites of hydrolytic enzymes. Dalton Trans 2008:993-6. [DOI: 10.1039/b713664a] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Simona F, Magistrato A, Vera DMA, Garau G, Vila AJ, Carloni P. Protonation state and substrate binding to B2 metallo-beta-lactamase CphA from Aeromonas hydrofila. Proteins 2007; 69:595-605. [PMID: 17623844 DOI: 10.1002/prot.21476] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The zinc enzymes metallo beta-lactamases counteract the beneficial action of beta-lactam antibiotics against bacterial infections, by hydrolyzing their beta-lactam rings. To understand structure/function relationships on a representative member of this class, the B2 M beta L CphA, we have investigated the H-bond pattern at the Zn enzymatic active site and substrate binding mode by molecular simulation methods. Extensive QM calculations at the DFT-BLYP level on eleven models of the protein active site, along with MD simulations of the protein in aqueous solution, allow us to propose two plausible protonation states for the unbound enzyme, which are probably in equilibrium. Docking procedures along with MD simulations and QM calculations suggest that in the complex between the enzyme and its substrate (biapenem), the latter is stable in only one of the two protonation states, in addition it exhibits two different binding modes, of which only one agrees with previous proposals. In both cases, the substrate is polarized as in aqueous solution. We conclude that addressing mechanistic issues on this class of enzymes requires a careful procedure to assign protonation states and substrate docking modes.
Collapse
Affiliation(s)
- F Simona
- SISSA, Via Beirut 2-4, 34014 Grignano, Trieste, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Estiu G, Suárez D, Merz KM. Quantum mechanical and molecular dynamics simulations of ureases and Zn beta-lactamases. J Comput Chem 2007; 27:1240-62. [PMID: 16773613 DOI: 10.1002/jcc.20411] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Herein we briefly review theoretical contributions that have increased our understanding of the structure and function of metallo-beta-lactamases and ureases. Both are bimetallic metalloenzymes, with the former containing two zinc ions and the latter containing two nickel ions. We describe the use of several different methodologies, including quantum chemical calculations, molecular dynamic simulations, as well as mixed QM/MM approaches and how they have impacted our understanding of the structure and function of metallo-beta-lactamases and ureases.
Collapse
Affiliation(s)
- Guillermina Estiu
- Department of Chemistry, Quantum Theory Project, University of Florida, 2328 New Physics Building, P.O. Box 118435, Gainesville, Florida 32611-8435, USA
| | | | | |
Collapse
|
30
|
Tamilselvi A, Nethaji M, Mugesh G. Antibiotic resistance: mono- and dinuclear zinc complexes as metallo-beta-lactamase mimics. Chemistry 2007; 12:7797-806. [PMID: 16906495 DOI: 10.1002/chem.200600629] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Biomimetic systems containing one or two zinc(II) ions supported by phenolate ligands were developed as functional mimics of metallo-beta-lactamase. These complexes were shown to catalytically hydrolyze beta-lactam substrates, such as oxacillin and penicillin G. The dinuclear zinc complex 1, which has a coordinated water molecule, exhibits high beta-lactamase activity, whereas the dinuclear zinc complex 2, which has no water molecules, but labile chloride ligands, shows a much lower activity. The high beta-lactamase activity of complex 1 can be ascribed to the presence of a zinc-bound water molecule that is activated by being hydrogen bonded to acetate substituents. The kinetics of the hydrolysis of oxacillin by complex 1 and the effect of pH on the reaction rates are reported in detail. In addition, the kinetic parameters obtained for the synthetic analogues are compared with those of the natural metallo-beta-lactamase from Bacillus cereus (BcII). To understand the role of the second metal ion in hydrolysis, the syntheses and catalytic activities of two mononuclear complexes (3 and 4) that include coordinated water molecules are described. Interestingly, the mononuclear zinc complexes 3 and 4 also exhibit high activity, supporting the assumption that the second zinc ion is not crucial for the beta-lactamase activity.
