1
|
Ganji N, Biouss G, Sabbatini S, Li B, Lee C, Pierro A. Remote ischemic conditioning in necrotizing enterocolitis. Semin Pediatr Surg 2023; 32:151312. [PMID: 37295298 DOI: 10.1016/j.sempedsurg.2023.151312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Necrotizing enterocolitis (NEC) is a devastating intestinal inflammatory disorder, most prevalent in premature infants, and associated with a high mortality rate that has remained unchanged in the past two decades. NEC is characterized by inflammation, ischemia, and impaired microcirculation in the intestine. Preclinical studies by our group have led to the discovery of remote ischemic conditioning (RIC) as a promising non-invasive intervention in protecting the intestine against ischemia-induced damage during early-stage NEC. RIC involves the administration of brief reversible cycles of ischemia and reperfusion in a limb (similar to taking standard blood pressure measurement) which activate endogenous protective signaling pathways that are conveyed to distant organs such as the intestine. RIC targets the intestinal microcirculation and by improving blood flow to the intestine, reduces the intestinal damage of experimental NEC and prolongs survival. A recent Phase I safety study by our group demonstrated that RIC was safe in preterm infants with NEC. A phase II feasibility randomized controlled trial involving 12 centers in 6 countries is currently underway, to investigate the feasibility of RIC as a treatment for early-stage NEC in preterm neonates. This review provides a brief background on RIC as a therapeutic strategy and summarizes the progression of RIC as a treatment for NEC from preclinical investigation to clinical evaluation.
Collapse
Affiliation(s)
- Niloofar Ganji
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Translational Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada
| | - George Biouss
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Translational Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada
| | - Stella Sabbatini
- Translational Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada
| | - Bo Li
- Translational Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada
| | - Carol Lee
- Translational Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada
| | - Agostino Pierro
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Translational Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON M5G 1×8, Canada.
| |
Collapse
|
2
|
Guo W, Ren C, Zhang B, Zhao W, Gao Y, Yu W, Ji X. Chronic Limb Remote Ischemic Conditioning may have an Antihypertensive Effect in Patients with Hypertension. Aging Dis 2021; 12:2069-2079. [PMID: 34881086 PMCID: PMC8612623 DOI: 10.14336/ad.2021.0604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/06/2021] [Indexed: 12/14/2022] Open
Abstract
Hypertension is the leading preventable risk factor for all-cause morbidity and mortality worldwide. Despite antihypertensive medications have been available for decades, a big challenge we are facing is to increase the blood pressure (BP) control rate among the population. Therefore, it is necessary to search for new antihypertensive means to reduce the burden of disease caused by hypertension. Limb remote ischemic conditioning (LRIC) can trigger endogenous protective effects through transient and repeated ischemia on the limb to protect specific organs and tissues including the brain, heart, and kidney. The mechanisms of LRIC involve the regulation of the autonomic nervous system, releasing humoral factors, improvement of vascular endothelial function, and modulation of immune/inflammatory responses. These underlying mechanisms of LRIC may restrain the pathogenesis of hypertension through multiple pathways theoretically, leading to a potential decline in BP. Several existing studies have explored the impact of LRIC on BP, however, controversial findings were reported. To explore the potential antihypertensive effect of LRIC and the underlying mechanisms, we systematically reviewed the relevant articles to provide an insight into the novel therapy of hypertension.
Collapse
Affiliation(s)
- Wenting Guo
- 1Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- 2Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical, Beijing, China.,3Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Bowei Zhang
- 1Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenbo Zhao
- 1Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical, Beijing, China
| | - Yu Gao
- 5Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wantong Yu
- 1Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- 1Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical, Beijing, China.,4Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Zhou D, Ding J, Ya J, Pan L, Wang Y, Ji X, Meng R. Remote ischemic conditioning: a promising therapeutic intervention for multi-organ protection. Aging (Albany NY) 2019; 10:1825-1855. [PMID: 30115811 PMCID: PMC6128414 DOI: 10.18632/aging.101527] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022]
Abstract
Despite decades of formidable exploration, multi-organ ischemia-reperfusion injury (IRI) encountered, particularly amongst elderly patients with clinical scenarios, such as age-related arteriosclerotic vascular disease, heart surgery and organ transplantation, is still an unsettled conundrum that besets clinicians. Remote ischemic conditioning (RIC), delivered via transient, repetitive noninvasive IR interventions to distant organs or tissues, is regarded as an innovative approach against IRI. Based on the available evidence, RIC holds the potential of affording protection to multiple organs or tissues, which include not only the heart and brain, but also others that are likely susceptible to IRI, such as the kidney, lung, liver and skin. Neuronal and humoral signaling pathways appear to play requisite roles in the mechanisms of RIC-related beneficial effects, and these pathways also display inseparable interactions with each other. So far, several hurdles lying ahead of clinical translation that remain to be settled, such as establishment of biomarkers, modification of RIC regimen, and deep understanding of underlying minutiae through which RIC exerts its powerful function. As this approach has garnered an increasing interest, herein, we aim to encapsulate an overview of the basic concept and postulated protective mechanisms of RIC, highlight the main findings from proof-of-concept clinical studies in various clinical scenarios, and also to discuss potential obstacles that remain to be conquered. More well designed and comprehensive experimental work or clinical trials are warranted in future research to confirm whether RIC could be utilized as a non-invasive, inexpensive and efficient adjunct therapeutic intervention method for multi-organ protection.
Collapse
Affiliation(s)
- Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Jiayue Ding
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Jingyuan Ya
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Liqun Pan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Yuan Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
4
|
Tsibulnikov SY, Maslov LN, Gorbunov AS, Voronkov NS, Boshchenko AA, Popov SV, Prokudina ES, Singh N, Downey JM. A Review of Humoral Factors in Remote Preconditioning of the Heart. J Cardiovasc Pharmacol Ther 2019; 24:403-421. [PMID: 31035796 DOI: 10.1177/1074248419841632] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A humoral mechanism of cardioprotection by remote ischemic preconditioning (RIP) has been clearly demonstrated in various models of ischemia-reperfusion including upper and lower extremities, liver, and the mesenteric and renal arteries. A wide range of humoral factors for RIP have been proposed including hydrophobic peptides, opioid peptides, adenosine, prostanoids, endovanilloids, endocannabinoids, calcitonin gene-related peptide, leukotrienes, noradrenaline, adrenomedullin, erythropoietin, apolipoprotein, A-I glucagon-like peptide-1, interleukin 10, stromal cell-derived factor 1, and microRNAs. Virtually, all of the components of ischemic preconditioning's signaling pathway such as nitric oxide synthase, protein kinase C, redox signaling, PI3-kinase/Akt, glycogen synthase kinase β, ERK1/2, mitoKATP channels, Connexin 43, and STAT were all found to play a role. The signaling pattern also depends on which remote vascular bed was subjected to ischemia and on the time between applying the rip and myocardial ischemia occurs. Because there is convincing evidence for many seemingly diverse humoral components in RIP, the most likely explanation is that the overall mechanism is complex like that seen in ischemic preconditioning where multiple components are both in series and in parallel and interact with each other. Inhibition of any single component in the right circumstance may block the resulting protective effect, and selectively activating that component may trigger the protection. Identifying the humoral factors responsible for RIP might be useful in developing drugs that confer RIP's protection in a more comfortable and reliable manner.
Collapse
Affiliation(s)
- Sergey Y Tsibulnikov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Leonid N Maslov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Alexander S Gorbunov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Nikita S Voronkov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Alla A Boshchenko
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Sergey V Popov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Ekaterina S Prokudina
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Nirmal Singh
- 2 Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - James M Downey
- 3 Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
5
|
Circulating mediators of remote ischemic preconditioning: search for the missing link between non-lethal ischemia and cardioprotection. Oncotarget 2019; 10:216-244. [PMID: 30719216 PMCID: PMC6349428 DOI: 10.18632/oncotarget.26537] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of mortality and morbidity worldwide. There has been an extensive search for cardioprotective therapies to reduce myocardial ischemia-reperfusion (I/R) injury. Remote ischemic preconditioning (RIPC) is a phenomenon that relies on the body's endogenous protective modalities against I/R injury. In RIPC, non-lethal brief I/R of one organ or tissue confers protection against subsequent lethal I/R injury in an organ remote to the briefly ischemic organ or tissue. Initially it was believed to be limited to direct myocardial protection, however it soon became apparent that RIPC applied to other organs such as kidney, liver, intestine, skeletal muscle can reduce myocardial infarct size. Intriguing discoveries have been made in extending the concept of RIPC to other organs than the heart. Over the years, the underlying mechanisms of RIPC have been widely sought and discussed. The involvement of blood-borne factors as mediators of RIPC has been suggested by a number of research groups. The main purpose of this review article is to summarize the possible circulating mediators of RIPC, and recent studies to establish the clinical efficacy of these mediators in cardioprotection from lethal I/R injury.
