1
|
Gong J, Duan X, Xiang B, Qin L, Hu J. Transcriptomic changes in the hypothalamus of mice with chronic migraine: Activation of pathways associated with neuropathic inflammation and central sensitization. Mol Cell Neurosci 2024; 131:103968. [PMID: 39251101 DOI: 10.1016/j.mcn.2024.103968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Chronic migraine is a common central nervous system disorder characterized by recurrent, pulsating headaches. However, the extent and mechanisms of hypothalamic involvement in disease progression have not been thoroughly investigated. Herein, we created a chronic migraine mouse model using repeated intraperitoneal injections of nitroglycerin. We performed transcriptomic sequencing on the hypothalamus of mice with chronic migraine and control mice under normal physiological conditions, followed by differential gene set enrichment and functional analysis of the data. Additionally, we examined the intrinsic connection between chronic migraine and sleep disorders using transcriptomic sequencing data from sleep-deprived mice available in public databases. We identified 39 differentially expressed genes (DEGs) in the hypothalamus of a mouse model of chronic migraine. Functional analysis of DEGs revealed enrichment primarily in signaling transduction, immune-inflammatory responses, and the cellular microenvironment. A comparison of the transcriptomic data of sleep-deprived mice revealed two commonly expressed DEGs. Our findings indicate that the hypothalamic DEGs are primarily enriched in the PI3K/AKT/mTOR pathway and associated with the NF-κB/NLRP3/IL-1 β pathway activation to maintain the central sensitization of the chronic migraine. Chronic migraine-induced gene expression changes in the hypothalamus may help better understand the underlying mechanisms and identify therapeutic targets.
Collapse
Affiliation(s)
- Junyou Gong
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xianghan Duan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Biyu Xiang
- Department of Blood Transfusion, the First Hospital of Nanchang City, Nanchang, China
| | - Lijun Qin
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jiejie Hu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Benedicter N, Vogler B, Kuhn A, Schramm J, Mackenzie KD, Stratton J, Dux M, Messlinger K. Glycerol Trinitrate Acts Downstream of Calcitonin Gene-Related Peptide in Trigeminal Nociception-Evidence from Rodent Experiments with Anti-CGRP Antibody Fremanezumab. Cells 2024; 13:572. [PMID: 38607011 PMCID: PMC11011795 DOI: 10.3390/cells13070572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Calcitonin gene-related peptide (CGRP) and nitric oxide (NO) have been recognized as important mediators in migraine but their mechanisms of action and interaction have not been fully elucidated. Monoclonal anti-CGRP antibodies like fremanezumab are successful preventives of frequent migraine and can be used to study CGRP actions in preclinical experiments. Fremanezumab (30 mg/kg) or an isotype control monoclonal antibody was subcutaneously injected to Wistar rats of both sexes. One to several days later, glyceroltrinitrate (GTN, 5 mg/kg) mimicking nitric oxide (NO) was intraperitoneally injected, either once or for three consecutive days. The trigeminal ganglia were removed to determine the concentration of CGRP using an enzyme-linked immunosorbent assay (ELISA). In one series of experiments, the animals were trained to reach an attractive sugar solution, the access to which could be limited by mechanical or thermal barriers. Using a semi-automated registration system, the frequency of approaches to the source, the residence time at the source, and the consumed solution were registered. The results were compared with previous data of rats not treated with GTN. The CGRP concentration in the trigeminal ganglia was generally higher in male rats and tended to be increased in animals treated once with GTN, whereas the CGRP concentration decreased after repetitive GTN treatment. No significant difference in CGRP concentration was observed between animals having received fremanezumab or the control antibody. Animals treated with GTN generally spent less time at the source and consumed less sugar solution. Without barriers, there was no significant difference between animals having received fremanezumab or the control antibody. Under mechanical barrier conditions, all behavioral parameters tended to be reduced but animals that had received fremanezumab tended to be more active, partly compensating for the depressive effect of GTN. In conclusion, GTN treatment seems to increase the production of CGRP in the trigeminal ganglion independently of the antibodies applied, but repetitive GTN administration may deplete CGRP stores. GTN treatment generally tends to suppress the animals' activity and increase facial sensitivity, which is partly compensated by fremanezumab through reduced CGRP signaling. If CGRP and NO signaling share the same pathway in sensitizing trigeminal afferents, GTN and NO may act downstream of CGRP to increase facial sensitivity.
Collapse
Affiliation(s)
- Nicola Benedicter
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University, D-91054 Erlangen, Germany; (N.B.)
| | - Birgit Vogler
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University, D-91054 Erlangen, Germany; (N.B.)
| | - Annette Kuhn
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University, D-91054 Erlangen, Germany; (N.B.)
| | - Jana Schramm
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University, D-91054 Erlangen, Germany; (N.B.)
| | | | | | - Mária Dux
- Department of Physiology, University of Szeged, H-6720 Szeged, Hungary;
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University, D-91054 Erlangen, Germany; (N.B.)
| |
Collapse
|
3
|
Song X, Yu SB, Yuan XY, Alam Shah MA, Li C, Chi YY, Zheng N, Sui HJ. Evidence for chronic headaches induced by pathological changes of myodural bridge complex. Sci Rep 2024; 14:5285. [PMID: 38438423 PMCID: PMC10912660 DOI: 10.1038/s41598-024-55069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
Clinical studies have shown that there may be a certain relationship between pathological changes of the myodural bridge complex (MDBC) and chronic headaches of unknown cause. But there is still a lack of experimental evidence to explain the possible mechanism. This study aims to further confirm this relationship between MDBC and chronic headaches and explore its potential occurrence mechanism in rats. Bleomycin (BLM) or phosphate-buffered saline (PBS) was injected into the myodural bridge fibers of rats to establish the hyperplastic model of MDBC. After 4 weeks, the occurrence of headaches in rats was evaluated through behavioral scores. The immunohistochemistry staining method was applied to observe the expression levels of headache-related neurotransmitters in the brain. Masson trichrome staining results showed that the number of collagen fibers of MDBC was increased in the BLM group compared to those of the other two groups. It revealed hyperplastic changes of MDBC. The behavioral scores of the BLM group were significantly higher than those of the PBS group and the blank control group. Meanwhile, expression levels of CGRP and 5-HT in the headache-related nuclei of the brain were increased in the BLM group. The current study further confirms the view that there is a relationship between pathological changes of MDBC and chronic headaches of unknown cause. This study may provide anatomical and physiological explanations for the pathogenesis of some chronic headaches of unknown cause.