Collapse
Affiliation(s)
- A Tamilselvi
- Department of Inorganic and Physical Chemistry Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
31
|
Morán-Barrio J, González JM, Lisa MN, Costello AL, Peraro MD, Carloni P, Bennett B, Tierney DL, Limansky AS, Viale AM, Vila AJ. The metallo-beta-lactamase GOB is a mono-Zn(II) enzyme with a novel active site. J Biol Chem 2007; 282:18286-18293. [PMID: 17403673 DOI: 10.1074/jbc.m700467200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Metallo-beta-lactamases (MbetaLs) are zinc-dependent enzymes able to hydrolyze and inactivate most beta-lactam antibiotics. The large diversity of active site structures and metal content among MbetaLs from different sources has limited the design of a pan-MbetaL inhibitor. Here we report the biochemical and biophysical characterization of a novel MbetaL, GOB-18, from a clinical isolate of a Gram-negative opportunistic pathogen, Elizabethkingia meningoseptica. Different spectroscopic techniques, three-dimensional modeling, and mutagenesis experiments, reveal that the Zn(II) ion is bound to Asp120, His121, His263, and a solvent molecule, i.e. in the canonical Zn2 site of dinuclear MbetaLs. Contrasting all other related MbetaLs, GOB-18 is fully active against a broad range of beta-lactam substrates using a single Zn(II) ion in this site. These data further enlarge the structural diversity of MbetaLs.
Collapse
Affiliation(s)
- Jorgelina Morán-Barrio
- Departamento de Química Biológica and Departamento de Microbiología, Instituto de Biología Molecular y Celular de Rosario (IBR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Javier M González
- Departamento de Química Biológica and Departamento de Microbiología, Instituto de Biología Molecular y Celular de Rosario (IBR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - María Natalia Lisa
- Departamento de Química Biológica and Departamento de Microbiología, Instituto de Biología Molecular y Celular de Rosario (IBR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Alison L Costello
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131
| | - Matteo Dal Peraro
- Center for Molecular Modeling, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Paolo Carloni
- International School for Advanced Studies, Via Beirut 2-4, 34100 Trieste, Italy
| | - Brian Bennett
- National Biomedical EPR Center, Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-0509
| | - David L Tierney
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131
| | - Adriana S Limansky
- Departamento de Química Biológica and Departamento de Microbiología, Instituto de Biología Molecular y Celular de Rosario (IBR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Alejandro M Viale
- Departamento de Química Biológica and Departamento de Microbiología, Instituto de Biología Molecular y Celular de Rosario (IBR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Alejandro J Vila
- Departamento de Química Biológica and Departamento de Microbiología, Instituto de Biología Molecular y Celular de Rosario (IBR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina.
| |
Collapse
|
32
|
Champouret YDM, Nodes WJ, Scrimshire JA, Singh K, Solan GA, Young I. Sterically variable dizinc complexes bearing bis(iminopyridyl)phenolate ligands: synthesis, structures and reactivity studies. Dalton Trans 2007:4565-75. [DOI: 10.1039/b709385c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Meyer F. Clues to Dimetallohydrolase Mechanisms from Studies on Pyrazolate‐Based Bioinspired Dizinc Complexes – Experimental Evidence for a Functional Zn–O
2
H
3
–Zn Motif. Eur J Inorg Chem 2006. [DOI: 10.1002/ejic.200600590] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Franc Meyer
- Institut für Anorganische Chemie, Georg‐August‐Universität Göttingen Tammannstrasse 4, 37077 Göttingen, Germany, Fax: +49‐551‐393063
| |
Collapse
|
34
|
Cobalt(II)-promoted hydrolysis of cephalexin: Crystal structure of the cephalosporoate–cobalt(II) complex. INORG CHEM COMMUN 2006. [DOI: 10.1016/j.inoche.2005.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Costello A, Periyannan G, Yang KW, Crowder MW, Tierney DL. Site-selective binding of Zn(II) to metallo-beta-lactamase L1 from Stenotrophomonas maltophilia. J Biol Inorg Chem 2006; 11:351-8. [PMID: 16489411 DOI: 10.1007/s00775-006-0083-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Accepted: 01/20/2006] [Indexed: 11/27/2022]
Abstract
Extended X-ray absorption fine structure studies of the metallo-beta-lactamase L1 from Stenotrophomonas maltophilia containing 1 and 2 equiv of Zn(II) and containing 2 equiv of Zn(II) plus hydrolyzed nitrocefin are presented. The data indicate that the first, catalytically dominant metal ion is bound by L1 at the consensus Zn1 site. The data further suggest that binding of the first metal helps preorganize the ligands for binding of the second metal ion. The di-Zn enzyme displays a well-defined metal-metal interaction at 3.42 A. Reaction with the beta-lactam antibiotic nitrocefin results in a product-bound species, in which the ring-opened lactam rotates in the active site to present the S1 sulfur atom of nitrocefin to one of the metal ions for coordination. The product bridges the two metal ions, with a concomitant lengthening of the Zn-Zn interaction to 3.62 A.