Collapse
|
6
|
Abdul-Ghani S, Fleishman AN, Khaliulin I, Meloni M, Angelini GD, Suleiman MS. Remote ischemic preconditioning triggers changes in autonomic nervous system activity: implications for cardioprotection. Physiol Rep 2018; 5:5/3/e13085. [PMID: 28193783 PMCID: PMC5309573 DOI: 10.14814/phy2.13085] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 01/30/2023] Open
Abstract
Cardioprotective efficacy of remote ischemic preconditioning (RIPC) remains controversial. Experimental studies investigating RIPC have largely monitored cardiovascular changes during index ischemia and reperfusion with little work investigating changes during RIPC application. This work aims to identify cardiovascular changes associated with autonomic nervous system (ANS) activity during RIPC and prior to index ischemia. RIPC was induced in anesthetized male C57/Bl6 mice by four cycles of 5 min of hindlimb ischemia using inflated cuff (200 mmHg) followed by 5 min reperfusion. Electrocardiography (ECG) and microcirculatory blood flow in both hindlimbs were recorded throughout RIPC protocol. Heart rate variability (HRV) analysis was performed using ECG data. Hearts extracted at the end of RIPC protocol were used either for measurement of myocardial metabolites using high‐performance liquid chromatography or for Langendorff perfusion to monitor function and injury during 30 min index ischemia and 2 h reperfusion. Isolated‐perfused hearts from RIPC animals had significantly less infarct size after index ischemia and reperfusion (34 ± 5% vs. 59 ± 7%; mean ± SE P < 0.05). RIPC protocol was associated with increased heart rate measured both in ex vivo and in vivo. Frequency ratio of HRV spectra was altered in RIPC compared to control. RIPC was associated with a standard hyperemic response in the cuffed‐limb but there was a sustained reduction in blood flow in the uncuffed contralateral limb. RIPC hearts (prior to index ischemia) had significantly lower phosphorylation potential and energy charge compared to the control group. In conclusion, RIPC is associated with changes in ANS activity (heart rate, blood flow, HRV) and mild myocardial ischemic stress that would contribute to cardioprotection.
Collapse
Affiliation(s)
- Safa Abdul-Ghani
- Bristol Heart Institute, School of Clinical Sciences, Faculty of Medicine & Dentistry, University of Bristol, Bristol, United Kingdom
| | - Arnold N Fleishman
- Research Institute for Complex Problems of Hygiene and Occupational Diseases, Novokuznetsk Kemerovo Oblast, Russia
| | - Igor Khaliulin
- Bristol Heart Institute, School of Clinical Sciences, Faculty of Medicine & Dentistry, University of Bristol, Bristol, United Kingdom
| | - Marco Meloni
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Gianni D Angelini
- Bristol Heart Institute, School of Clinical Sciences, Faculty of Medicine & Dentistry, University of Bristol, Bristol, United Kingdom
| | - M-Saadeh Suleiman
- Bristol Heart Institute, School of Clinical Sciences, Faculty of Medicine & Dentistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
7
|
Giannopoulos G, Vrachatis DA, Panagopoulou V, Vavuranakis M, Cleman MW, Deftereos S. Remote Ischemic Conditioning and Renal Protection. J Cardiovasc Pharmacol Ther 2017; 22:321-329. [PMID: 28443376 DOI: 10.1177/1074248417702480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the course of the last 2 decades, the concept of remote ischemic conditioning (RIC) has attracted considerable research interest, because RIC, in most of its embodiments offers an inexpensive way of protecting tissues against ischemic damage inflicted by a number of medical conditions or procedures. Acute kidney injury (AKI) is a common side effect in the context of various medical procedures, and RIC has been suggested as a means of reducing its incidence. Outcomes regarding kidney function have been reported in numerous studies that evaluated the effects of RIC in a variety of settings (eg, cardiac surgery, interventions requiring intravenous administration of contrast media). Although several individual studies have implied a beneficial effect of RIC in preserving kidney function, 3 recently published randomized controlled trials evaluating more than 1000 patients each (Effect of Remote Ischemic Preconditioning in the Cardiac Surgery, Remote Ischaemic Preconditioning for Heart Surgery, and ERICCA) were negative. However, AKI or any other index of renal function was not a stand-alone primary end point in any of these trials. On the other hand, a range of meta-analyses (each including thousands of participants) have reported mixed results, with the most recent among them showing benefit from RIC, pinpointing at the same time a number of shortcomings in published studies, adversely affecting the quality of available data. The present review provides a critical appraisal of the current state of this field of research. It is the opinion of the authors of this review that there is a clear need for a common clinical trial framework for ischemic conditioning studies. If the current babel of definitions, procedures, outcomes, and goals persists, it is most likely that soon ischemic conditioning will be "yesterday's news" with no definitive conclusions having been reached in terms of its real clinical utility.
Collapse
Affiliation(s)
- Georgios Giannopoulos
- 1 Second Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,2 Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | - Vasiliki Panagopoulou
- 1 Second Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Manolis Vavuranakis
- 4 First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael W Cleman
- 2 Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Spyridon Deftereos
- 1 Second Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,2 Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
8
|
Cruz RSDO, Pereira KL, Lisbôa FD, Caputo F. Could small-diameter muscle afferents be responsible for the ergogenic effect of limb ischemic preconditioning? J Appl Physiol (1985) 2016; 122:718-720. [PMID: 27815369 DOI: 10.1152/japplphysiol.00662.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 02/06/2023] Open
Affiliation(s)
| | - Kayo Leonardo Pereira
- Human Performance Research Group, College of Health and Sport Science, Santa Catarina State University, Brazil
| | - Felipe Domingos Lisbôa
- Human Performance Research Group, College of Health and Sport Science, Santa Catarina State University, Brazil
| | - Fabrizio Caputo
- Human Performance Research Group, College of Health and Sport Science, Santa Catarina State University, Brazil
| |
Collapse
|
9
|
Preconditioning at a distance: Involvement of endothelial vasoactive substances in cardioprotection against ischemia-reperfusion injury. Life Sci 2016; 151:250-258. [DOI: 10.1016/j.lfs.2016.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/04/2016] [Accepted: 03/11/2016] [Indexed: 12/17/2022]
|
10
|
|
11
|
Hamarneh A, Sivaraman V, Bulluck H, Shanahan H, Kyle B, Ramlall M, Chung R, Jarvis C, Xenou M, Ariti C, Cordery R, Yellon DM, Hausenloy DJ. The Effect of Remote Ischemic Conditioning and Glyceryl Trinitrate on Perioperative Myocardial Injury in Cardiac Bypass Surgery Patients: Rationale and Design of the ERIC-GTN Study. Clin Cardiol 2015; 38:641-6. [PMID: 26412308 PMCID: PMC6490705 DOI: 10.1002/clc.22445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/23/2015] [Accepted: 07/27/2015] [Indexed: 01/01/2023] Open
Abstract
Remote ischemic conditioning (RIC) using transient limb ischemia/reperfusion has been reported to reduce perioperative myocardial injury in patients undergoing coronary artery bypass grafting and/or valve surgery. The role of intravenous glyceryl trinitrate (GTN) therapy administered during cardiac surgery as a cardioprotective agent and whether it interferes with RIC cardioprotection is not clear and is investigated in the ERIC-GTN trial ( http://www.clinicaltrials.gov: NCT01864252). The ERIC-GTN trial is a single-site, double-blind, randomized, placebo-controlled study. Consenting adult patients (age > 18 years) undergoing elective coronary artery bypass grafting ± valve surgery with blood cardioplegia will be eligible for inclusion. Two hundred sixty patients will be randomized to 1 of 4 treatment groups following anesthetic induction: (1) RIC alone, a RIC protocol comprising three 5-minute cycles of simultaneous upper-arm and thigh cuff inflation/deflation followed by an intravenous (IV) placebo infusion; (2) GTN alone, a simulated sham RIC protocol followed by an IV GTN infusion; (3) RIC + GTN, a RIC protocol followed by an IV GTN infusion; and (4) neither RIC nor GTN, a sham RIC protocol followed by IV placebo infusion. The primary endpoint will be perioperative myocardial injury as quantified by the 72-hour area-under-the-curve serum high-sensitivity troponin T. The ERIC-GTN trial will determine whether intraoperative GTN therapy is cardioprotective during cardiac surgery and whether it affects RIC cardioprotection.
Collapse
Affiliation(s)
- Ashraf Hamarneh
- The Hatter Cardiovascular Institute University College LondonLondonUnited Kingdom
| | - Vivek Sivaraman
- The Hatter Cardiovascular Institute University College LondonLondonUnited Kingdom
| | - Heerajnarain Bulluck
- The Hatter Cardiovascular Institute University College LondonLondonUnited Kingdom
| | | | | | - Manish Ramlall
- The Hatter Cardiovascular Institute University College LondonLondonUnited Kingdom
| | - Robin Chung
- The Hatter Cardiovascular Institute University College LondonLondonUnited Kingdom
| | | | | | | | - Roger Cordery
- The Hatter Cardiovascular Institute University College LondonLondonUnited Kingdom
| | - Derek M. Yellon
- The Hatter Cardiovascular Institute University College LondonLondonUnited Kingdom
- The National Institute of Health ResearchUniversity College London Hospitals Biomedical Research CentreLondonUnited Kingdom
| | - Derek J. Hausenloy
- The Hatter Cardiovascular Institute University College LondonLondonUnited Kingdom
- The National Institute of Health ResearchUniversity College London Hospitals Biomedical Research CentreLondonUnited Kingdom
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingapore
- Cardiovascular and Metabolic Disorders ProgramDuke‐National University of SingaporeSingapore
| |
Collapse
|
12
|
Ahmad AMZ, Ali GSR, Tariq W. Remote ischemic preconditioning is a safe adjuvant technique to myocardial protection but adds no clinical benefit after on-pump coronary artery bypass grafting. Heart Surg Forum 2015; 17:E220-3. [PMID: 25179977 DOI: 10.1532/hsf98.2014391] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND To evaluate the impact of remote ischemic preconditioning (RIPC) on clinical outcome, biological markers of myocardial injury, and its safety in patients undergoing on-pump coronary artery bypass grafting (CABG). MATERIAL AND METHODS This study was conducted at Ch. Pervaiz Elahi Institute of Cardiology (CPEIC) in Multan. The study took place from March 2012 to June 2013. Patients were randomly placed into two groups. Group A (N = 32) did not undergo RIPC; Group B (N = 35) received RIPC after induction of anesthesia. Similar standard general anesthesia, cardiopulmonary technique, myocardial protection strategies, and surgical techniques were used in both groups except the protocol for RIPC. Following postoperative outcome, i.e. cardiac defibrillation after removal of aortic cross clamp during the period of rewarming, demand for intra-aortic balloon pump (IABP), demand for antiarrhythmic before leaving the operation room, postoperative creatine kinase-myocardial band (CK-MB) level (at 1h, 12h, 24h, and 48h after surgery), postoperative serum creatinine level on first postoperative day, postoperative ejection fraction (EF) on third postoperative day, in-hospital mortality, and one-year mortality were noted, prospectively. Safety of protocol of RIPC was estimated by limb ischemia monitored by pulse oximetry during and after procedure of RIPC and postoperative neurapraxia by nerve examination of right upper limb. RESULTS Post aortic cross clamp release cardiac defibrillation, demand for IABP, demand for high inotropes, and use of antiarrhythmic in the operation room were statistically insignificant in the non-RIPC and RIPC group with P values of .54, .78, .16, and .16, respectively. Mean postoperative CK-MB level (IU/L) showed the following results: At 1h (Group A 20.94 + 1.66, Group B 20.57 + 1.54, P = .35), at 12h (Group A 27.13 + 1.85, Group B 28.05 + 3.04, P = .135), at 24h (Group A 27.63 + 1.7, Group B 27.85 + 2.2, P = .63), and at 48h (Group A 22.95 + 2.76, Group B 23.27 + 3.6, P = .69). First postoperative day serum creatinine (Group A 1.29 + 0.395, Group B 1.33 + 0.57, P = .77) and postoperative ejection fraction percentage on the third postoperative day (Group A 50.78 + 8.72, Group B 50.57 + 8.38, P = .92) showed no statistical difference between two groups. Postoperative low cardiac output state, in-hospital mortality, and one-year mortality also were statistically insignificant between the groups with P values of .93, .29, and .33, respectively. None of the patients in either group showed evidence of limb ischemia and neurapraxia of the right upper limb. CONCLUSION RIPC is a safe technique, but it does not have additional clinical benefit after on-pump CABG surgery in the presence of a standard myocardial protective strategy.