Collapse
Affiliation(s)
- Xue Song
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian, 116044, China
| | - Sheng-Bo Yu
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian, 116044, China
| | - Xiao-Ying Yuan
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian, 116044, China
| | - M Adeel Alam Shah
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian, 116044, China
| | - Chan Li
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian, 116044, China
| | - Yan-Yan Chi
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian, 116044, China
| | - Nan Zheng
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian, 116044, China.
| | - Hong-Jin Sui
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
4
|
Joshi S, Williamson J, Moosa S, Kapur J. Progesterone Receptor Activation Regulates Sensory Sensitivity and Migraine Susceptibility. THE JOURNAL OF PAIN 2024; 25:642-658. [PMID: 37777034 DOI: 10.1016/j.jpain.2023.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/20/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Women develop chronic pain during their reproductive years more often than men, and estrogen and progesterone regulate this susceptibility. We tested whether brain progesterone receptor (PR) signaling regulates pain susceptibility. During the estrous cycle, animals were more sensitive to mechanical stimulus during the estrus stage than in the diestrus stage, suggesting a role for reproductive hormones, estrogen, and progesterone. Progesterone treatment of ovariectomized and estrogen-primed mice caused a delayed reduction in the mechanical threshold. Segesterone, a specific agonist of PRs replicated this effect, whereas, the segesterone-induced reduction in mechanical threshold was blocked in the mice lacking PRs in the nervous system. Segesterone treatment also did not alter mechanical threshold in adult male and juvenile female mice. PR activation increased the cold sensitivity but did not affect the heat and light sensitivity. We evaluated whether PR activation altered experimental migraine. Segesterone and nitroglycerin when administered sequentially, reduced the pain threshold but not when given separately. PRs were expressed in several components of the migraine ascending pain pathway, and their deletion blocked the painful effects of nitroglycerin. PR activation also increased the number of active neurons in the components of the migraine ascending pain pathway. These studies have uncovered a pain-regulating function of PRs. Targeting PRs may provide a novel therapeutic avenue to treat chronic pain and migraine in women. PERSPECTIVE: This article provides evidence for the role of progesterone receptors in regulating pain sensitivity and migraine susceptibility in females. Progesterone receptors may be a therapeutic target to treat chronic pain conditions more prevalent in women than men.
Collapse
Affiliation(s)
- Suchitra Joshi
- Department of Neurology, University of Virginia, Charlottesville, Virginia
| | - John Williamson
- Department of Neurology, University of Virginia, Charlottesville, Virginia
| | - Shayan Moosa
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, Virginia; Department of Neuroscience, University of Virginia, Charlottesville, Virginia; UVA Brain Institute, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
5
|
Luo Y, Qiu Y, Zhou R, Zhang Y, Ji X, Liu Z, Li R, Zhang Y, Yang F, Hou J, Zhang S, Wang T, Song H, Tao X. Shaoyao Gancao decoction alleviates the central hyperalgesia of recurrent NTG-induced migraine in rats by regulating the NGF/TRPV1/COX-2 signal pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116781. [PMID: 37315643 DOI: 10.1016/j.jep.2023.116781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shaoyao Gancao Decoction (SGD) is well known as an effective prescription for analgesia composed of two herbs, and is noted as traditional Chinese medicine morphine. It is widely used in various conditions causing pain, including migraine. However, there is currently no research exploring the mechanism of action in the treatment of migraines. AIM OF THE STUDY The current research was devised to determine the underlying regulatory mechanism of SGD, by verifying its role in the NGF/TRPV1/COX-2 signal pathway. MATERIALS AND METHODS The active components in SGD were identified by UHPLC-MS. A migraine model was prepared by subcutaneous (s.c.) injection of nitroglycerin (NTG) into the neck to detect migraine-like behavior, orbital hyperalgesia threshold changes, and the therapeutic effect of SGD. The mechanism of SGD in remedying migraine was studied through transcriptome sequencing (RNA-seq), which was further validated utilizing Elisa, Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting (WB) experiments. RESULTS In the SGD chemical composition analysis, 45 components were identified including gallic acid, paeoniflorin and albiforin. In the behavioral experiments, SGD treatment significantly decreased the score of migraine-like head scratching in the NTG-induced migraine model (Mod) rats, while the hyperalgesia threshold increased outstandingly on days 10, 12, and 14 (P < 0.01, P < 0.001 or P < 0.0001). In migraine biomarkers experiment, compared with the Mod group, the 5-hydroxytryptamine (5-HT) contents were outstandingly enhanced by SGD treatment, while nitric oxide (NO) contents were markedly declined (P < 0.01). In the RNA-seq test, the down-regulated genes of SGD inhibiting hyperalgesia migraine included the neurotrophic factor (NGF) and transient receptor potential vanillic acid subfamily protein 1 receptor (TRPV1). The down-regulation pathway is the inflammatory mediator regulation of TRP channels. In gene set enrichment analysis (GSEA), SGD decreased the over-expression of protooncogene tyrosine-protein kinase Src (SRC) and TRPV1 in this pathway, and the two genes clustered at its lower end, with similar functions. PPI network results show that NGF interacts with TRPV1. Further verification shows that when compared with Mod group, the plasma cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2) protein expression levels and the dura mater calcitonin gene-related peptide (CGRP), extracellular signal-regulated kinase (ERK), p-ERK, SRC and NGF protein expression levels in the SGD group were remarkably decreased (P < 0.01, P < 0.001 or P < 0.0001), and the expression level of TRPV1 protein showed a downward trend (P = 0.06). The expression levels of COX-2, NO, CGRP, TRPV1, SRC and NGF mRNA in the dura mater was overtly down-regulated (P < 0.05, P < 0.01 or P < 0.001). CONCLUSIONS SGD has a significant inhibitory effect on the NGF/TRPV1/COX-2 signaling pathway that mediates central hyperalgesia migraine, thus suggesting the molecular mechanism of SGD in improving the symptoms of migraine may be related to the central hyperalgesia neurotransmitter that regulates the pathogenesis of migraine.