Collapse
Affiliation(s)
- Alison Costello
- Department of Chemistry, University of New Mexico, 87131, Albuquerque, NM, USA
| | | | | | | | | |
Collapse
|
36
|
Kinetic and mechanistic studies of the reactivity of Zn–OHn (n=1 or 2) species in small molecule analogs of zinc-containing metalloenzymes. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2006. [DOI: 10.1016/s0065-3160(06)41002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
37
|
Tomatis PE, Rasia RM, Segovia L, Vila AJ. Mimicking natural evolution in metallo-beta-lactamases through second-shell ligand mutations. Proc Natl Acad Sci U S A 2005; 102:13761-6. [PMID: 16172409 PMCID: PMC1236536 DOI: 10.1073/pnas.0503495102] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metallo-beta-lactamases (MBLs) represent the latest generation of beta-lactamases. The structural diversity and broad substrate profile of MBLs allow them to confer resistance to most beta-lactam antibiotics. To explore the evolutionary potential of these enzymes, we have subjected the Bacillus cereus MBL (BcII) to a directed evolution scheme, which resulted in an increased hydrolytic efficiency toward cephalexin. A systematic study of the hydrolytic profile, substrate binding, and active-site features of the evolved lactamase reveal that directed evolution has shaped the active site by means of remote mutations to better hydrolyze cephalosporins with small, uncharged C-3 substituents. One of these mutations is found in related enzymes from pathogenic bacteria and is responsible for the increase in that enzyme's hydrolytic profile. The mutations lowered the activation energy of the rate-limiting step rather than improved the affinity of the enzyme toward these substrates. The following conclusions can be made: (i) MBLs are able to expand their substrate spectrum without sacrificing their inherent hydrolytic capabilities; (ii) directed evolution is able to mimic mutations that occur in nature; (iii) the metal-ligand strength is tuned by second-shell mutations, thereby influencing the catalytic efficiency; and (iv) changes in the position of the second Zn(II) ion in MBLs affect the substrate positioning in the active site. Overall, these results show that the evolution of enzymatic catalysis can take place by remote mutations controlling reactivity.
Collapse
Affiliation(s)
- Pablo E Tomatis
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | | | | | | |
Collapse
|
38
|
Bauer-Siebenlist B, Dechert S, Meyer F. Biomimetic Hydrolysis of Penicillin G Catalyzed by Dinuclear Zinc(II) Complexes: Structure-Activity Correlations in β-Lactamase Model Systems. Chemistry 2005; 11:5343-52. [PMID: 16003817 DOI: 10.1002/chem.200401272] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A series of highly preorganized pyrazolate-based dinuclear zinc complexes has been studied as functional synthetic analogues of metallo-beta-lactamases, a class of bacterial enzymes that cause serious clinical problems because of their degradation of common beta-lactam antibiotics. We have investigated the hydrolytic cleavage of penicillin G mediated by the different dinuclear zinc complexes, and have deduced structure-activity correlations. While cooperative effects of the adjacent metal ions might be operative, these are found to either enhance or diminish beta-lactamase activity with respect to a single free zinc. Drastic differences in activity are ascribed to a lack of accessible binding sites after incorporation of the substrate within the bimetallic pocket of 2 and 4, whereas partial detachment of hemilabile ligand side arms in 1 and 3 opens up available coordination sites for nucleophile activation and/or for binding and polarisation of the beta-lactam amide oxygen atom. This interpretation has been corroborated by NMR spectroscopic and mass spectrometric evidence as well as by X-ray crystallography of several adducts formed between the pyrazolate-based dinuclear zinc scaffolds and the small substrate analogue oxazetidinylacetate (oaa), 5-7. In all adducts, the carboxylate group of oaa is the primary anchoring site and is nested in a bridging position within the bimetallic pocket. However, zinc binding of the beta-lactam amide oxygen atom has been confirmed crystallographically for the first time in 7, in which additional open-site coordination sites are available.