Collapse
Affiliation(s)
| | - Gillani Syed Rafay Ali
- Department of Cardiac Surgery, Ch. Pervaiz Elahi Institute of Cardiology, Multan, Pakistan
| | - Waqar Tariq
- Department of Cardiac Surgery, Ch. Pervaiz Elahi Institute of Cardiology, Multan, Pakistan
| |
Collapse
|
13
|
Moretti C, Cavallero E, D’Ascenzo F, Cerrato E, Zoccai GB, Omedè P, Presutti DG, Lefevre T, Sanguineti F, Picchi A, Palazzuoli A, Carini G, Giammaria M, Ugo F, Presbitero P, Chen S, Lin S, Sheiban I, Gaita F. The EUROpean and Chinese cardiac and renal Remote Ischemic Preconditioning Study (EURO-CRIPS). J Cardiovasc Med (Hagerstown) 2015; 16:246-52. [PMID: 24859616 DOI: 10.2459/jcm.0000000000000098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Remote ischemic preconditioning for myocardial protection: update on mechanisms and clinical relevance. Mol Cell Biochem 2015; 402:41-9. [PMID: 25552250 DOI: 10.1007/s11010-014-2312-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/20/2014] [Indexed: 02/07/2023]
Abstract
Ischemic heart disease is the leading cause of death for both men and women worldwide, accruing 7.4 million deaths in 2012. There has been a continued search for better cardioprotective modalities that would reduce myocardial ischemia-reperfusion injury. Among these attempts, a more convenient model of ischemic preconditioning, known as remote ischemic preconditioning (RIPC) was first introduced in 1993 by Przyklenk and colleagues who reported that brief regional occlusion-reperfusion episodes in one vascular bed of the heart render protection to remote myocardial tissue. Subsequently, major advances in myocardial RIPC came with the use of skeletal muscle as the ischemic stimulus. To date, numerous studies have revealed that RIPC applied to the kidney, liver, mesentery, and skeletal muscle, have all exhibited cardioprotective effects. The main purpose of this review article is to summarize the new advances in understanding the molecular mechanisms of RIPC during the past 5 years, including those related to capsaicin-activated C sensory fibers, hypoxia-inducible factor 1α, connexin 43, extracellular vesicles, microRNA-144, microRNA-1, and nitrite. In addition, we have discussed results from several recent human clinical trials with RIPC. Taken together, the emerging clinical evidence supports the concept that the effectiveness of RIPC paired with its low-cost and non-invasive features makes it an ideal treatment before reperfusion after sustained ischemia. More carefully designed studies are warranted to fully exploit the clinical benefits of RIPC and its potential implications in patients with cardiovascular disease.
Collapse
|
15
|
Zhou C, Li H, Yao Y, Li L. Delayed remote ischemic preconditioning produces an additive cardioprotection to sevoflurane postconditioning through an enhanced heme oxygenase 1 level partly via nuclear factor erythroid 2-related factor 2 nuclear translocation. J Cardiovasc Pharmacol Ther 2014; 19:558-66. [PMID: 24651515 DOI: 10.1177/1074248414524479] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although both sevoflurane postconditioning (SPoC) and delayed remote ischemic preconditioning (DRIPC) have been proved effective in various animal and human studies, the combined effect of these 2 strategies remains unclear. Therefore, this study was designed to investigate this effect and elucidate the related signal mechanisms in a Langendorff perfused rat heart model. After 30-minute balanced perfusion, isolated hearts were subjected to 30-minute ischemia followed by 60-minute reperfusion except 90-minute perfusion for control. A synergic cardioprotective effect of SPoC (3% v/v) and DRIPC (4 cycles 5-minute occlusion/5-minute reflow at the unilateral hindlimb once per day for 3 days before heart isolation) was observed with facilitated cardiac functional recovery and decreased cardiac enzyme release. The infarct size-limiting effect was more pronounced in the combined group (6.76% ± 2.18%) than in the SPoC group (16.50% ± 4.55%, P < .001) or in the DRIPC group (10.22% ± 2.57%, P = .047). Subsequent analysis revealed that an enhanced heme oxygenase 1 (HO-1) expression, but not protein kinase B/AKt or extracellular signal-regulated kinase 1 and 2 activation, was involved in the synergic cardioprotective effect, which was further confirmed in the messenger RNA level of HO-1. Such trend was also observed in the nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, an upstream regulation of HO-1. In addition, correlation analysis showed a significantly positive relationship between HO-1 expression and Nrf2 translocation (r = 0.729, P < .001). Hence, we conclude that DRIPC may produce an additive cardioprotection to SPoC through an enhanced HO-1 expression partly via Nrf2 translocation.
Collapse
Affiliation(s)
- Chenghui Zhou
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huatong Li
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuntai Yao
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lihuan Li
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Costa JF, Fontes-Carvalho R, Leite-Moreira AF. Myocardial remote ischemic preconditioning: From pathophysiology to clinical application. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2013. [DOI: 10.1016/j.repce.2013.10.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
17
|
Costa JF, Fontes-Carvalho R, Leite-Moreira AF. Pré-condicionamento isquémico remoto do miocárdio: dos mecanismos fisiopatológicos à aplicação na prática clínica. Rev Port Cardiol 2013; 32:893-904. [DOI: 10.1016/j.repc.2013.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 12/14/2022] Open
|
18
|
Hibert P, Prunier-Mirebeau D, Beseme O, Chwastyniak M, Tamareille S, Lamon D, Furber A, Pinet F, Prunier F. Apolipoprotein a-I is a potential mediator of remote ischemic preconditioning. PLoS One 2013; 8:e77211. [PMID: 24155931 PMCID: PMC3796499 DOI: 10.1371/journal.pone.0077211] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/04/2013] [Indexed: 12/11/2022] Open
Abstract
Background Remote ischemic preconditioning (RIPC) has emerged as an attractive strategy in clinical settings. Despite convincing evidence of the critical role played by circulating humoral mediators, their actual identities remain unknown. In this study, we aimed to identify RIPC-induced humoral mediators using a proteomic approach. Methods and Results Rats were exposed to 10-min limb ischemia followed by 5- (RIPC 5′) or 10-min (RIPC 10′) reperfusion prior to blood sampling. The control group only underwent blood sampling. Plasma samples were analyzed using surface-enhanced laser desorption and ionization - time of flight - mass spectrometry (SELDI-TOF-MS). Three protein peaks were selected for their significant increase in RIPC 10′. They were identified and confirmed as apolipoprotein A-I (ApoA-I). Additional rats were exposed to myocardial ischemia-reperfusion (I/R) and assigned to one of the following groups RIPC+myocardial infarction (MI) (10-min limb ischemia followed by 10-min reperfusion initiated 20 minutes prior to myocardial I/R), ApoA-I+MI (10 mg/kg ApoA-I injection 10 minutes before myocardial I/R), and MI (no further intervention). In comparison with untreated MI rats, RIPC reduced infarct size (52.2±3.7% in RIPC+MI vs. 64.9±2.6% in MI; p<0.05). Similarly, ApoA-I injection decreased infarct size (50.9±3.8%; p<0.05 vs. MI). Conclusions RIPC was associated with a plasmatic increase in ApoA-I. Furthermore, ApoA-I injection before myocardial I/R recapitulated the cardioprotection offered by RIPC in rats. This data suggests that ApoA-I may be a protective blood-borne factor involved in the RIPC mechanism.