Collapse
Affiliation(s)
- Yamin Luo
- Bejing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Yuehua Qiu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Ranran Zhou
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Yao Zhang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Xuenian Ji
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Zijian Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Ran Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Yi Zhang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Feng Yang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Jianchen Hou
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Shujing Zhang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Tieshan Wang
- Bejing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Haochong Song
- College of Special Education, Beijing Union University, 100029, Beijing, China.
| | - Xiaohua Tao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China; Research Institute of Chinese Medicine Literature, Beijing University of Chinese Medicine, 100029, Beijing, China.
| |
Collapse
|
6
|
Joshi S, Williamson J, Moosa S, Kapur J. Progesterone receptor activation regulates sensory sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552037. [PMID: 37609239 PMCID: PMC10441292 DOI: 10.1101/2023.08.04.552037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Women develop chronic pain during their reproductive years more often than men, and estrogen and progesterone regulate this susceptibility. We tested whether brain progesterone receptor (PR) signaling regulates pain susceptibility. During the estrous cycle, animals were more sensitive to pain during the estrus stage than in the diestrus stage, suggesting a role for reproductive hormones, estrogen, and progesterone. We measured the pain threshold daily for four days in ovariectomized, estrogen-primed animals treated with progesterone. The pain threshold was lower 2 days later and stayed that way for the duration of the testing. A specific progesterone-receptor (PR) agonist, segesterone, promoted pain, and mice lacking PR in the brain (PRKO) did not experience lowered pain threshold when treated with progesterone or segesterone. PR activation increased the cold sensitivity but did not affect the heat sensitivity and had a small effect on light sensitivity. Finally, we evaluated whether PR activation altered experimental migraine. Segesterone and nitroglycerin (NTG) when administered sequentially, reduced pain threshold but not separately. These studies have uncovered a pain-regulating function of PRs. Targeting PRs may provide a novel therapeutic avenue to treat chronic pain in women.
Collapse
|
7
|
Cao Z, Yu W, Zhang L, Yang J, Lou J, Xu M, Zhang Z. A study on the correlation of the asymmetric regulation between the periaqueductal gray and the bilateral trigeminal nucleus caudalis in migraine male rats. J Headache Pain 2023; 24:27. [PMID: 36935501 PMCID: PMC10026495 DOI: 10.1186/s10194-023-01559-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/28/2023] [Indexed: 03/20/2023] Open
Abstract
BACKGROUND The study was designed to explore the correlation of the asymmetric regulation between periaqueductal gray (PAG) and bilateral trigeminal nucleus caudalis (TNC) in migraine rats through studying the changes of metabolites in pain regulatory pathway of acute migraine attack. METHODS Thirty male Sprague-Dawley (SD) rats were randomly divided into three groups: blank, control, model groups. Then, blank group was intraperitoneally injected with ultrapure water, while control group injected with saline and model group injected with Glyceryl Trinitrate (GTN). Two hours later, PAG and bilateral TNC were removed respectively, and metabolite concentrations of PAG, Left-TNC, Right-TNC were obtained. Lastly, the differences of metabolite among three brain tissues were compared. RESULTS The relative concentrations of rNAA, rGlu, rGln, rTau, rMI in PAG or bilateral TNC had interaction effects between groups and sites. The concentration of rLac of three brain tissues increased in migraine rats, however, the rLac of LTNC and RTNC increased more than that of PAG. Besides, the concentrations of rNAA and rGln increased in RTNC, while rGABA decreased in RTNC. CONCLUSIONS There is correlation between PAG, LTNC and RTNC in regulation of pain during acute migraine attack, and the regulation of LTNC and RTNC on pain is asymmetric.
Collapse
Affiliation(s)
- Zhijian Cao
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Road, Hangzhou, China
| | - Wenjing Yu
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Road, Hangzhou, China
| | - Luping Zhang
- Department of Radiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiajia Yang
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Road, Hangzhou, China
| | - Jiafei Lou
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Road, Hangzhou, China
| | - Maosheng Xu
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Road, Hangzhou, China.
| | - Zhengxiang Zhang
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine) Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, 54 Youdian Road, Hangzhou, China.
| |
Collapse
|
8
|
Yao L, Chen R, Ji H, Wang X, Zhang X, Yuan Y. Preventive and Therapeutic Effects of Low-Intensity Ultrasound Stimulation on Migraine in Rats. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2332-2340. [PMID: 35981071 DOI: 10.1109/tnsre.2022.3199813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study sought to systematically evaluate the prophylactic and therapeutic effects of low-intensity transcranial ultrasound stimulation on migraine in rats. We used video recordings to assess the head scratching behavior and laser speckle contrast imaging to record the changes in cerebral blood flow velocity of freely moving rats in a healthy group, migraine group, migraine group with ultrasound prevention, and migraine group with ultrasound therapy. Results demonstrated that (1) head scratching during migraine attacks in rats was accompanied by an decrease in cerebral blood flow; (2) both ultrasound prevention and therapy significantly reduced the number of head scratches but did not reduce the cerebral blood flow velocity; and (3) the number of head scratches in the ultrasound stimulation groups was not affected by the auditory effect. These results reveal that low-intensity ultrasound has the potential to be used clinically in the prevention and therapeutic treatment of migraine.
Collapse
|
9
|
Wei DY, Goadsby PJ. Recent Advances and Updates in Trigeminal Autonomic Cephalalgias. Semin Neurol 2022; 42:474-478. [PMID: 36323300 DOI: 10.1055/s-0042-1758043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Trigeminal autonomic cephalalgias (TACs) are discrete primary headache disorders, characterized by severe unilateral head pain, typically trigeminal distribution, with ipsilateral cranial autonomic symptoms. The conditions within this group are hemicrania continua, cluster headache, paroxysmal hemicrania, and short-lasting unilateral neuralgiform headache with conjunctival injection and tearing and short-lasting unilateral neuralgiform headache with autonomic symptoms. Several advances have been made in understanding the pathogenesis and evolving treatment options in TACs. This review will outline the advances and updates in each TAC.
Collapse
Affiliation(s)
- Diana Y Wei
- Department of Neurology, King's College Hospital, London, United Kingdom
- Headache Group, Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Peter J Goadsby
- Headache Group, Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
- NIHR King's Clinical Research Facility, Biomedical Research Centre, King's College Hospital, London, United Kingdom
- Department of Neurology, University of California, Los Angeles, California
| |
Collapse
|
10
|
The Anti-CGRP Antibody Fremanezumab Lowers CGRP Release from Rat Dura Mater and Meningeal Blood Flow. Cells 2022; 11:cells11111768. [PMID: 35681463 PMCID: PMC9179471 DOI: 10.3390/cells11111768] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
Monoclonal antibodies directed against the neuropeptide calcitonin gene-related peptide (CGRP) belong to a new generation of therapeutics that are effective in the prevention of migraine. CGRP, a potent vasodilator, is strongly implicated in the pathophysiology of migraine, but its role remains to be fully elucidated. The hemisected rat head preparation and laser Doppler flowmetry were used to examine the effects on CGRP release from the dura mater and meningeal blood flow of the subcutaneously injected anti-CGRP monoclonal antibody fremanezumab at 30 mg/kg, when compared to an isotype control antibody. Some rats were administered glycerol trinitrate (GTN) intraperitoneally to produce a migraine-like sensitized state. When compared to the control antibody, the fremanezumab injection was followed by reduced basal and capsaicin-evoked CGRP release from day 3 up to 30 days. The difference was enhanced after 4 h of GTN application. The samples from the female rats showed a higher CGRP release compared to that of the males. The increases in meningeal blood flow induced by acrolein (100 µM) and capsaicin (100 nM) were reduced 13–20 days after the fremanezumab injection, and the direct vasoconstrictor effect of high capsaicin (10 µM) was intensified. In conclusion, fremanezumab lowers the CGRP release and lasts up to four weeks, thereby lowering the CGRP-dependent meningeal blood flow. The antibody may not only prevent the released CGRP from binding but may also influence the CGRP release stimulated by noxious agents relevant for the generation of migraine pain.