Collapse
Affiliation(s)
- Bernhard Bauer-Siebenlist
- Institut für Anorganische Chemie der Georg-August-Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | | | | |
Collapse
|
39
|
Gresh N, Piquemal JP, Krauss M. Representation of Zn(II) complexes in polarizable molecular mechanics. Further refinements of the electrostatic and short-range contributions. Comparisons with parallel ab initio computations. J Comput Chem 2005; 26:1113-30. [PMID: 15934064 DOI: 10.1002/jcc.20244] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We present refinements of the SIBFA molecular mechanics procedure to represent the intermolecular interaction energies of Zn(II). The two first-order contributions, electrostatic (E(MTP)), and short-range repulsion (E(rep)), are refined following the recent developments due to Piquemal et al. (Piquemal et al. J Phys Chem A 2003, 107, 9800; and Piquemal et al., submitted). Thus, E(MTP) is augmented with a penetration component, E(pen), which accounts for the effects of reduction in electronic density of a given molecular fragment sensed by another interacting fragment upon mutual overlap. E(pen) is fit in a limited number of selected Zn(II)-mono-ligated complexes so that the sum of E(MTP) and E(pen) reproduces the Coulomb contribution E(c) from an ab initio Hartree-Fock energy decomposition procedure. Denoting by S, the overlap matrix between localized orbitals on the interacting monomers, and by R, the distance between their centroids, E(rep) is expressed by a S(2)/R term now augmented with an S(2)/R(2) one. It is calibrated in selected monoligated Zn(II) complexes to fit the corresponding exchange repulsion E(exch) from ab initio energy decomposition, and no longer as previously the difference between (E(c) + E(exch)) and E(MTP). Along with the reformulation of the first-order contributions, a limited recalibration of the second-order contributions was carried out. As in our original formulation (Gresh, J Comput Chem 1995, 16, 856), the Zn(II) parameters for each energy contribution were calibrated to reproduce the radial behavior of its ab initio HF counterpart in monoligated complexes with N, O, and S ligands. The SIBFA procedure was subsequently validated by comparisons with parallel ab initio computations on several Zn(II) polyligated complexes, including binuclear Zn(II) complexes as in models for the Gal4 and beta-lactamase metalloproteins. The largest relative error with respect to the RVS computations is 3%, and the ordering in relative energies of competing structures reproduced even though the absolute numerical values of the ab initio interaction energies can be as large as 1220 kcal/mol. A term-to-term identification of the SIBFA contributions to their ab initio counterparts remained possible even for the largest sized complexes.
Collapse
Affiliation(s)
- Nohad Gresh
- Laboratoire de Pharmacochimie Moléculaire et Cellulaire, FRE 2718 CNRS, IFR Biomédicale, 45, Rue des Saints-Pères, 75006, Paris, France.