Collapse
Affiliation(s)
- Pierre Hibert
- L’UNAM Université, Angers, France
- Laboratoire Cardioprotection, Remodelage et Thrombose, Université d’Angers, Angers, France
| | - Delphine Prunier-Mirebeau
- L’UNAM Université, Angers, France
- INSERM U771, CNRS UMR 6214, Département de Biochimie et Génétique, Université d’Angers, CHU Angers, Angers, France
| | - Olivia Beseme
- INSERM, U744, Lille, France
- Institut Pasteur de Lille, Lille, France
- Université Lille Nord de France, IFR142, Lille, France
| | - Maggy Chwastyniak
- INSERM, U744, Lille, France
- Institut Pasteur de Lille, Lille, France
- Université Lille Nord de France, IFR142, Lille, France
| | - Sophie Tamareille
- L’UNAM Université, Angers, France
- Laboratoire Cardioprotection, Remodelage et Thrombose, Université d’Angers, Angers, France
| | - Delphine Lamon
- Laboratoire Cardioprotection, Remodelage et Thrombose, Université d’Angers, Angers, France
| | - Alain Furber
- L’UNAM Université, Angers, France
- Laboratoire Cardioprotection, Remodelage et Thrombose, Université d’Angers, Angers, France
- Service de Cardiologie, CHU Angers, Angers, France
| | - Florence Pinet
- INSERM, U744, Lille, France
- Institut Pasteur de Lille, Lille, France
- Université Lille Nord de France, IFR142, Lille, France
- Centre Hospitalier Régional et Universitaire, Lille, France
| | - Fabrice Prunier
- L’UNAM Université, Angers, France
- Laboratoire Cardioprotection, Remodelage et Thrombose, Université d’Angers, Angers, France
- Service de Cardiologie, CHU Angers, Angers, France
- * E-mail:
| |
Collapse
|
19
|
Deftereos S, Giannopoulos G, Tzalamouras V, Raisakis K, Kossyvakis C, Kaoukis A, Panagopoulou V, Karageorgiou S, Avramides D, Toutouzas K, Hahalis G, Pyrgakis V, Manolis AS, Alexopoulos D, Stefanadis C, Cleman MW. Renoprotective effect of remote ischemic post-conditioning by intermittent balloon inflations in patients undergoing percutaneous coronary intervention. J Am Coll Cardiol 2013; 61:1949-55. [PMID: 23500314 DOI: 10.1016/j.jacc.2013.02.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 01/29/2013] [Accepted: 02/25/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The aim of the present study was to assess the efficacy of remote ischemic post-conditioning (RIPC) by repeated intermittent balloon inflations in preventing acute kidney injury (AKI) in patients with a non-ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention (PCI). BACKGROUND AKI complicating PCI is associated with increased morbidity and mortality. Remote ischemic preconditioning, using cycles of upper limb ischemia-reperfusion as a conditioning stimulus, has been recently shown to prevent AKI in patients undergoing elective coronary angiography. METHODS Eligible patients were randomized to receive RIPC by cycles of inflation and deflation of the stent balloon during PCI or a sham procedure (control patients). The primary endpoint was AKI, defined as an increase of ≥ 0.5 mg/dl or ≥ 25% in serum creatinine within 96 h from PCI. The 30-day rate of death or re-hospitalization for any cause was one of the secondary endpoints. RESULTS A total of 225 patients were included (median age, 68 years; 36% female). The AKI rate in the RIPC group was 12.4% versus 29.5% in the control group (p = 0.002; odds ratio: 0.34; 95% confidence interval: 0.16 to 0.71). The number needed to treat to avoid 1 case of AKI was 6 (95% confidence interval: 3.6 to 15.2). The 30-day rate of death or re-hospitalization for any cause was 22.3% in the control group versus 12.4% in RIPC patients (p = 0.05). CONCLUSIONS RIPC by serial balloon inflations and deflations during PCI was found to confer protection against AKI in patients with a non-ST-segment elevation myocardial infarction undergoing PCI. The reduction in the rate of AKI translated into a clear trend (of borderline significance) toward better 30-day clinical outcome.
Collapse
Affiliation(s)
- Spyridon Deftereos
- Department of Cardiology, Athens General Hospital "G. Gennimatas," Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Szijártó A, Czigány Z, Turóczi Z, Harsányi L. Remote ischemic perconditioning--a simple, low-risk method to decrease ischemic reperfusion injury: models, protocols and mechanistic background. A review. J Surg Res 2012; 178:797-806. [PMID: 22868050 DOI: 10.1016/j.jss.2012.06.067] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 06/18/2012] [Accepted: 06/26/2012] [Indexed: 12/18/2022]
Abstract
Interruption of blood flow can cause ischemic reperfusion injury, which sometimes has a fatal outcome. Recognition of the phenomenon known as reperfusion injury has led to initial interventional approaches to lessen the degree of damage. A number of efficient pharmacologic agents and surgical techniques (e.g., local ischemic preconditioning and postconditioning) are available. A novel, alternative approach to target organ protection is remote ischemic conditioning triggered by brief repetitive ischemia and reperfusion periods in distant organs. Among the different surgical techniques is so-called remote ischemic perconditioning, a method that applies short periods of ischemic reperfusion to a distant organ delivered during target organ ischemia. Although ischemic reperfusion injury is reduced by this technique, the explanation for this phenomenon is still unclear, and approximately only a dozen reports on the topic have appeared in the literature. In our study, therefore, we investigated the connective mechanisms, signal transduction, and effector mechanisms behind remote perconditioning, with a review on molecular background and favorable effects. In addition, we summarize the various treatment protocols and models to promote future experimental and clinical research.
Collapse
Affiliation(s)
- Attila Szijártó
- First Department of Surgery, Semmelweis University, Budapest, Hungary.
| | | | | | | |
Collapse
|
21
|
Lim SY, Hausenloy DJ. Remote ischemic conditioning: from bench to bedside. Front Physiol 2012; 3:27. [PMID: 22363297 PMCID: PMC3282534 DOI: 10.3389/fphys.2012.00027] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 02/04/2012] [Indexed: 12/13/2022] Open
Abstract
Remote ischemic conditioning (RIC) is a therapeutic strategy for protecting organs or tissue against the detrimental effects of acute ischemia-reperfusion injury (IRI). It describes an endogenous phenomenon in which the application of one or more brief cycles of non-lethal ischemia and reperfusion to an organ or tissue protects a remote organ or tissue from a sustained episode of lethal IRI. Although RIC protection was first demonstrated to protect the heart against acute myocardial infarction, its beneficial effects are also seen in other organs (lung, liver, kidney, intestine, brain) and tissues (skeletal muscle) subjected to acute IRI. The recent discovery that RIC can be induced non-invasively by simply inflating and deflating a standard blood pressure cuff placed on the upper arm or leg, has facilitated its translation into the clinical setting, where it has been reported to be beneficial in a variety of cardiac scenarios. In this review article we provide an overview of RIC, the potential underlying mechanisms, and its potential as a novel therapeutic strategy for protecting the heart and other organs from acute IRI.
Collapse
Affiliation(s)
- Shiang Yong Lim
- O'Brien Institute, Department of Surgery, University of Melbourne, St Vincent's Hospital Melbourne, VIC, Australia
| | | |
Collapse
|
22
|
Clinical applications of remote ischemic preconditioning. Cardiol Res Pract 2012; 2012:620681. [PMID: 22400123 PMCID: PMC3286899 DOI: 10.1155/2012/620681] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 11/29/2011] [Indexed: 01/04/2023] Open
Abstract
Ischemia-reperfusion injury is a composite of damage accumulated during reduced perfusion of an organ or tissue and the additional insult sustained during reperfusion. Such injury occurs in a wide variety of clinically important syndromes, such as ischemic heart disease and stroke, which are responsible for a high degree of morbidity and mortality worldwide. Basic research has identified a number of interventions that stimulate innate resistance of tissues to ischemia-reperfusion injury. Here, we summarise the experimental and clinical trial data underpinning one of these “conditioning” strategies, the phenomenon of remote ischemic preconditioning.
Collapse
|
23
|
Heart-rate changes in asphyxic preconditioning in rats depend on light-dark cycle. Open Med (Wars) 2011. [DOI: 10.2478/s11536-011-0021-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractGenerally, it is assumed that heart-rhythm disorders during hypoxia result from the interplay between the autonomic nervous system (ANS) and the direct effect of hypoxia on cardiorespiratory structures of the central nervous system and on the myocardium. Circadian variability in the ANS may substantially influence the electrical stability of the myocardium, and thus it is associated with the preconditioning protective mechanism. We designed our study using anaesthetized Wistar rats (ketamine/xylazine 100 mg/15 mg/kg, i.m., open chest experiments) to evaluate the effect of preconditioning (PC) induced by 1 to 3 cycles (1 PC–3 PC) of asphyxia (5 min. of artificial hypoventilation, VT = 0.5 ml/100 g of b.w., 20 breaths/min.) and reoxygenation (5 min. of artificial ventilation, VT = 1 ml/100 g of b.w., 50 breaths/min.) on the heart rate (HR) during followed exposure 20 minutes of hypoventilation after adaptation to a light-dark (LD) cycle of 12 hours:12 hours. Hypoxic HR increases were only minimally prevented by 1 to 2 PC pre-treatment, particularly during the dark part of the day. A statistically significant HR increase required 3 PC and was seen only in the light part of the day. We concluded that possible ANS participation in asphyxic preconditioning depends not only on the number of preconditioned cycles but also on the LD cycle, when the ANS participation in preconditioning can be effective only in the light (nonactive) period.
Collapse
|
24
|
Intracerebroventricular administration of morphine confers remote cardioprotection—Role of opioid receptors and calmodulin. Eur J Pharmacol 2011; 656:74-80. [DOI: 10.1016/j.ejphar.2011.01.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 12/10/2010] [Accepted: 01/12/2011] [Indexed: 11/19/2022]
|
25
|
Abstract
Reduction of the burden of ischaemia-reperfusion injury is the aim of most treatments for cardiovascular and cerebrovascular disease. Although many strategies have proven benefit in the experimental arena, few have translated to clinical practice. Scientific and practical reasons might explain this finding, but the unpredictability of acute ischaemic syndromes is one of the biggest obstacles to timely application of novel treatments. Remote ischaemic preconditioning-which is a powerful innate mechanism of multiorgan protection that can be induced by transient occlusion of blood flow to a limb with a blood-pressure cuff-could be close to becoming a clinical technique. Several proof-of-principle and clinical trials have been reported, suggesting that the technique has remarkable promise. We examine the history, development, and present state of remote preconditioning in cardiovascular disease.