Collapse
|
11
|
Askari-Zahabi K, Abbasnejad M, Kooshki R, Esmaeili-Mahani S. Orexin one receptors within the basolateral amygdala are involved in the modulation of cognitive deficits associated with a migraine-like state in rats. Neurol Res 2021; 43:1087-1097. [PMID: 34233602 DOI: 10.1080/01616412.2021.1949687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES This study explored the possible role of orexin one receptors (Orx1R) in the basolateral amygdala (BLA) on the modulation of nitroglycerin (NTG)-induced migraine-like symptoms. In addition, pain-induced subsequent alteration in learning and memory competence was evaluated in the adult male Wistar rats. METHODS The rats were given NTG (5 mg/kg, i.p.) every two days (for nine-day) to induce a migraine-like state. The migraine animals were treated with intra-BLA infusion of an Orx1R antagonist SB 334,867 (10, 20, and 40 nM/rat) or its vehicle DMSO. The NTG-induced migraine symptoms were recorded for 90 min. Spatial and passive avoidance performances were assessed by Morris water maze (MWM) and shuttle box tasks, respectively. RESULTS In comparison with control, NTG produced significant migraine-like symptoms characterized by a decrease in cage climbing and an increase in head-scratching, freezing, and facial grooming behavior. Intra-BLA infusion of SB 334,867 (40 nM/rat) significantly decreased cage climbing and increased facial grooming responses in NTG-treated rats. Moreover, all administrated doses of SB 334,867 increased NTG-evoked head-scratching and freezing behavior. Besides, NTG impaired learning and memory performances in both tests, which were exaggerated by post-injection of SB 334,867 (40 nM/rat). CONCLUSIONS Overall, the data provided an emerging role for the orexin system within BLA in the modulation of cognitive decline comorbid with migraine in rats.
Collapse
Affiliation(s)
- Khadijeh Askari-Zahabi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Razieh Kooshki
- Department of Biology, Faculty of Sciences, Lorestan University, Khorramabad, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
12
|
Villar-Martínez MD, Moreno-Ajona D, Chan C, Goadsby PJ. Indomethacin-responsive headaches-A narrative review. Headache 2021; 61:700-714. [PMID: 34105154 DOI: 10.1111/head.14111] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Indomethacin is a nonsteroidal anti-inflammatory drug whose mechanism of action in certain types of headache disorders remains unknown. The so-called indomethacin-responsive headache disorders consist of a group of conditions with a very different presentation that have a particularly good response to indomethacin. The response is so distinct as to be used in the definition of two: hemicrania continua and paroxysmal hemicrania. METHODS This is a narrative literature review. PubMed and the Cochrane databases were used for the literature search. RESULTS We review the main pharmacokinetic and pharmacodynamics properties of indomethacin useful for daily practice. The proposed mechanisms of action of indomethacin in the responsive headache disorders, including its effect on cerebral blood flow and intracranial pressure, with special attention to nitrergic mechanisms, are covered. The current evidence for its use in primary headache disorders, such as some trigeminal autonomic cephalalgias, cough, hypnic, exertional or sexual headache, and migraine will be covered, as well as its indication for secondary headaches, such as those of posttraumatic origin. CONCLUSION Increasing understanding of the mechanism(s) of action of indomethacin will enhance our understanding of the complex pathophysiology that might be shared by indomethacin-sensitive headache disorders.
Collapse
Affiliation(s)
- Maria Dolores Villar-Martínez
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - David Moreno-Ajona
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Calvin Chan
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Peter J Goadsby
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
13
|
Network Pharmacology and Metabolomics Studies on Antimigraine Mechanisms of Da Chuan Xiong Fang (DCXF). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6665137. [PMID: 33995549 PMCID: PMC8081595 DOI: 10.1155/2021/6665137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/01/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Background Da Chuan Xiong Fang (DCXF) is a traditional Chinese medicine (TCM) formula used to treat migraines. Previously, we uncovered partial mechanisms involved in the therapeutic actions of DCXF on migraines. Methods In this study, we further elucidated its antimigraine mechanisms in vivo by using an integrated strategy coupling with network pharmacology and metabolomics techniques. Results Network pharmacology identified 33 genes linked with both migraine and DCXF, most of which were 5-hydroxytryptamine receptors, dopamine, and peptide receptors. The results of GO and KEGG enrichment analysis showed that DCXF significantly regulated tyrosine metabolism, tryptophan metabolism, dopamine metabolic process, glucose transmembrane transport, lipid metabolism, and fatty acid transport. The results of metabolomics analysis found that the metabolism of tryptophan and tyrosine in the brain tissue and energy and lipid metabolism of rats tended towards normal and reached normal levels after administering DCXF. The metabolomics and network pharmacology approaches demonstrated similar antimigraine effects of DCXF on endogenous neurotransmitters and overall trends in serum and brain tissue. Using both approaches, 62 hub genes were identified from the protein-protein interaction (PPI) network of DCXF and gene-metabolite interaction network, with hub genes and different metabolites in serum and brain tissue. The hub genes of DCXF, which were mostly linked with inflammation, might affect mainly neurotransmitters in serum and brain tissue metabolisms. Conclusion Network pharmacology and metabolomics study may help identify hub genes, metabolites, and possible pathways of disease and treatment. Additionally, two parts of the results were integrated to confirm each other. Their combination may help elucidate the relationship between hub genes and metabolites and provide the further understanding of TCM mechanisms.