| | | | | |
Collapse
|
40
|
|
41
|
Bauer-Siebenlist B, Meyer F, Farkas E, Vidovic D, Dechert S. Effect of Zn⋅⋅⋅Zn Separation on the Hydrolytic Activity of Model Dizinc Phosphodiesterases. Chemistry 2005; 11:4349-60. [PMID: 15880544 DOI: 10.1002/chem.200400932] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
From the study of highly preorganized model systems, experimental support has been obtained for a possible functional role of the Zn-(H)O...HO(H)-Zn motif in oligozinc hydrolases. The mechanistic relevance of such an array, which may be described as a hydrated form of a pseudo-terminal Zn-bound hydroxide, has recently been supported by DFT calculations on various metallohydrolase active sites. In the present targeted approach, the Zn...Zn distance in two related dizinc complexes has been controlled through the use of multifunctional pyrazolate-based ligand scaffolds, giving either a tightly bridged Zn-O(H)-Zn or a more loosely bridged Zn-(H)O...HO(H)-Zn species in the solid state. Zn-bound water has been found to exhibit comparable acidity irrespective of whether the resulting hydroxide is supported by strong hydrogen-bonding in the O(2)H(3) moiety or is in a bridging position between two zinc ions, indicating that water does not necessarily have to adopt a bridging position in order for its pK(a) to be sufficiently lowered so as to provide a Zn-bound hydroxide at physiological pH. Comparative reactivity studies on the cleavage of bis(4-nitrophenyl)phosphate (BNPP) mediated by the two dizinc complexes have revealed that the system with the larger Zn...Zn separation is hydrolytically more potent, both in the hydrolysis and the transesterification of BNPP. The extent of active site inhibition by the reaction products has also been found to be governed by the Zn...Zn distance, since phosphate diester coordination in a bridging mode within the clamp of two zinc ions is only favored for Zn...Zn distances well above 4 A. Different binding affinities are rationalized in terms of the structural characteristics of the product-inhibited complexes for the two different ligand scaffolds, with dimethyl phosphate found as a bridging ligand within the bimetallic pocket.
Collapse
Affiliation(s)
- Bernhard Bauer-Siebenlist
- Institut für Anorganische Chemie, Georg-August-Universität, Tammannstrasse 4, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
42
|
Crawford PA, Sharma N, Chandrasekar S, Sigdel T, Walsh TR, Spencer J, Crowder MW. Over-expression, purification, and characterization of metallo-beta-lactamase ImiS from Aeromonas veronii bv. sobria. Protein Expr Purif 2005; 36:272-9. [PMID: 15249050 DOI: 10.1016/j.pep.2004.04.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 04/14/2004] [Indexed: 10/26/2022]
Abstract
The gene from Aeromonas veronii bv. sobria encoding the metallo-beta-lactamase ImiS was subcloned into pET-26b, and ImiS was over-expressed in BL21(DE3) Escherichia coli and purified using SP-Sepharose chromatography. This protocol yielded over 5 mg of ImiS per liter of growth culture under optimum conditions. The biochemical properties of recombinant ImiS were compared with those of native ImiS. Recombinant and native ImiS have the same N-terminus of A-G-M-S-L, and CD spectroscopy was used to show that the enzymes have similar secondary structures. Gel filtration chromatography revealed that both enzymes exist as monomers in solution. MALDI-TOF mass spectra showed that the enzymes have a molecular mass of 25,247 Da, and metal analyses demonstrated that both as-isolated enzymes bind ca. 0.7 mol of Zn(II). Metal titrations demonstrate that the maximum activity of recombinant ImiS occurs when the enzyme binds one equivalent of zinc. Steady-state kinetic studies reveal that recombinant ImiS is a carbapenemase like native ImiS and that the recombinant enzyme exhibits similar kcat and K(m) values for the substrates tested, as compared to the native enzyme. This over-expression protocol now allows for detailed spectroscopic and mechanistic studies on ImiS as well as site-directed mutants of ImiS to be prepared for future structure/function studies.
Collapse
Affiliation(s)
- Patrick A Crawford
- Department of Chemistry and Biochemistry, 112 Hughes Hall, Miami University, Oxford, OH 45056, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Periyannan G, Shaw PJ, Sigdel T, Crowder MW. In vivo folding of recombinant metallo-beta-lactamase L1 requires the presence of Zn(II). Protein Sci 2004; 13:2236-43. [PMID: 15238636 PMCID: PMC2279831 DOI: 10.1110/ps.04742704] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Metallo-beta-lactamase L1, secreted by pathogenic Stenotrophomonas maltophilia, is a dinuclear Zn(II)-containing enzyme that hydrolyzes almost all known penicillins, cephalosporins, and carbapenems. The presence of Zn(II) ions in both metal binding sites is essential for full enzymatic activity; however, the mechanism of physiological metal incorporation is unknown. To probe metal incorporation, L1 was over-expressed in minimal media with (mmL1+Zn) and without (mmL1-Zn) Zn(II) added to the media, and the resulting proteins were purified and characterized. The mmL1+Zn sample was bound by a Q-Sepharose column, exhibited steady-state kinetic properties, bound Zn(II), existed as a tetramer, and yielded fluorescence emission and CD spectra similar to L1 overexpressed in rich media. On the other hand, the mmL1-Zn sample did not bind to a Q-Sepharose column, and gel filtration studies demonstrated that this protein was monomeric. The mmL1-Zn sample exhibited a lower kcat value, bound less Zn(II), and yielded fluorescence emission and CD spectra consistent with this enzyme being folded improperly. Taken together, these data demonstrate that the proper folding of L1 requires the presence of Zn(II) and suggest that in vitro, thermodynamic metal binding studies do not accurately reflect physiological metal incorporation into L1.