Collapse
Affiliation(s)
- Rajesh K Kharbanda
- Department of Cardiology, John Radcliffe Hospital and University of Oxford, Oxford, UK
| | | | | |
Collapse
|
26
|
Saxena P, Newman MAJ, Shehatha JS, Redington AN, Konstantinov IE. Remote ischemic conditioning: evolution of the concept, mechanisms, and clinical application. J Card Surg 2009; 25:127-34. [PMID: 19549044 DOI: 10.1111/j.1540-8191.2009.00820.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Remote ischemic conditioning is a novel concept of protection against ischemia-reperfusion injury. Brief controlled episodes of intermittent ischemia of the arm or leg may confer a powerful systemic protection against prolonged ischemia in a distant organ. This conditioning phenomenon is clinically applicable and can be performed before--preconditioning, during--perconditioning, or after--postconditioning prolonged distant organ ischemia. The remote ischemic conditioning may have an immense impact on clinical practice in the near future.
Collapse
Affiliation(s)
- Pankaj Saxena
- Department of Cardiothoracic Surgery, Sir Charles Gairdner Hospital, University of Western Australia, Perth, Australia
| | | | | | | | | |
Collapse
|
27
|
Sadat U. Signaling pathways of cardioprotective ischemic preconditioning. Int J Surg 2009; 7:490-8. [PMID: 19540944 DOI: 10.1016/j.ijsu.2009.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 06/10/2009] [Accepted: 06/11/2009] [Indexed: 12/26/2022]
Abstract
BACKGROUND Ischemia/reperfusion (I/R) injury is a major contributory factor to cardiac dysfunction and infarct size that determines patient prognosis after acute myocardial infarction. During the last 20 years, since the appearance of the first publication on ischemic preconditioning (IP), our knowledge of this phenomenon has increased exponentially. RESULTS AND CONCLUSION Basic scientific experiments and preliminary clinical trials in humans suggest that IP confers resistance to subsequent sustained ischemic insults not only in the regional tissue but also in distant organs (remote ischemic preconditioning), which may provide a simple, cost-effective means of reducing the risk of perioperative myocardial ischemia. The mechanism may be humoral, neural, or a combination of both, and involves adenosine, bradykinin, protein kinases and K(ATP) channels, although the precise end-effector remains unclear. This review describes different signaling pathways involved in acute ischemic preconditioning in detail.
Collapse
Affiliation(s)
- Umar Sadat
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
28
|
Hausenloy DJ, Yellon DM. Remote ischaemic preconditioning: underlying mechanisms and clinical application. Cardiovasc Res 2008; 79:377-86. [PMID: 18456674 DOI: 10.1093/cvr/cvn114] [Citation(s) in RCA: 384] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Remote ischaemic preconditioning (RIPC) represents a strategy for harnessing the body's endogenous protective capabilities against the injury incurred by ischaemia and reperfusion. It describes the intriguing phenomenon in which transient non-lethal ischaemia and reperfusion of one organ or tissue confers resistance to a subsequent episode of lethal ischaemia reperfusion injury in a remote organ or tissue. In its original conception, it described intramyocardial protection, which could be relayed from the myocardium served by one coronary artery to another. It soon became apparent that myocardial infarct size could be dramatically reduced by applying brief ischaemia and reperfusion to an organ or tissue remote from the heart before the onset of myocardial infarction. The concept of remote organ protection has now been extended beyond that of solely protecting the heart to providing a general form of inter-organ protection against ischaemia-reperfusion injury. This article reviews the history and evolution of the phenomenon that is RIPC, the potential mechanistic pathways underlying its cardioprotective effect, and its emerging application in the clinical setting.
Collapse
Affiliation(s)
- Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, 67 Chenies Mews, London WC1E 6HX, UK.
| | | |
Collapse
|
29
|
Remote ischemic preconditioning: a novel protective method from ischemia reperfusion injury--a review. J Surg Res 2008; 150:304-30. [PMID: 19040966 DOI: 10.1016/j.jss.2007.12.747] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 10/25/2007] [Accepted: 12/06/2007] [Indexed: 12/15/2022]
Abstract
BACKGROUND Restoration of blood supply to an organ after a critical period of ischemia results in parenchymal injury and dysfunction of the organ referred to as reperfusion injury. Ischemia reperfusion injury is often seen in organ transplants, major organ resections and in shock. Ischemic preconditioning (IPC) is an adaptational response of briefly ischemic tissues which serves to protect against subsequent prolonged ischemic insults and reperfusion injury. Ischemic preconditioning can be mechanical or pharmacological. Direct mechanical preconditioning in which the target organ is exposed to brief ischemia prior to prolonged ischemia has the benefit of reducing ischemia-reperfusion injury (IRI) but its main disadvantage is trauma to major vessels and stress to the target organ. Remote (inter organ) preconditioning is a recent observation in which brief ischemia of one organ has been shown to confer protection on distant organs without direct stress to the organ. AIM To discuss the evidence for remote IPC (RIPC), underlying mechanisms and possible clinical applications of RIPC. METHODS OF SEARCH: A Pubmed search with the keywords "ischemic preconditioning," "remote preconditioning," "remote ischemic preconditioning," and "ischemia reperfusion" was done. All articles on remote preconditioning up to September 2006 have been reviewed. Relevant reference articles from within these have been selected for further discussion. RESULTS Experimental studies have demonstrated that the heart, liver, lung, intestine, brain, kidney and limbs are capable of producing remote preconditioning when subjected to brief IR. Remote intra-organ preconditioning was first described in the heart where brief ischemia in one territory led to protection in other areas. Translation of RIPC to clinical application has been demonstrated by the use of brief forearm ischemia in preconditioning the heart prior to coronary bypass and in reducing endothelial dysfunction of the contra lateral limb. Recently protection of the heart has been demonstrated by remote hind limb preconditioning in children who underwent surgery on cardiopulmonary bypass for congenital heart disease. The RIPC stimulus presumably induces release of biochemical messengers which act either by the bloodstream or by the neurogenic pathway resulting in reduced oxidative stress and preservation of mitochondrial function. Studies have demonstrated endothelial NO, Free radicals, Kinases, Opioids, Catecholamines and K(ATP) channels as the candidate mechanism in remote preconditioning. Experiments have shown suppression of proinflammatory genes, expression of antioxidant genes and modulation of gene expression by RIPC as a novel method of IRI injury prevention. CONCLUSION There is strong evidence to support RIPC. The underlying mechanisms and pathways need further clarification. The effective use of RIPC needs to be investigated in clinical settings.
Collapse
|
30
|
Walsh SR, Tang T, Sadat U, Dutka DP, Gaunt ME. Cardioprotection by remote ischaemic preconditioning †. Br J Anaesth 2007; 99:611-6. [PMID: 17905751 DOI: 10.1093/bja/aem273] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Perioperative myocardial infarction is a leading cause of morbidity and mortality after major non-cardiac surgery. Pharmacological agents such as beta-blockers may reduce the risk but are associated with side-effects and may be contra-indicated in some patients. Basic scientific experiments and preliminary clinical trials in humans suggest that remote ischaemic preconditioning (RIPC), where brief ischaemia in one tissue confers resistance to subsequent sustained ischaemic insults in another tissue, may provide a simple, cost-effective means of reducing the risk of perioperative myocardial ischaemia. The Medline and Pubmed databases were searched for articles concerning RIPC. The mechanism may be humoral, neural, or a combination of both, and involves adenosine, opioids, bradykinins, protein kinase C, and K-ATP channels, although the precise end-effector remains unclear. Small randomized trials in humans undergoing major surgery suggest that RIPC induced by brief lower limb ischaemia significantly reduces myocardial injury. It may also reduce other ischaemic complications of surgery and anaesthesia. Small studies provide some evidence that RIPC could reduce myocardial injury and other ischaemic complications of surgery. However, large-scale clinical trials to assess the effect of RIPC on mortality and morbidity are required before RIPC can be recommended for routine clinical use.
Collapse
Affiliation(s)
- S R Walsh
- Cambridge Vascular Research Unit, Box 201, Level 7, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK.
| | | | | | | | | |
Collapse
|
31
|
Kanoria S, Jalan R, Seifalian AM, Williams R, Davidson BR. Protocols and Mechanisms for Remote Ischemic Preconditioning: A Novel Method for Reducing Ischemia Reperfusion Injury. Transplantation 2007; 84:445-58. [PMID: 17713425 DOI: 10.1097/01.tp.0000228235.55419.e8] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ischemia reperfusion injury (IRI) results in damage to local and remote organs. Remote ischemic preconditioning (RIPC) is a strategy to protect against IRI by inducing a prior brief period(s) of IRI to an organ remote from that undergoing sustained injury. RIPC has been shown to protect organs against IRI; however, the protocols and mechanisms for RIPC are unclear. For this review, a Medline/Pubmed search (January 1985 to January 2007) was conducted and all relevant articles were included. RIPC protocols are organ and species specific and both humoral and neurogenic pathways are involved in triggering intracellular signal pathways for protection.