Collapse
|
14
|
The Effectiveness of Scutellaria baicalensis on Migraine: Implications from Clinical Use and Experimental Proof. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8707280. [PMID: 33505504 PMCID: PMC7806391 DOI: 10.1155/2021/8707280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 01/13/2023]
Abstract
Background Scutellaria baicalensis (SB), a traditional Chinese medicine, is commonly used for the treatment of inflammatory and painful conditions. The purpose of the present study was to examine the effects of SB on migraine. Materials and Methods We examined the clinical applications of SB based on the data obtained from Taiwan's National Health Insurance Research Database and confirmed that it was frequently used in Taiwan for the treatment of headaches. An experimental migraine model was established in rats by an intraperitoneal injection of nitroglycerin (NTG, 10 mg/kg). Pretreatment with SB was given orally 30 min before NTG administration. The rats were subjected to migraine-related behaviour tests that were video-recorded and analysed using EthoVision XT 12.0 software. Results The frequency of exploratory and locomotor behaviour was comparatively lower in the NTG group than that in the control group, while the frequency of resting and grooming behaviour increased. These phenomena were ameliorated by pretreatment with 1.0 g/kg SB. The total time spent on the smooth surface was longer in the NTG group than that in the control group, but the time was shortened by pretreatment with 1.0 g/kg SB. Conclusions Pretreatment with 1.0 g/kg SB relieved migraine-related behaviours in the experimental NTG-induced migraine model. The outcome therefore demonstrated that pretreatment with 1.0 g/kg SB is beneficial for migraine treatment.
Collapse
|
15
|
Guo Y, Cheng Y, An J, Qi Y, Luo G. Neuropeptide changes in an improved migraine model with repeat stimulations. Transl Neurosci 2021; 12:523-532. [PMID: 34963819 PMCID: PMC8662580 DOI: 10.1515/tnsci-2020-0201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/14/2021] [Accepted: 11/19/2021] [Indexed: 01/03/2023] Open
Abstract
Migraine is a medical condition with a severe recursive headache. The activation of the trigeminovascular system is an important mechanism. The neuropeptide calcitonin gene-related peptide (CGRP) plays a crucial role in the pathogenesis of migraine. Several other neuropeptides are also involved; however, their roles in migraine remain unclear. In this study, using a rat model of migraine induced by electrical stimulation of the trigeminal ganglia (TG) and an improved version induced with repeated stimulation, we observed the dynamic changes of these peptides in TG and blood. We demonstrated that the expression of CGRP, pituitary adenylate cyclase activating polypeptide (PACAP), neuropeptide Y (NPY), vasoactive intestinal peptide, and nociceptin in TG was significantly elevated and peaked at different time points after a single stimulation. Their levels in the blood plasma were significantly increased at 12 h after stimulation. The peptides were further elevated with repeated stimulation. The improved rat model of migraine with repeated stimulation of TG resulted in a more pronounced elevation of CGRP, PACAP, and NPY. Thus, the dynamic changes in neuropeptides after stimulation suggest that these neuropeptides may play an important role in the pathogenesis of migraine. Additionally, the migraine model with repetitive stimulation would be a novel model for future research.
Collapse
Affiliation(s)
- Yichen Guo
- Stroke Center, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, China
| | - Yawen Cheng
- Stroke Center, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, China
| | - Jiaqi An
- Stroke Center, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, China
| | - Yi Qi
- Stroke Center, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, China
| | - Guogang Luo
- Stroke Center, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, China
| |
Collapse
|
16
|
Caudle RM, Caudle SL, Flenor ND, Rohrs EL, Neubert JK. Pharmacological Characterization of Orofacial Nociception in Female Rats Following Nitroglycerin Administration. Front Pharmacol 2020; 11:527495. [PMID: 33343340 PMCID: PMC7744726 DOI: 10.3389/fphar.2020.527495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
Rodent models of human disease can be valuable for understanding the mechanisms of a disease and for identifying novel therapies. However, it is critical that these models be vetted prior to committing resources to developing novel therapeutics. Failure to confirm the model can lead to significant losses in time and resources. One model used for migraine headache is to administer nitroglycerin to rodents. Nitroglycerin is known to produce migraine-like pain in humans and is presumed to do the same in rodents. It is not known, however, if the mechanism for nitroglycerin headaches involves the same pathological processes as migraine. In the absence of known mechanisms, it becomes imperative that the model not only translates into successful clinical trials but also successfully reverse translates by demonstrating efficacy of current therapeutics. In this study female rats were given nitroglycerin and nociception was evaluated in OPADs. Estrous was not monitored. Based on the ED50 of nitroglycerin a dose of 10 mg/kg was used for experiments. Sumatriptan, caffeine, buprenorphine and morphine were administered to evaluate the reverse translatability of the model. We found that nitroglycerin did not produce mechanical allodynia in the face of the rats, which is reported to be a consequence of migraine in humans. Nitroglycerin reduced the animals’ participation in the assay. The reduced activity was verified using an assay to measure exploratory behavior. Furthermore, the effects of nitroglycerin were not reversed or prevented by agents that are effective acute therapies for migraine. Two interesting findings from this study, however, were that morphine and nitroglycerin interact to increase the rats’ tolerance of mechanical stimuli on their faces, and they work in concert to slow down the central motor pattern generator for licking on the reward bottle. These interactions suggest that nitroglycerin generated nitric oxide and mu opioid receptors interact with the same neuronal circuits in an additive manner. The interaction of nitroglycerin and morphine on sensory and motor circuits deserves additional examination. In conclusion, based on the results of this study the use of nitroglycerin at these doses in naïve female rats is not recommended as a model for migraine headaches.
