1
|
Firstova JJ, Abaimov DA, Surina NM, Poletaeva II, Fedotova IB, Kovalev GI. Binding of Specific Ligand by D2- and NMDA-Receptors of Striatum Cells in Two Rat Strains Predisposed and Resistant to Audiogenic Seizures. Bull Exp Biol Med 2012; 154:196-8. [DOI: 10.1007/s10517-012-1910-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
2
|
Epps SA, Tabb KD, Lin SJ, Kahn AB, Javors MA, Boss-Williams KA, Weiss JM, Weinshenker D. Seizure susceptibility and epileptogenesis in a rat model of epilepsy and depression co-morbidity. Neuropsychopharmacology 2012; 37:2756-63. [PMID: 22871911 PMCID: PMC3499730 DOI: 10.1038/npp.2012.141] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Although a strong co-morbidity exists clinically between epilepsy and depression, the cause of this co-morbidity remains unknown, and a valid animal model is crucial for the identification of underlying mechanisms and the development of a screening tool for novel therapies. Although some rodent models of epilepsy have been reported to display behaviors relevant to affective disorders, the seizure susceptibility of animals prone to depression-like behavior has not been characterized. Toward this end, we assessed several forms of seizure sensitivity and epileptogenesis in rats selectively bred for vulnerability (Swim Lo-Active; SwLo) or resilience (Swim High-Active; SwHi) to depression-like phenotypes. The SwLo rats exhibit decreased motor activity in a swim test and other depression-like phenotypes, whereas the SwHi rats display increased motor activity in a swim test. SwLo rats exhibited a decreased latency to limbic motor seizures following acute pilocarpine administration in the absence of differences in pilocarpine pharmacokinetics, and also had a decreased threshold to tonic seizures induced by electroshock. Approximately half of the SwLo rats, but none of the SwHi rats, had spontaneous limbic motor seizures 5 weeks following pilocarpine-induced status epilepticus. While the number of stimulations required to achieve full amygdala and hippocampal electrical kindling were similar in the two rat lines, SwLo rats had a lower final hippocampal kindling threshold and more wet dog shakes during both amygdala and hippocampal kindling. Combined, these results indicate that SwLo rats are a model of epilepsy and depression co-morbidity that can be used for investigating underlying neurobiological and genetic mechanisms and screening novel therapeutics.
Collapse
Affiliation(s)
- S Alisha Epps
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Kroshona D Tabb
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sharon J Lin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexa B Kahn
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Martin A Javors
- Department of Psychiatry, University of Texas Health Science Center, San Antonio, TX, USA
| | | | - Jay M Weiss
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA,Department of Human Genetics, Emory University School of Medicine, Whitehead 301, 615 Michael St, Atlanta, GA 30322, USA, Tel: +404 727 3106, Fax: +404 727 3949, E-mail:
| |
Collapse
|
3
|
The role of the central noradrenergic system in behavioral inhibition. ACTA ACUST UNITED AC 2011; 67:193-208. [PMID: 21315760 DOI: 10.1016/j.brainresrev.2011.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 01/30/2011] [Accepted: 02/03/2011] [Indexed: 02/06/2023]
Abstract
Although the central noradrenergic system has been shown to be involved in a number of behavioral and neurophysiological processes, the relation of these to its role in depressive illness has been difficult to define. The present review discusses the hypothesis that one of its chief functions that may be related to affective illness is the inhibition of behavioral activation, a prominent symptom of the disorder. This hypothesis is found to be consistent with most previous neuropsychopharmacological and immunohistochemical experiments on active behavior in rodents in a variety of experimental conditions using manipulation of neurotransmission at both locus coeruleus and forebrain adrenergic receptors. The findings support a mechanism in which high rates of noradrenergic neural activity suppress the neural activity of principal neurons in forebrain regions mediating active behavior. The suppression may be mediated through postsynaptic galaninergic and adrenergic receptors, and via the release of corticotrophin-releasing hormone. The hypothesis is consistent with clinical evidence for central noradrenergic system hyperactivity in depressives and with the view that this hyperactivity is a contributing etiological factor in the disorder. A similar mechanism may underlie the ability of the noradrenergic system to suppress seizure activity suggesting that inhibition of the spread of neural activation may be a unifying function.
Collapse
|
4
|
Abstract
Many treatments for the epilepsies and affective disorder share the properties of seizure suppression and mood stabilization. Moreover, affective disorders and the epilepsies appear to share partially similar pathogenic mechanisms. A component of the shared predisposition appears to arise from noradrenergic and serotonergic deficits. Increasing evidence supports the hypothesis that noradrenergic and/or serotonergic elevation is a mechanism of therapeutic benefit shared by most antidepressants and many antiepileptic medications. Medication induced alterations in GABAergic, glutamatergic, and CRH (corticotropin releasing hormone) containing neurons may also contribute to the shared therapeutic properties of antidepressant and antiepileptic medications.