Collapse
Affiliation(s)
- Sanjeev Kanoria
- HPB and Liver Transplant Unit, University Department of Surgery, Royal Free Hospital, London, United Kingdom.
| | | | | | | | | |
Collapse
|
32
|
Arulmani U, Gupta S, VanDenBrink AM, Centurión D, Villalón CM, Saxena PR. Experimental migraine models and their relevance in migraine therapy. Cephalalgia 2006; 26:642-59. [PMID: 16686903 DOI: 10.1111/j.1468-2982.2005.01082.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although the understanding of migraine pathophysiology is incomplete, it is now well accepted that this neurovascular syndrome is mainly due to a cranial vasodilation with activation of the trigeminal system. Several experimental migraine models, based on vascular and neuronal involvement, have been developed. Obviously, the migraine models do not entail all facets of this clinically heterogeneous disorder, but their contribution at several levels (molecular, in vitro, in vivo) has been crucial in the development of novel antimigraine drugs and in the understanding of migraine pathophysiology. One important vascular in vivo model, based on an assumption that migraine headache involves cranial vasodilation, determines porcine arteriovenous anastomotic blood flow. Other models utilize electrical stimulation of the trigeminal ganglion/nerve to study neurogenic dural inflammation, while the superior sagittal sinus stimulation model takes into account the transmission of trigeminal nociceptive input in the brainstem. More recently, the introduction of integrated models, namely electrical stimulation of the trigeminal ganglion or systemic administration of capsaicin, allows studying the activation of the trigeminal system and its effect on the cranial vasculature. Studies using in vitro models have contributed enormously during the preclinical stage to characterizing the receptors in cranial blood vessels and to studying the effects of several putative antimigraine agents. The aforementioned migraine models have advantages as well as some limitations. The present review is devoted to discussing various migraine models and their relevance to antimigraine therapy.
Collapse
Affiliation(s)
- U Arulmani
- Department of Pharmacology, Cardiovascular Research Institute COEUR, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
Chai W, Mehrotra S, Jan Danser AH, Schoemaker RG. The role of calcitonin gene-related peptide (CGRP) in ischemic preconditioning in isolated rat hearts. Eur J Pharmacol 2006; 531:246-53. [PMID: 16438955 DOI: 10.1016/j.ejphar.2005.12.039] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 12/16/2005] [Accepted: 12/19/2005] [Indexed: 11/18/2022]
Abstract
Brief coronary artery occlusion can protect the heart against damage during subsequent prolonged coronary artery occlusion; ischemic preconditioning. The role of calcitonin gene-related peptide (CGRP) in ischemic preconditioning is investigated in isolated perfused rat hearts, by measuring CGRP release during ischemic preconditioning and mimicking this by exogenous CGRP infusion, either in the absence or presence of the CGRP antagonist BIBN4096BS. CGRP increased left ventricular pressure and coronary flow in a concentration dependent manner, which was effectively antagonized by BIBN4096BS. Rat hearts (n=36) were subjected to 45 min coronary artery occlusion and 180 min reperfusion, which was preceded by: (1) sham pretreatment, (2) BIBN4096BS infusion (1 microM), (3) preconditioning by 15 min coronary artery occlusion and10 min reperfusion, (4) as 3, but with BIBN4096BS, (5) 15 min CGRP infusion (5 nM) and 10 min washout, (6) as 5, but with BIBN4096BS. Cardiac protection was assessed by reactive hyperaemia, creatine kinase release, infarct size related to the area at risk (%), and left ventricular pressure recovery. Preconditioning increased CGRP release into the coronary effluent from 88+/-13 to 154+/-32 pg/min/g, and significantly protected the hearts by decreasing reactive hyperaemia (35%), reducing creatine kinase release (53%), limiting infarct size (48%), and improving left ventricular pressure recovery (36%). Exogenous CGRP induced preconditioning-like cardioprotection. BIBN completely abolished the cardioprotection induced by preconditioning as well as by exogenous CGRP. In conclusion, since cardioprotection of preconditioning-induced CGRP release can be mimicked by exogenous CGRP, and both can be blocked by a CGRP antagonist, results indicate an important role for CGRP in ischemic preconditioning.
Collapse
Affiliation(s)
- Wenxia Chai
- Department of Pharmacology, Erasmus Medical Centre, 3000 DR Rotterdam, P.O. 1738, The Netherlands
| | | | | | | |
Collapse
|
34
|
Moses MA, Addison PD, Neligan PC, Ashrafpour H, Huang N, McAllister SE, Lipa JE, Forrest CR, Pang CY. Inducing late phase of infarct protection in skeletal muscle by remote preconditioning: efficacy and mechanism. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1609-17. [PMID: 16179491 DOI: 10.1152/ajpregu.00395.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated that remote ischemic preconditioning (IPC) by instigation of three cycles of 10-min occlusion/reperfusion in a hindlimb of the pig elicits an early phase of infarct protection in local and distant skeletal muscles subjected to 4 h of ischemia immediately after remote IPC. The aim of this project was to test our hypothesis that hindlimb remote IPC also induces a late phase of infarct protection in skeletal muscle and that KATP channels play a pivotal role in the trigger and mediator mechanisms. We observed that pig bilateral latissimus dorsi (LD) muscle flaps sustained 46 ± 2% infarction when subjected to 4 h of ischemia/48 h of reperfusion. The late phase of infarct protection appeared at 24 h and lasted up to 72 h after hindlimb remote IPC. The LD muscle infarction was reduced to 28 ± 3, 26 ± 1, 23 ± 2, 24 ± 2 and 24 ± 4% at 24, 28, 36, 48 and 72 h after remote IPC, respectively ( P < 0.05; n = 8). In subsequent studies, hindlimb remote IPC or intravenous injection of the sarcolemmal KATP (sKATP) channel opener P-1075 (2 μg/kg) at 24 h before 4 h of sustained ischemia (i.e., late preconditioning) reduced muscle infarction from 43 ± 4% (ischemic control) to 24 ± 2 and 19 ± 3%, respectively ( P < 0.05, n = 8). Intravenous injection of the sKATP channel inhibitor HMR 1098 (6 mg/kg) or the nonspecific KATP channel inhibitor glibenclamide (Glib; 1 mg/kg) at 10 min before remote IPC completely blocked the infarct- protective effect of remote IPC in LD muscle flaps subjected to 4 h of sustained ischemia at 24 h after remote IPC. Intravenous bolus injection of the mitochondrial KATP (mKATP) channel inhibitor 5-hydroxydecanoate (5-HD; 5 mg/kg) immediately before remote IPC and 30-min intravenous infusion of 5-HD (5 mg/kg) during remote IPC did not affect the infarct-protective effect of remote IPC in LD muscle flaps. However, intravenous Glib or 5-HD, but not HMR 1098, given 24 h after remote IPC completely blocked the late infarct-protective effect of remote IPC in LD muscle flaps. None of these drug treatments affected the infarct size of control LD muscle flaps. The late phase of infarct protection was associated with a higher ( P < 0.05) muscle content of ATP at the end of 4 h of ischemia and 1.5 h of reperfusion and a lower ( P < 0.05) neutrophilic activity at the end of 1.5 h of reperfusion compared with the time-matched control. In conclusion, these findings support our hypothesis that hindlimb remote IPC induces an uninterrupted long (48 h) late phase of infarct protection, and sKATP and mKATP channels play a central role in the trigger and mediator mechanism, respectively.
Collapse
Affiliation(s)
- Michael A Moses
- Research Institute, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wolfrum S, Nienstedt J, Heidbreder M, Schneider K, Dominiak P, Dendorfer A. Calcitonin gene related peptide mediates cardioprotection by remote preconditioning. ACTA ACUST UNITED AC 2005; 127:217-24. [PMID: 15680490 DOI: 10.1016/j.regpep.2004.12.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2004] [Revised: 11/15/2004] [Accepted: 12/07/2004] [Indexed: 10/26/2022]
Abstract
Excitation of sensory nerves and activation of myocardial protein kinase C (PKC) epsilon contribute to the transduction of remote preconditioning (RPC) to the heart. Since calcitonin gene related peptide (CGRP) is an important mediator of sensory neurons we tried to delineate whether CGRP a) protects the heart from ischemic injury, b) is involved in cardioprotection after RPC, and c) leads to an activation of myocardial PKCepsilon. RPC was achieved by brief mesenteric artery occlusion followed by reperfusion. Myocardial infarct size (IS) was measured by TTC staining after temporary coronary artery occlusion (CAO) in rats. CGRP plasma levels were determined by radioimmunoassay and PKCepsilon was measured by quantitative immunoblotting. CGRP infusion reduced infarct size by 57%, an action that was abolished after co-treatment with the PKC inhibitor chelerythrine. RPC significantly increased CGRP plasma levels, reduced infarct size, and activated myocardial PKCepsilon. Infarct size reduction was abolished and PKCepsilon activation was significantly attenuated by CGRP(8-37), a specific CGRP receptor antagonist. Ganglion blockade with hexamethonium did not influence CGRP release by RPC but abolished CGRP mediated myocardial PKCepsilon activation. In conclusion, CGRP protects the heart from ischemic injury and is involved in RPC, presumably by activating myocardial PKCepsilon.
Collapse
Affiliation(s)
- Sebastian Wolfrum
- Institute of experimental and clinical Pharmacology and Toxicology, Medical University of Schleswig Holstein, Campus Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Kamada K, Gaskin FS, Yamaguchi T, Carter P, Yoshikawa T, Yusof M, Korthuis RJ. Role of calcitonin gene-related peptide in the postischemic anti-inflammatory effects of antecedent ethanol ingestion. Am J Physiol Heart Circ Physiol 2005; 290:H531-7. [PMID: 16143644 DOI: 10.1152/ajpheart.00839.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to determine the role of calcitonin gene-related peptide (CGRP) in the postischemic anti-inflammatory effects of antecedent ethanol ingestion. Ethanol was administered to wild-type C57BL/6 mice on day 1 as a bolus by gavage at a dose that produces a peak plasma ethanol of 45 mg/dl 30 min after administration. Twenty-four hours later (day 2), the superior mesenteric artery was occluded for 45 min followed by 70 min of reperfusion (I/R). Intravital fluorescence microscopy was used to quantify the numbers of rolling (LR) and adherent (LA) leukocytes labeled with carboxyfluorescein diacetate succinimidyl ester in postcapillary venules of the small intestine. I/R increased LR and LA, effects that were prevented by antecedent ethanol. The postischemic anti-inflammatory effects of ethanol consumption were abolished by administration of a specific CGRP receptor antagonist [CGRP-(8-37)] or after sensory nerve neurotransmitter depletion using capsaicin administered 4 days before ethanol ingestion, which initially induces rapid release of CGRP from sensory nerves, thereby depleting stored neuropeptide. Administration of exogenous CGRP or induction of endogenous CGRP release by treatment with capsaicin 24 h before I/R mimicked the postischemic anti-inflammatory effects of antecedent ethanol ingestion. Preconditioning with capsaicin 24 h before I/R was prevented by coincident treatment with CGRP-(8-37), while exogenous CGRP induced an anti-inflammatory phenotype in mice depleted of CGRP by capsaicin administration 4 days earlier. Our results indicate that the effect of antecedent ethanol ingestion to prevent postischemic LR and LA is initiated by a CGRP-dependent mechanism.