Collapse
Affiliation(s)
- Robert M Caudle
- Department of Oral and Maxillofacial Surgery, University of Florida, Gainesville, FL, United States
| | - Stephanie L Caudle
- Department of Orthodontics, University of Florida, Gainesville, FL, United States
| | - Natalie D Flenor
- Department of Orthodontics, University of Florida, Gainesville, FL, United States
| | - Eric L Rohrs
- Velocity Laboratories, LLC, Alachua, FL, United States
| | - John K Neubert
- Department of Orthodontics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
17
|
Zhang Y, Standifer KM. Exacerbated Headache-Related Pain in the Single Prolonged Stress Preclinical Model of Post-traumatic Stress Disorder. Cell Mol Neurobiol 2020; 41:1009-1018. [PMID: 32930941 PMCID: PMC8159770 DOI: 10.1007/s10571-020-00962-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/03/2020] [Indexed: 11/29/2022]
Abstract
Chronic headache pain is one of the most commonly reported comorbid pain conditions with post-traumatic stress disorder (PTSD) patients and resistant to effective treatment, yet no combined preclinical model of the two disorders has been reported. Here, we used a modified chronic headache pain model to investigate the contribution of single prolonged stress (SPS) model of PTSD with sodium nitroprusside (SNP)-induced hyperalgesia. Injection of SNP (2 mg/kg, i.p.) occurred every other day from day 7 to day 15 after initiation of SPS in rats. Paw withdrawal threshold (PWT) to von Frey stimuli and tail flick latencies (TFL) dramatically decreased as early as 7 days after SPS and lasted until at least day 21. Basal PWT and TFL also significantly decreased during the SNP treatment period. The lower nociceptive thresholds recovered in 6 days following the final SNP injection in SNP group, but not in SPS + SNP group. Elevated nociceptin/OFQ (N/OFQ) levels observed in cerebrospinal fluid of SPS rats were even higher in SPS + SNP group. Glial fibrillary acidic protein (GFAP) and N/OFQ peptide (NOP) receptor mRNA expression increased in dorsal root ganglia (DRG) 21 days after SPS exposure; mRNA increases in the SPS/SNP group was more pronounced than SPS or SNP alone. GFAP protein expression was upregulated in trigeminal ganglia by SPS. Our results indicate that traumatic stress exaggerated chronic SNP-induced nociceptive hypersensitivity, and that N/OFQ and activated satellite glia cells may play an important role in the interaction between both conditions.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kelly M Standifer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
18
|
Karsan N, Bose PR, Thompson C, Newman J, Goadsby PJ. Headache and non-headache symptoms provoked by nitroglycerin in migraineurs: A human pharmacological triggering study. Cephalalgia 2020; 40:828-841. [PMID: 32164428 PMCID: PMC7528545 DOI: 10.1177/0333102420910114] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Studying a spontaneous migraine attack is challenging, particularly the earliest components. Nitroglycerin is a potent, reliable and reproducible migraine trigger of the entirety of the migraine attack, making its use experimentally attractive. Methods Fifty-three subjects with migraine with a history of spontaneous premonitory symptoms were exposed to a 0.5 mcg/kg/min nitroglycerin infusion. Eighty-three percent (n = 44) developed typical premonitory and headache symptomatology. Fifty-seven percent (n = 25) were invited back to further study visits, during which they were re-exposed to nitroglycerin or placebo infusion in a double-blind randomised design. The phenotype of premonitory symptoms and headache was captured and compared to spontaneous attacks and between triggered attacks using agreement analysis. Results More premonitory symptoms were triggered with nitroglycerin than placebo (mean symptom difference = 4, t20 = 7.06, p < 0.001). The agreement in triggering for the most commonly reported premonitory symptoms (concentration difficulty and tiredness) was >66%. The retriggering agreement for all but one premonitory symptom was >60%. The agreement in timing to onset of premonitory symptoms was reliable across two triggered attacks. The agreement with spontaneous attacks and between attacks for headache and its associated symptoms, including laterality, was less reliable. Conclusions Nitroglycerin can reliably and reproducibly provoke premonitory symptomatology associated with migraine. This forms an ideal model to study the earliest manifestations of migraine attacks.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, London, UK.,SLaM Biomedical Research Centre, King's College London, London, UK
| | - Pyari R Bose
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, London, UK.,SLaM Biomedical Research Centre, King's College London, London, UK
| | - Charlotte Thompson
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jayde Newman
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Peter J Goadsby
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, London, UK.,SLaM Biomedical Research Centre, King's College London, London, UK
| |
Collapse
|
19
|
Luo YM, Ren XQ, Yang XQ, Song HR, Li R, Gao MH, Li YR, Zhou RR, Ma L, Zhang SJ, Dong RJ, Ge DY, Wang CG, Ren QJ, Tao XH. Tibetan medicine Ru-yi-Zhen-bao Pills exhibits anti-migraine effect through mediating PAG anti-nociceptive channel. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112437. [PMID: 31794788 DOI: 10.1016/j.jep.2019.112437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Migraine is a disabling neurovascular disorder, which increases risk of cardiovascular events and is a social burden worldwide. The present first-line anti-migraine medications can cause overwhelming side-effects, of which one includes the onset of cardiovascular disease. As one of the marketed Tibetan drugs, Ru-yi-Zhen-bao Pills (RYZBP) have been clinically used to treat cardiovascular disorders and as anti-migraine medication. However, there is currently no research exploring the anti-migraine actions of RYZBP. AIM OF THE STUDY The current research was designed to assess the anti-migraine roles of RYZBP and explore the underlying mechanisms in a nitroglycerin (NTG)-induced migraine rat model trial. MATERIALS AND METHODS 120 rats were randomly divided into the following six groups of 20 rats each: normal control group, model control group, positive control group, and RYZBP high/medium/low-dose groups (Ru-yi-Zhen-bao Pills; TH 1.00 g/kg, TM 0.50 g/kg and TL 0.25 g/kg). All rats were administered intragastrically for 7 consecutive days, which were subcutaneously injected with the NTG (10 mg/kg) after the last gavage (except in the normal control group). 3min after NTG treatment, 30 rats (5 rats from each group) were anesthetized and devoted to electroencephalogram(EEG) testing, which was used to evaluate the analgesic effect of RYZBP. One hour after NTG treatment, the rest of the 90 rats (15 rats from each group) were anesthetized and midbrain tissue sample was dissected. The dissection was then washed with physiological saline and collected. The histopathological changes in the periaqueductal gray(PAG) of 5 tissue samples were determined by aematoxylin-eosin (H&E) staining, as well as an estimation of substance P (SP) and neurokinin 1 receptor (NK1R) expression through immunohistochemically staining(IHC). Another 5 midbrain preparations were carried out to evaluate calcitonin gene-related peptide (CGRP), proenkephalin (PENK), SP, and cholecystokinin (CCK) expressions by real-time quantitative polymerase chain reaction (RT-qPCR). The rest of the 5 brainstem tissues were then used to measure CCK, CGRP, and opioid peptide receptor (DORR) levels by western blotting(WB). RESULTS In the EEG test, RYZBP (TM 0.50 g / kg) treatment transformed the EEG pain-wave of the NTG-induced migraine model rats in different time period. In the mechanism assay, compared with the model control group, RYZBP pretreatment reduced inflammatory cell infiltration, fibrosis and vacuolation of neuronal cells of PAG tissue seen by HE staining. IHC experiments further showed that RYZBPTM up-regulated SP expression levels and enhanced NK1R levels in the NTG-induced migraine rats (P < 0.05). Therapeutic administration of RYZBP also increased PENK mRNA expression and DORR protein level. Both RT-qPCR and western blotting trials indicated that RYZBP treatment significantly decreased CCK and CGRP expression levels (P < 0.01 or P < 0.05) in the NTG-induced migraine rats. CONCLUSIONS RYZBP has the potential to be an effective anti-migraine treatment through suppressing the EEG pain-wave, increasing the levels of SP, PENK, DORR and reducing expression of CCK and CGRP. Mediating the PAG anti-nociceptive channel and inhibiting central sensitization were the two potential mechanisms, which offers further evidence for clinical therapy.