Collapse
Affiliation(s)
- Gopalraj Periyannan
- Miami University, Department of Chemistry and Biochemistry, Oxford, Ohio 45056, USA
| | | | | | | |
Collapse
|
44
|
|
45
|
Dal Peraro M, Vila AJ, Carloni P. Substrate binding to mononuclear metallo-β-lactamase from Bacillus cereus. Proteins 2003; 54:412-23. [PMID: 14747990 DOI: 10.1002/prot.10554] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Structure and dynamics of substrate binding (cefotaxime) to the catalytic pocket of the mononuclear zinc-beta-lactamase from Bacillus cereus are investigated by molecular dynamics simulations. The calculations, which are based on the hydrogen-bond pattern recently proposed by Dal Peraro et al. (J Biol Inorg Chem 2002; 7:704-712), are carried out for both the free and the complexed enzyme. In the resting state, active site pattern and temperature B-factors are in agreement with crystallographic data. In the complexed form, cefotaxime is accommodated into a stable orientation in the catalytic pocket within the nanosecond timescale, interacting with the enzyme zinc-bound hydroxide and the surrounding loops. The beta-lactam ring remains stable and very close to the hydroxide nucleophile agent, giving a stable representation of the productive enzyme-substrate complex.
Collapse
Affiliation(s)
- Matteo Dal Peraro
- International School for Advanced Studies, SISSA and INFM-DEMOCRITOS, Trieste, Italy
| | | | | |
Collapse
|
46
|
Montoya-Pelaez PJ, Gibson GTT, Neverov AA, Brown RS. La3+-Catalyzed Methanolysis ofN-Aryl-β-lactams and Nitrocefin. Inorg Chem 2003; 42:8624-32. [PMID: 14686838 DOI: 10.1021/ic0302736] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The kinetics of the La(3+)-catalyzed methanolysis of N-phenyl-beta-lactam (2) and N-p-nitrophenyl-beta-lactam (3) as well as that of nitrocefin (1) were studied at 25 degrees C under buffered conditions. In the case of 2 and 3, the observed second-order rate constants (k(2)(obs)) for catalysis plateau at pH 7.5-7.8, reaching values of 1 x 10(-)(2) and 35 x 10(-)(2) M(-)(1) s(-)(1) respectively. Potentiometric titrations of solutions of 2 x 10(-)(3) M La(OTf)(3) were analyzed in terms of a dimer model (La(3+)(2)((-)OCH(3))(n)()), where the number of methoxides varies from 1 to 5. The species responsible for catalysis in the pH range investigated contain 1-3 methoxides, the one having the highest catalytic activity being La(3+)(2)((-)OCH(3))(2), which comprises 80% of the total La(3+) forms present at its pH maximum of 8.9. The catalysis afforded by the La(3+) dimers at a neutral pH is impressive relative to the methoxide reactions: at pH 8.4 a 1 mM solution of catalyst (generated from 2 mM La(OTf)(3)) accelerated the methanolysis of 2 by approximately 2 x 10(7)-fold and 3 by approximately 5 x 10(5)-fold. As a function of metal ion concentration, the La(3+)-catalyzed methanolysis of 1 proceeds by pathways involving first one bound metal ion and then a second La(3+) leading to a plateau in the k(obs) vs [La(3+)](total) plots at all pH values. The k(max)(obs) pseudo-first-order rate constants at the plateaus, representing the spontaneous methanolysis of La(3+)(2)(1(-)) forms, has a linear dependence on [(-)OCH(3)] (slope = 0.84 +/- 0.05 if all pH values are used and 1.02 +/- 0.03 if all but the two highest pH values are used). The speciation of bound 1 at a La(3+) concentrations corresponding to that of the onset of the kinetic plateau region was approximated through potentiometric titration of the nonreactive 3,5-dinitrobenzoic acid in the presence of 2 equiv of La(OTf)(3). A total speciation diagram for all bound forms of La(3+)(2)(1(-))((-)OCH(3))(n)(), where n = 0-5, was constructed and used to determine their kinetic contributions to the overall pH vs k(max)(obs) plot under kinetic conditions. Two kinetically equivalent mechanisms were analyzed: methoxide attack on La(3+)(2)(1(-))((-)OCH(3))(n)(), n = 0-2; unimolecular decomposition of the forms La(3+)(2)(1(-))((-)OCH(3))(n)(), n = 1-3.