Collapse
Affiliation(s)
- Kazuhiro Kamada
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Loukogeorgakis SP, Panagiotidou AT, Broadhead MW, Donald A, Deanfield JE, MacAllister RJ. Remote ischemic preconditioning provides early and late protection against endothelial ischemia-reperfusion injury in humans: role of the autonomic nervous system. J Am Coll Cardiol 2005; 46:450-6. [PMID: 16053957 DOI: 10.1016/j.jacc.2005.04.044] [Citation(s) in RCA: 313] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 01/26/2005] [Accepted: 04/13/2005] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The aim of this study was to characterize the time course and neuronal mechanism of remote ischemic preconditioning (RIPC) of the vasculature in humans. BACKGROUND Non-lethal ischemia of internal organs induces local (ischemic preconditioning) and systemic (RIPC) resistance to lethal ischemia-reperfusion (IR) injury. Experimental RIPC has two temporal components, is neuronally mediated, is induced by limb ischemia, and reduces infarct size. In humans, RIPC prevents IR-induced vascular injury. Determining the time course and mechanism is a prelude to clinical outcome studies of RIPC. METHODS Endothelial IR injury was induced by arm ischemia (20 min) and reperfusion, and measured by flow-mediated dilation. To establish if there are early and late phases, RIPC (three 5-min cycles of ischemia of the contralateral arm) was applied immediately, 4, 24, and 48 h before IR. To determine neuronal involvement, trimetaphan (autonomic ganglion blocker; 1 to 6 mg/min intravenous) was infused during the application of the RIPC stimulus. RESULTS Flow-mediated dilation was reduced by IR (8.7 +/- 1.1% before IR, 4.9 +/- 1.2% after IR; p < 0.001), but not when preceded by RIPC (8.0 +/- 0.8% after IR; p = NS); RIPC did not protect after 4 h (4.9 +/- 1.1% after IR; p < 0.001), but protected at 24 (8.7 +/- 1.1% after IR; p = NS) and 48 h (8.8 +/- 1.4% after IR; p = NS). Trimetaphan attenuated early (8.3 +/- 1.1% before IR, 4.2 +/- 0.9% after IR; p < 0.05) and delayed (7.3 +/- 1.0% before IR, 2.3 +/- 0.6% after IR, p < 0.001) RIPC. CONCLUSIONS Remote ischemic preconditioning in humans has two phases of protection against endothelial IR injury; an early (short) and late (prolonged) phase, both of which are neuronally mediated. The potential for late phase RIPC to provide prolonged protection during clinical IR syndromes merits investigation.
Collapse
Affiliation(s)
- Stavros P Loukogeorgakis
- Vascular Physiology Unit, Institute of Child Health, University College London, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
38
|
Wang W, Jia L, Wang T, Sun W, Wu S, Wang X. Endogenous Calcitonin Gene-related Peptide Protects Human Alveolar Epithelial Cells through Protein Kinase Cϵ and Heat Shock Protein. J Biol Chem 2005; 280:20325-30. [PMID: 15784626 DOI: 10.1074/jbc.m413864200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The intracellular mechanisms of ischemic preconditioning (PC) in preventing lung dysfunction following transplantation, shock, and trauma remain poorly understood. Previously, we have shown that alveolar epithelial cells secrete calcitonin gene-related peptide (CGRP) under inflammatory stress. Using a hypoxia/reoxygenation (H/R) and PC model, we found that CGRP was also secreted from human type II alveolar epithelial cells (A549) after PC. The locally released CGRP interacted with its receptor on the membrane of A549 cells and elicited downstream signals mediating the PC effect, because hCGRP(8-37), a specific CGRP receptor antagonist, attenuated the protective effect of PC. Pre-inhibition of CGRP protein synthesis by small interfering RNA exacerbated (but overexpression of the CGRP gene ameliorated) H/R-induced cell death, which supports the autocrine effect of CGRP on A549 cells. Exogenous bioactive CGRP mimicked the beneficial effect of PC and up-regulated the expression of heat shock protein 70 (HSP70), which might act as the end effector to maintain cell viability. These effects were sensitive to hCGRP(8-37), calphostin C (a protein kinase C (PKC) inhibitor), and 5-hydroxydecanoic acid (a mitochondrial K(+)(ATP) channel blocker) but were insensitive to protein kinase A blockers. Moreover, CGRP induced the membrane translocation of PKCepsilon. PKCV1-2 (a cell-permeable inhibitory peptide of PKCepsilon) effectively abolished CGRP-induced HSP70 expression and cell protection. Therefore, PC induces CGRP secretion from human alveolar epithelial cells, and the locally released CGRP acts back on these cells, protecting them from H/R injury. The post-receptor signaling of CGRP is through PKCepsilon-dependent expression of HSP70.
Collapse
Affiliation(s)
- Wang Wang
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100083, China
| | | | | | | | | | | |
Collapse
|
39
|
Luo D, Deng PY, Ye F, Peng WJ, Deng HW, Li YJ. Delayed preconditioning by cardiac ischemia involves endogenous calcitonin gene-related peptide via the nitric oxide pathway. Eur J Pharmacol 2005; 502:135-41. [PMID: 15464099 DOI: 10.1016/j.ejphar.2004.08.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 07/29/2004] [Accepted: 08/27/2004] [Indexed: 10/26/2022]
Abstract
Previous investigations have shown separately that calcitonin gene-related peptide (CGRP) or nitric oxide (NO) is involved in mediation of ischemic preconditioning. In the present study, we tested interactions of CGRP with NO in mediation of delayed preconditioning. In Sprague-Dawley rats, ischemia-reperfusion injury was induced by 45-min occlusion followed by 3-h reperfusion of coronary artery, and preconditioning was induced by four cycles of 3-min ischemia and 5-min reperfusion. Infarct size, plasma creatine kinase activity, the plasma level of NO and CGRP, and the expression of CGRP mRNA in dorsal root ganglion were measured. Pretreatment with preconditioning significantly reduced infarct size and the release of creatine kinase during reperfusion, and caused a significant increase in the expression of CGRP mRNA, concomitantly with an elevation in the plasma level of CGRP and NO. The effects of preconditioning were completely abolished by administration of L-nitroarginine methyl ester (L-NAME, 10 mg/kg, i.p.), an inhibitor of NO synthase. Pretreatment with capsaicin (50 mg/kg, s.c.), which depletes transmitters in capsaicin-sensitive sensory nerves, also blocked the cardioprotection of preconditioning and reduced the synthesis and release of CGRP, but did not affect the concentration of NO. The present results suggest the delayed protection afforded by ischemic preconditioning is also mediated by endogenous CGRP via the NO pathway in rat heart.
Collapse
Affiliation(s)
- Dan Luo
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, No. 110, Xiang-Ya Road Changsha, Hunan 410078, China
| | | | | | | | | | | |
Collapse
|
40
|
Brzozowski T, Konturek PC, Konturek SJ, Pajdo R, Kwiecien S, Pawlik M, Drozdowicz D, Sliwowski Z, Pawlik WW. Ischemic preconditioning of remote organs attenuates gastric ischemia-reperfusion injury through involvement of prostaglandins and sensory nerves. Eur J Pharmacol 2005; 499:201-13. [PMID: 15363968 DOI: 10.1016/j.ejphar.2004.07.072] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Accepted: 07/13/2004] [Indexed: 12/17/2022]
Abstract
Limitation of the stomach damage by its earlier brief ischemia and reperfusion before prolonged ischemia is defined as gastric ischemic preconditioning but whether such brief ischemia of remote organs like heart or liver can also attenuate the gastric damage caused by longer and severe ischemia-reperfusion remains unknown. The cardiac, hepatic and gastric preconditioning were induced by brief ischemia (occlusion of coronary, hepatic and celiac arteries twice for 5 min) applied 30 min before 3 h of ischemia/reperfusion. Standard 3 h ischemia-reperfusion of the stomach produced numerous gastric lesions, decreased gastric blood flow and mucosal prostaglandin E2 generation and increased expression and plasma release of interleukin-1beta and tumor necrosis factor-alpha (TNF-alpha). These effects were significantly attenuated by brief cardiac, hepatic and gastric preconditioning which upregulated cyclooxygenase-2 mRNA but not cyclooxygenase-1 mRNA. The protective effects of brief gastric, cardiac and hepatic preconditioning were attenuated by selective cyclooxygenase-1 and cyclooxygenase-2 inhibitors and capsaicin denervation. We conclude that brief ischemia of remote preconditioning such as heart or liver protects gastric mucosa against severe ischemia-reperfusion-induced gastric lesions as effectively as local preconditioning of the stomach itself via the mechanism involving prostaglandin derived from cyclooxygenase-1 and cyclooxygenase-2 and the activation of sensory nerves releasing calcitonin gene-related peptide (CGRP) combined with the suppression of interleukin-1beta and TNF-alpha expression and release.