Collapse
Affiliation(s)
- Ya Min Luo
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China.
| | - Xiao Qiao Ren
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China.
| | - Xue Qin Yang
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China.
| | - Hui Rong Song
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China.
| | - Ran Li
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China.
| | - Ming Hui Gao
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China.
| | - Yi Ran Li
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China.
| | - Ran Ran Zhou
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China.
| | - Lei Ma
- Department of Education, Beijing University of Traditional Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China.
| | - Shu Jing Zhang
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China.
| | - Ruan Juan Dong
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China.
| | - Dong Yu Ge
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China.
| | - Chun Guo Wang
- Institute of Traditional Chinese Medicine Research, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China.
| | - Qing Jia Ren
- College of Tibetan Medicine, Tibet University of Tibetan Medicine, Lhasa, 850000, China.
| | - Xiao Hua Tao
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China; College of Tibetan Medicine, Tibet University of Tibetan Medicine, Lhasa, 850000, China.
| |
Collapse
|
20
|
Studies on the Mechanism of Glutamate Metabolism in NTG-Induced Migraine Rats Treated with DCXF. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1324797. [PMID: 32082393 PMCID: PMC7011483 DOI: 10.1155/2019/1324797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/13/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022]
Abstract
Objective To explore the mechanism of the antimigraine effect by active components extracted from the Dachuanxiong prescription (DCXF), nitroglycerin- (NTG-) induced migraine rats were used to detect the change of glutamate metabolism and the overall metabolic profile at different time points in the serum and Trigeminocervical complex(TCC) samples. Method The biological samples that were obtained at 30 minutes, 60 minutes, and 90 minutes after model establishment or drug administration were tested by GC-TOF-MS. Then, real-time PCR and western blot were applied to detect changes in the expression of some substances involved in glutamate metabolism. Result DCXF could improve the metabolic profile of serum and TCC in migraine rats and showed the time trend of treatment, mainly involved by amino acid metabolism (glutamate, aspartic acid, and alanine metabolism). In addition, DCXF could increase the expressions of GS at 60 min and 90 min and EAAT1 at 90 min. The results of GS protein were similar to that of mRNA. Conclusion The antimigraine effect of DCXF could be achieved by improving the metabolic profile and increasing the expressions of GS and EAAT1 to promote the glutamate cycle of TCC and serum samples in NTG-induced migraine rats to a certain extent.
Collapse
|
21
|
Auricular Electrical Stimulation Alleviates Headache through CGRP/COX-2/TRPV1/TRPA1 Signaling Pathways in a Nitroglycerin-Induced Migraine Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2413919. [PMID: 31885641 PMCID: PMC6927049 DOI: 10.1155/2019/2413919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/17/2019] [Accepted: 11/23/2019] [Indexed: 12/15/2022]
Abstract
The study aimed to investigate effect of auricular electrical stimulation (ES) on migraine. Migraine was induced in rats by intraperitoneal administration of nitroglycerin (NTG, 10 mg/kg) three times. Auricular ES pretreatment was performed for five consecutive days. Migraine behaviors were observed by a video recording. Auricular ES pretreatment could reverse the decrease of the total time spent on exploratory (2619.0 ± 113.0 s vs 1581.7 ± 217.6 s, p=0.0029) and locomotor behaviors (271.3 ± 21.4 s vs 114.3 ± 19.7 s, p=0.0135) and also could reverse the increase of the total time spent on resting (19.0 ± 10.6 s vs 154.3 ± 46.5 s, p=0.0398) and grooming (369.9 ± 66.8 s vs 1302.0 ± 244.5 s, p=0.0324) behaviors. Auricular ES pretreatment could increase the frequency of rearing behaviors (38.0 ± 1.8 vs 7.7 ± 3.5, p < 0.0001) and total distance traveled (1372.0 ± 157.9 cm vs 285.3 ± 85.6 cm, p < 0.0001) and also could increase the percentage of inner zone time (6.0 ± 1.6% vs 0.4 ± 0.2%, p=0.0472). The CGRP, COX-2, TRPV1, and TRPA1 immunoreactive cells in the trigeminal ganglion increased in the NTG group compared with the control group (all p < 0.0001); this increase could, however, be reduced by auricular ES pretreatment (27.8 ± 2.6 vs 63.0 ± 4.2, p < 0.0001; 21.7 ± 1.2 vs 61.8 ± 4.0, p < 0.0001; 24.3 ± 1.0 vs 36.5 ± 1.7, p=0.0003; and 20.7 ± 1.9 vs 90.8 ± 6.5, p < 0.0001, respectively). Therefore, we suggest that auricular ES pretreatment is beneficial for the treatment of migraine and this effect is partly related to CGRP/COX-2/TRPV1/TRPA1 signaling pathways.
Collapse
|
22
|
Liao CC, Li JM, Chen CH, Lin CL, Hsieh CL. Effect of Paeonia lactiflora, a traditional Chinese herb, on migraines based on clinical application and animal behavior analyses. Biomed Pharmacother 2019; 118:109276. [DOI: 10.1016/j.biopha.2019.109276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 01/21/2023] Open
|
23
|
Abstract
With the approval of calcitonin gene-related peptide (CGRP) and CGRP receptor monoclonal antibodies by the Federal Drug Administration, a new era in the treatment of migraine patients is beginning. However, there are still many unknowns in terms of CGRP mechanisms of action that need to be elucidated to allow new advances in migraine therapies. CGRP has been studied both clinically and preclinically since its discovery. Here we review some of the preclinical data regarding CGRP in animal models of migraine.