Collapse
|
47
|
Dal Peraro M, Vila AJ, Carloni P. Protonation state of Asp120 in the binuclear active site of the metallo-beta-lactamase from Bacteroides fragilis. Inorg Chem 2003; 42:4245-7. [PMID: 12844290 DOI: 10.1021/ic026059j] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The determination of the protonation state of enzyme active sites may be crucial for the investigation of their mechanism of action. In the bizinc beta-lactamase family of enzymes, no consensus has been reached on the protonation state of a fully conserved amino acid present in the active site, Asp120. To address this issue, we carry out here density functional theory (DFT) calculations on large models (based on Bacteroides fragilis X-ray structure) which include the metal coordination polyhedron and groups interacting with it. Our calculations suggest that Asp120 is ionized. The relevance of this finding for site-directed mutagenesis experiments on the 120 position and on the mechanism of action is discussed.
Collapse
Affiliation(s)
- Matteo Dal Peraro
- International School for Advanced Studies, SISSA and INFM-DEmocritos MOdeling Center for Research in aTOmistic Simulation, via Beirut 2-4, 34014 Trieste, Italy
| | | | | |
Collapse
|
48
|
Rasia RM, Ceolín M, Vila AJ. Grafting a new metal ligand in the cocatalytic site of B. cereus metallo-beta-lactamase: structural flexibility without loss of activity. Protein Sci 2003; 12:1538-46. [PMID: 12824499 PMCID: PMC2323933 DOI: 10.1110/ps.0301603] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Metallo-beta-lactamases are zinc enzymes able to hydrolyze the four-membered ring of beta-lactam antibiotics, representing one of the latest generations of beta-lactamases. These enzymes belong to the zinc metallo-hydrolase family of the beta-lactamase fold. Enzymes belonging to this family have a bimetallic active site whose structure varies among different members by point substitutions of the metal ligands. In this work, we have grafted new metal ligands into the metal binding site of BcII from Bacillus cereus that mimic the ligands present in other members of this superfamily. We have characterized spectroscopically and modeled the structure of the redesigned sites, which differ substantially from the wild-type enzyme. Despite the changes introduced in the active site, the mutant enzymes retain almost full activity. These results shed some light on the possible evolutionary origin of these metalloenzymes.