Collapse
Affiliation(s)
- Phillip C Jobe
- Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine, PO Box 1649, Peoria, Illinois 61656-1649, USA.
| |
Collapse
|
5
|
Jobe PC. Affective disorder and epilepsy comorbidity: implications for development of treatments, preventions and diagnostic approaches. Clin EEG Neurosci 2004; 35:53-68. [PMID: 15112464 DOI: 10.1177/155005940403500112] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Concepts pertaining to affective disorder and epilepsy comorbidity are contributing appreciably to improvements in patient care. Several antiepileptic treatments have become important components of the management of bipolar affective disorder. In contrast, little progress has emerged in developing clinical applications of the anticonvulsant properties of the antidepressants in the treatment of the epilepsies. The slow onset of action of the antidepressants remains a major impediment to fully effective treatment of depressive episodes. Nevertheless, studies from experimental epileptology demonstrate that the anticonvulsant effects of the antidepressants occur rapidly and as a consequence of noradrenergic and/or serotonergic activation. These studies also demonstrate that adequate initial doses of the antidepressants are essential to rapid onset of anticonvulsant action. Pharmacokinetically valid loading dose paradigms are seemingly avoided with antidepressant drugs in humans because of potential toxicities and/or patient unacceptability. However, substantial progress has been made in reducing the adverse effect liability of the antidepressants. No longer is convulsive liability considered to stem from the therapeutic mechanisms of the anti-depressants. Rather, noradrenergic and serotonergic influences have demonstrable anticonvulsant properties. Other side effects may also be separable from the anticonvulsant and antidepressive effects of antidepressive treatments. The concept that the protracted process of antidepressant-induced beta-noradrenergic down-regulation is an essential prelude to the onset of mood benefit is no longer a sustainable premise. Nevertheless, increasing evidence underlies the possibility that knowledge of serotonergic and noradrenergic regulatory processes can be used to design strategies that will hasten the onset of antidepressive action. Similar optimism pervades efforts to determine the possibility that dual inhibition of serotonin and norepinephrine transporters will hasten onset of antidepressive action. Moreover, because noradrenergic and serotonergic systems are determinants of predisposition to seizures and to dysfunctional affective episodes, augmentation strategies may also be applicable to the use of antidepressant drugs in epilepsy and to the use of antiepileptic drugs such as carbamazepine in mood disorders. Recent studies have demonstrated that, in part, the therapeutic effectiveness of carbamazepine may stem from its marked capacity to elevate serotonin concentrations in the extracellular fluid of the brain via mechanisms that differ from those of the membrane reuptake inhibitors. Evidence suggests that the epilepsies and affective disorders may arise from a multiplicity of neurobiological abnormalities. A disorder in one individual may arise via different mechanisms than a phenomenologically similar disorder in another individual. Thus, diagnostic tools are needed to make mechanistic distinctions among individuals so that treatments can be appropriately developed and selected. In terms of epileptogenesis and affective disorder progression, neuroprotective paradigms for one individual may differ from those needed for another. Moreover, diagnostic technologies that are adequate to detect genetically and/or experientially determined vulnerability before the onset of a seizure or dysfunctional affective episode may be valuable steps toward achieving goals of prevention.
Collapse
Affiliation(s)
- Phillip C Jobe
- Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine, PO Box 1649, Peoria, Illinois 61656-1649, USA.
| |
Collapse
|
6
|
Abstract
Plasma glucose and lactate, hepatic glycogen and epididymal adipose tissue lipogenesis and lipolysis were studied in Wistar audiogenic rats (WARs), a genetic model of epilepsy, under three experimental conditions, i.e., before, 3 min after and 10 min after seizures induced by intense sound exposure. Plasma glucose increased 3 min after the seizure onset and rose to a peak after 10 min. Hepatic glycogen decreased significantly in susceptible audiogenic rats compared to nonepileptic controls, even before sound stimulation. A marked ( approximately 10-fold) rise was observed in plasma lactate levels 3 and 10 min after the seizures compared to the response of the control group. Lipogenic activity showed a marked decrease even after stimulation with 25 ng/ml insulin. Based on these results, WARs showed reduced isoproterenol-stimulated lipolysis compared to control animals, whereas basal levels only differed significantly at 10 min after seizure activity. In conclusion, it can be inferred from these results that (a) the increase in plasma glucose after stimulation might result from sequential interaction of autonomic activation at seizure onset; (b) excessive muscular activity was at least partially responsible for the steady rise in plasma lactate concentrations; (c) audiogenic seizures, which increase adrenergic activity, induce desensitization of the beta-adrenergic lipolytic pathway in epididymal adipose tissue; (d) genetic selection for audiogenic seizure susceptibility results in pronounced alterations at multiple levels of metabolic regulation.
Collapse
Affiliation(s)
- Leida M Botion
- Department of Physiology and Biophysics, Institute of Biological Science (ICB), Federal University of Minas Gerais, Av. Antonio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil.
| | | |
Collapse
|
7
|
Ryu JR, Shin CY, Park KH, Jeon GS, Kim H, Kim W, Dailey JW, Jobe PC, Cho SS, Ko KH. Effect of repeated seizure experiences on tyrosine hydroxylase immunoreactivities in the brain of genetically epilepsy-prone rats. Brain Res Bull 2000; 53:777-82. [PMID: 11179842 DOI: 10.1016/s0361-9230(00)00373-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The genetically epilepsy-prone rat (GEPR) is a model of generalized tonic/clonic epilepsy, and has functional noradrenergic deficiencies that act as partial determinants for the seizure predisposition and expression. The present study investigated the effect of repeated seizure experiences by acoustic stimulation (110 dB, 10 times) on the immunoreactivities of tyrosine hydroxylase (TH), a rate-determining enzyme in the synthesis of norepinephrine, in brain regions of GEPRs. TH immunoreactivity in locus coeruleus, the major noradrenergic nucleus in brain, was lower in GEPRs than control Sprague-Dawley rats. It was also decreased in several regions including inferior colliculus of GEPRs. Repeated experiences of audiogenic seizures further decreased TH immunoreactivities in locus coeruleus and inferior colliculus of GEPRs. The results from the present study suggest that the lower immunoreactivities of TH in locus coeruleus and inferior colliculus contribute, at least in part, to the noradrenergic deficits in GEPRs, and repeated seizure experiences further intensified these noradrenergic deficits, which may be related to the altered seizure expression by repetitive audiogenic seizure in GEPRs.
Collapse
Affiliation(s)
- J R Ryu
- Department of Pharmacology, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|