Collapse
Affiliation(s)
- Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, 16, Grzegorzecka Str., 31-531 Cracow, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Shi X, Cheng J, Xia S. The effect of fructose-1, 6-diphosphate and HTK solution on protecting primary cardiac muscle cells of rat with cold preservation. Curr Med Sci 2005; 25:292-3, 302. [PMID: 16201275 DOI: 10.1007/bf02828146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2005] [Indexed: 11/25/2022]
Abstract
In this study we tried to investigate the effect of fructose-1,6-diphosphate and HTK solution on protecting primary cardiac muscle cells of rat with cold preservation. The primary cardiac muscle cells of rat were cultured in vitro with four preservation solutions respectively: 0.9% sodium chloride solution (group A), FDP (group B), HTK solution (group C) and a mixture of FDP and HTK solution (group D). The cells were preserved for 6, 8 and 10 h at 0-4 degrees C. The values of AST and LDH-L and the Na+-K+ ATPase activity in cardiac muscle cells were detected, and the survival rate of cardiac muscle cells was detected with trypan blue staining. The values of AST and LDH-L in group C and group D were remarkable lower those in group A and group B (P<0.001), while the Na+-K+ ATPase activity and the survival rate of cells in group C and group D were much higher than those in group A and group B (P<0.001). The values of AST and LDH-L after 6 hours in group D decreased much more than those in group C (P<0.01), while the Na+-K4 ATPase activity and the survival rate of cells in group D improved more than those in group C (P<0. 01). Both of the HTK solution and the mixture of HTK and FDP solution have an evident effect on protecting the primary cardiac muscle cells of rat in vitro with cold preservation, Compared with the HTK solution, the mixture solution has a better short-term protective effect.
Collapse
Affiliation(s)
- Xiaofeng Shi
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | |
Collapse
|
42
|
Abstract
This review summarizes the receptor-mediated vascular activities of calcitonin gene-related peptide (CGRP) and the structurally related peptide adrenomedullin (AM). CGRP is a 37-amino acid neuropeptide, primarily released from sensory nerves, whilst AM is produced by stimulated vascular cells, and amylin is secreted from the pancreas. They share vasodilator activity, albeit to varying extents depending on species and tissue. In particular, CGRP has potent activity in the cerebral circulation, which is possibly relevant to the pathology of migraine, whilst vascular sources of AM contribute to dysfunction in cardiovascular disease. Both peptides exhibit potent activity in microvascular beds. All three peptides can act on a family of CGRP receptors that consist of calcitonin receptor-like receptor (CL) linked to one of three receptor activity-modifying proteins (RAMPs) that are essential for functional activity. The association of CL with RAMP1 produces a CGRP receptor, with RAMP2 an AM receptor and with RAMP3 a CGRP/AM receptor. Evidence for the selective activity of the first nonpeptide CGRP antagonist BIBN4096BS for the CGRP receptor is presented. The cardiovascular activity of these peptides in a range of species and in human clinical conditions is detailed, and potential therapeutic applications based on use of antagonists and gene targeting of agonists are discussed.
Collapse
Affiliation(s)
- Susan D Brain
- Centre for Cardiovascular Biology and Medicine, King's College London, Guy's Campus, London SE1 1UL, UK.
| | | |
Collapse
|
43
|
Abrahão MS, Montero EFS, Junqueira VBC, Giavarotti L, Juliano Y, Fagundes DJ. Biochemical and morphological evaluation of Ischemia-Reperfusion injury in rat small bowel modulated by ischemic preconditioning. Transplant Proc 2004; 36:860-2. [PMID: 15194294 DOI: 10.1016/j.transproceed.2004.03.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The objective of this study was to evaluate the effect of ischemic preconditioning upon lesions produced by ischemia-reperfusion of the small intestine. Thirty EPM-1 Wistar rats were randomly distributed into three groups: ischemic preconditioning (IPC; n = 12), ischemia-reperfusion (I/R; n = 12), and control (C; n = 6). Laparotomy permitted isolation of the mesenteric artery for clamping. The animals were heparinized and hydrated. IPC was induced by: 10 minutes of ischemia followed by 10 minutes of reperfusion and then 50 minutes ischemia followed by another 30 minutes reperfusion. Group I/R was submitted to the same protocol except for the 20 minutes of preconditioning. Group C animals underwent only laparotomy for 100 minutes. After reperfusion small intestine fragments were examined histologically. Blood samples were obtained to measure LDH and lactate prior to euthanasia. Lactate values were significantly lower in the IPC as compared to I/R group, 39 versus 67 mg/dL, respectively (P < or =.05). However, neither IPC (grade 3) lesions of the mucosa versus I/R (grade 4) nor LDH values (PCI = 680, I/R = 873 U/L) were statistically different. Thus No morphological evidence of protection was observed following ischemic preconditioning.
Collapse
Affiliation(s)
- M S Abrahão
- Department of Surgery, São Paulo Federal University, Paulista Medical School, UNIFESP, Santana de Parnaíba SP, Brazil
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Organic nitrates, including nitroglycerin, produce vascular relaxation by releasing nitric oxide in vascular tissues near the plasma member of smooth muscle cells of veins and arteries. Calcitonin gene-related peptide (CGRP), a major transmitter in capsaicin-sensitive sensory nerves, is widely distributed in cardiovascular tissues and the release of CGRP is regulated by multiple autacoids including nitric oxide (NO). CGRP exerts complex cardiovascular effects including potent vasorelaxation and protective effects on myocytes and endothelial cells. Nitroglycerin activates sensory nerves fibres to release CGRP by generating NO and increasing cGMP level, and that the cardiovascular effects of nitroglycerin are partly mediated by endogenous CGRP.
Collapse
Affiliation(s)
- Yuan Jian Li
- Department of Pharmacology, School of Pharmaceutic Sciences, Central South University, Changsha, People's Republic of China.
| | | |
Collapse
|
45
|
Hu CP, Peng J, Xiao L, Ye F, Deng HW, Li YJ. Effect of age on alpha-calcitonin gene-related peptide-mediated delayed cardioprotection induced by intestinal preconditioning in rats. REGULATORY PEPTIDES 2002; 107:137-43. [PMID: 12137976 DOI: 10.1016/s0167-0115(02)00096-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study, we examined whether age-related reduction in cardioprotection of intestinal ischemic preconditioning is related to stimulation of the release and synthesis of calcitonin gene-related peptide (CGRP) in rats. Ischemia-reperfusion injury was induced by a 45-min coronary artery occlusion and 180-min reperfusion, and ischemic preconditioning was induced by six cycles of 4-min ischemia and 4-min reperfusion of the small intestine. The serum concentration of creatine kinase, infarct size, the expression of CGRP isoforms (alpha- and beta-CGRP) mRNA in lumbar dorsal root ganglia and CGRP concentration in plasma were measured. Pretreatment with intestinal ischemic preconditioning for 24 h significantly reduced infarct size and creatine kinase release concomitantly with a significant increase in the expression of alpha-CGRP mRNA, but not beta-CGRP mRNA, and plasma concentrations of CGRP at 6 months of age but not at 24 months of age. These results suggest that the delayed cardioprotective effect of intestinal ischemic preconditioning is decreased in senescent rats, and the age-related change is related to reduction of the synthesis and release of alpha-CGRP.
Collapse
Affiliation(s)
- Chang Ping Hu
- Department of Pharmacology, Xiang-Ya School of Medicine, Central South University, Hunan 410078, Changsha, China
| | | | | | | | | | | |
Collapse
|
46
|
Liem DA, Verdouw PD, Ploeg H, Kazim S, Duncker DJ. Sites of action of adenosine in interorgan preconditioning of the heart. Am J Physiol Heart Circ Physiol 2002; 283:H29-37. [PMID: 12063271 DOI: 10.1152/ajpheart.01031.2001] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mechanism underlying interorgan preconditioning of the heart remains elusive, although a role for adenosine and activation of a neurogenic pathway has been postulated. We tested in rats the hypothesis that adenosine released by the remote ischemic organ stimulates local afferent nerves, which leads to activation of myocardial adenosine receptors. Preconditioning with a 15-min mesenteric artery occlusion (MAO15) reduced infarct size produced by a 60-min coronary artery occlusion (60-min CAO) from 68 +/- 2% to 48 +/- 4% (P < 0.05). Pretreatment with the ganglion blocker hexamethonium or 8-(p-sulfophenyl)theophylline (8-SPT) abolished the protection by MAO15. Intramesenteric artery (but not intraportal vein) infusion of adenosine (10 microg/min) was as cardioprotective as MAO15, which was also abolished by hexamethonium. Whereas administration of hexamethonium at 5 min of reperfusion following MAO15 had no effect, 8-SPT at 5 min of reperfusion abolished the protection. Permanent reocclusion of the mesenteric artery before the 60-min CAO enhanced the cardioprotection by MAO15 (30 +/- 5%), but all protection was abolished when 8-SPT was administered after reocclusion of the mesenteric artery. Together, these findings demonstrate the involvement of myocardial adenosine receptors. We therefore conclude that locally released adenosine during small intestinal ischemia stimulates afferent nerves in the mesenteric bed during early reperfusion, initiating a neurogenic pathway that leads to activation of myocardial adenosine receptors.
Collapse
Affiliation(s)
- David A Liem
- Experimental Cardiology, Thoraxcenter, Erasmus University Rotterdam, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
Abstract
Preconditioning induced by brief ischemia or hyperthermia or some drugs shows two phases, early and delayed protection. The cardioprotection afforded by preconditioning is related to stimulation of endogenous mediators release. Calcitonin gene-related peptide (CGRP), a major transmitter of capsaicin-sensitive sensory nerves, has recently been shown to play an important role in mediation of the preconditioning induced by brief ischemia or hyperthermia or by some drugs, and alpha-CGRP seems to play a major role in the mediation of delayed preconditioning. It has been shown that the cardioprotection afforded by CGRP-mediated preconditioning is due to inhibition of cardiac tumor necrosis factor-alpha (TNF-alpha) production, but not to the activation of the K(ATP) channel.
Collapse
Affiliation(s)
- Yuan-Jian Li
- Department of Pharmacology, Xiang-Ya School of Medicine, Central South University, Hunan, Changsha 410078, PR China.
| | | |
Collapse
|