Collapse
Affiliation(s)
- Rodolfo M. Rasia
- Molecular Biology Division, IBR (Instituto de Biología Molecular y Celular Rosario) CONICET (Consejo Nacional de Investigaciones Cientificas y Técnicas) and Biophysics Section, Department of Biological Chemistry, University of Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Marcelo Ceolín
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
- Centro Regional de Estudios Genomicos, La Plata, Argentina
| | - Alejandro J. Vila
- Molecular Biology Division, IBR (Instituto de Biología Molecular y Celular Rosario) CONICET (Consejo Nacional de Investigaciones Cientificas y Técnicas) and Biophysics Section, Department of Biological Chemistry, University of Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| |
Collapse
|
49
|
Suárez D, Díaz N, Merz KM. Molecular dynamics simulations of the dinuclear zinc-beta-lactamase from Bacteroides fragilis complexed with imipenem. J Comput Chem 2002; 23:1587-600. [PMID: 12395427 DOI: 10.1002/jcc.10157] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herein, we present results from MD simulations of the Michaelis complex formed between the dizinc beta-lactamase from B. fragilis and imipenem. We considered two catalytically important configurations, which differ in the presence or absence of a hydroxide bridge connecting the two zinc ions in the active site. The structural and dynamical effects induced by substrate binding, the specific roles of the conserved residues and the zinc-bound water molecules, the near attack conformers of the Michaelis complex, and so forth, are discussed in detail. The relative stability of the two configurations was estimated from QM linear scaling calculations on the enzyme-substrate complex combined with Poisson-Boltzmann electrostatic calculations and normal mode calculations. Importantly, we find that the two configurations have similar energies, indicating that these two structures could readily be interchanged, thereby facilitating catalysis. The configuration with the hydroxide bound to the two zinc ions is predicted to be the resting form of the enzyme, while the configuration without the bridge is the reactive form that was found to place the hydroxide in position to attack the carbonyl of the beta-lactam ring. Thus, we propose that the enzyme initiates catalysis by converting from the hydroxide bridge form into the configuration that lacks the hydroxide bridge. This interconversion increases the nucleophilicity of the hydroxide ion and exposes it to the beta-lactam carbonyl, which ultimately facilitates nucleophilic attack. The implications of the observed modes of binding, the possible influence of mutating the Lys184 and Asn193 residues on substrate binding, and the reaction mechanism are also discussed in detail.
Collapse
Affiliation(s)
- Dimas Suárez
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Asturias, Spain
| | | | | |
Collapse
|
50
|
Montoya-Pelaez PJ, Brown RS. Methanolysis of nitrocefin catalyzed by one and two Zn(2+) ions. A simplified model for class B beta-lactamases. Inorg Chem 2002; 41:309-16. [PMID: 11800619 DOI: 10.1021/ic011005f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The methanolysis of nitrocefin (1) was investigated at 25 degrees C in anhydrous methanol as a function of [Zn(2+)] and as a model for the chemistry believed to occur in the active site of Zn(2+)(-)beta-lactamases. In the absence of metal ion, the vs rate constant profile shows a long plateau region having k(obs) = 9 x 10(-5) s(-1) between 7.5 and 12 generated after ionization of the COOH of 1 (kinetic pK(a) of 7.34) followed by attack of CH(3)O(-) with k(CH)3(O) = 1.18 M(-1) s(-1). Strong catalysis of the methanolysis is observed at all pH values between 7.95 and 11.34 in the presence of as little as 0.05-3 mM Zn(2+). Plots of the pseudo-first-order rate constant for methanolysis (k(obs)) as a function of reveal a saturation phenomenon indicative of formation of a 1:Zn(2+) complex, followed by a linear section indicative of the intervention of a second Zn(2+) ion in promoting the methanolysis of the complex. The two processes can be separated since the slope of the linear part of the plots gives the second-order rate constant (k(2)(obs)) for the second Zn process, while the intercept gives the spontaneous rate constant for methanolysis of 1:Zn(2+) (k(cat.)(obs)). A plot of log k(cat.)(obs) vs is bell-shaped, maximizing at 10, with ascending and descending domains both first order in [CH(3)O(-)]. A plot of log k(2) vs gives an ascending domain second order in [CH(3)O(-)], followed by a plateau above 9.5. The data are analyzed in terms of a one-Zn and two-Zn model in which the former involves rate-limiting attack of methoxide on a 1:Zn(2+) complex up to the maximum and a spontaneous reaction of 1:Zn(2+):(CH(3)O(-))(2), while the latter involves bimolecular attack of Zn(2+)(CH(3)O(-))(2) on both 1:Zn(2+) and 1:Zn(2+):(CH(3)O(-))(2). The relevance of these observations is discussed in terms of the currently accepted mechanism for hydrolyses of beta-lactams promoted by the Zn(2+)(-)beta-lactamases.
Collapse
|