Collapse
Affiliation(s)
- Anne-Sophie Wattiez
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,Center for the Prevention and Treatment of Visual Loss, Iowa VA Health Care System, Iowa City, IA, USA
| | - Mengya Wang
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA. .,Center for the Prevention and Treatment of Visual Loss, Iowa VA Health Care System, Iowa City, IA, USA. .,Department of Pharmacology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
24
|
Marone IM, De Logu F, Nassini R, De Carvalho Goncalves M, Benemei S, Ferreira J, Jain P, Li Puma S, Bunnett NW, Geppetti P, Materazzi S. TRPA1/NOX in the soma of trigeminal ganglion neurons mediates migraine-related pain of glyceryl trinitrate in mice. Brain 2019; 141:2312-2328. [PMID: 29985973 PMCID: PMC6061846 DOI: 10.1093/brain/awy177] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/13/2018] [Indexed: 12/15/2022] Open
Abstract
Glyceryl trinitrate is administered as a provocative test for migraine pain. Glyceryl trinitrate causes prolonged mechanical allodynia in rodents, which temporally correlates with delayed glyceryl trinitrate-evoked migraine attacks in patients. However, the underlying mechanism of the allodynia evoked by glyceryl trinitrate is unknown. The proalgesic transient receptor potential ankyrin 1 (TRPA1) channel, expressed by trigeminal nociceptors, is sensitive to oxidative stress and is targeted by nitric oxide or its by-products. Herein, we explored the role of TRPA1 in glyceryl trinitrate-evoked allodynia. Systemic administration of glyceryl trinitrate elicited in the mouse periorbital area an early and transient vasodilatation and a delayed and prolonged mechanical allodynia. The systemic, intrathecal or local administration of selective enzyme inhibitors revealed that nitric oxide, liberated from the parent drug by aldehyde dehydrogenase 2 (ALDH2), initiates but does not maintain allodynia. The central and the final phases of allodynia were respectively associated with generation of reactive oxygen and carbonyl species within the trigeminal ganglion. Allodynia was absent in TRPA1-deficient mice and was reversed by TRPA1 antagonists. Knockdown of neuronal TRPA1 by intrathecally administered antisense oligonucleotide and selective deletion of TRPA1 from sensory neurons in Advillin-Cre; Trpa1fl/fl mice revealed that nitric oxide-dependent oxidative and carbonylic stress generation is due to TRPA1 stimulation, and resultant NADPH oxidase 1 (NOX1) and NOX2 activation in the soma of trigeminal ganglion neurons. Early periorbital vasodilatation evoked by glyceryl trinitrate was attenuated by ALDH2 inhibition but was unaffected by TRPA1 blockade. Antagonists of the calcitonin gene-related peptide receptor did not affect the vasodilatation but partially inhibited allodynia. Thus, although both periorbital allodynia and vasodilatation evoked by glyceryl trinitrate are initiated by nitric oxide, they are temporally and mechanistically distinct. While vasodilatation is due to a direct nitric oxide action in the vascular smooth muscle, allodynia is a neuronal phenomenon mediated by TRPA1 activation and ensuing oxidative stress. The autocrine pathway, sustained by TRPA1 and NOX1/2 within neuronal cell bodies of trigeminal ganglia, may sensitize meningeal nociceptors and second order trigeminal neurons to elicit periorbital allodynia, and could be of relevance for migraine-like headaches evoked by glyceryl trinitrate in humans.
Collapse
Affiliation(s)
- Ilaria Maddalena Marone
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Muryel De Carvalho Goncalves
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Silvia Benemei
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Juliano Ferreira
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Piyush Jain
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Simone Li Puma
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Nigel W Bunnett
- Departments of Surgery and Pharmacology, Columbia University in the City of New York, USA
| | - Pierangelo Geppetti
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Serena Materazzi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
25
|
Demartini C, Greco R, Zanaboni AM, Sances G, De Icco R, Borsook D, Tassorelli C. Nitroglycerin as a comparative experimental model of migraine pain: From animal to human and back. Prog Neurobiol 2019; 177:15-32. [DOI: 10.1016/j.pneurobio.2019.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 01/19/2019] [Accepted: 02/10/2019] [Indexed: 12/13/2022]
|
26
|
Abad N, Rosenberg JT, Hike DC, Harrington MG, Grant SC. Dynamic sodium imaging at ultra-high field reveals progression in a preclinical migraine model. Pain 2018; 159:2058-2065. [PMID: 29905652 PMCID: PMC6150813 DOI: 10.1097/j.pain.0000000000001307] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Under the hypothesis that increased extracellular sodium induces sustained neuronal excitability with the onset and progression of migraine, this study evaluates dynamic in vivo Na fluxes in the brain of a preclinical rodent analogue of migraine. Ultra-high field Na magnetic resonance imaging (MRI) at 21.1 T has demonstrated potential to quantify sodium concentrations with good spatial and temporal resolution after the onset of central sensitization. Sprague-Dawley male rats with implanted intraperitoneal lines were studied by MRI before and after an in situ injection of 10 mg/kg of nitroglycerin (NTG) vs vehicle and saline controls. Slice-selective Na images were acquired using a multislice free induction decay-based chemical shift imaging sequence with resolution of 1.1 × 1.1 × 3 mm for a 9-minute acquisition. A total of 27 repeated scans were acquired over 1 hour of baseline scanning and longitudinally up to 3 hours after injection. Increases of Na MRI signal in the brainstem, extracerebral cerebrospinal fluid, and cisterna magna were evident almost immediately after NTG injection, gaining significance from controls in 36 minutes. The cerebellum and third ventricle also showed sustained trends of increased Na, with the former gaining significance at over 2 hours after NTG injection. The data provide evidence of an early change in sodium concentration, markedly in posterior fossa cerebrospinal fluid and brainstem regions. Further study of fluctuations of sodium concentration and their modulation with treatments could help understand the dynamic features of migraine, locate a putative migraine generator, and guide development of therapeutic measures to correct the disturbance of sodium homeostasis.
Collapse
Affiliation(s)
- Nastaren Abad
- Center for Interdisciplinary Magnetic Resonance, The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA
| | - Jens T. Rosenberg
- Center for Interdisciplinary Magnetic Resonance, The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - David C. Hike
- Center for Interdisciplinary Magnetic Resonance, The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA
| | - Michael G. Harrington
- Molecular Neurology Program, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Samuel C. Grant
- Center for Interdisciplinary Magnetic Resonance, The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA
| |
Collapse
|
27
|
Sun X, Zhu F, Zhou J, Chang X, Li L, Hu H, Wang Z, Xiao W. Anti-migraine and anti-depression activities of Tianshu capsule by mediating Monoamine oxidase. Biomed Pharmacother 2018; 100:275-281. [DOI: 10.1016/j.biopha.2018.01.171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/15/2018] [Accepted: 01/29/2018] [Indexed: 10/18/2022] Open
|
28
|
Tang Y, Liu S, Shu H, Xing Y, Tao F. AMPA receptor GluA1 Ser831 phosphorylation is critical for nitroglycerin-induced migraine-like pain. Neuropharmacology 2018; 133:462-469. [PMID: 29486167 DOI: 10.1016/j.neuropharm.2018.02.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/13/2018] [Accepted: 02/23/2018] [Indexed: 12/13/2022]
Abstract
Migraine is the third most common disease worldwide; however, the mechanisms underlying migraine headache are still not fully understood. Previous studies have demonstrated that α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor phosphorylation plays an important role in central sensitization of pain transmission. In the present study, we observed that AMPA receptor GluA1 Ser831 phosphorylation was enhanced in the spinal trigeminal nucleus caudalis (Sp5C) after intraperitoneal injection of nitroglycerin (NTG). The NTG injection induced acute migraine-like pain including photophobia and mechanical hypersensitivity as reported previously. Interestingly, targeted mutation of GluA1 Ser831 site to prevent phosphorylation significantly inhibited NTG-induced migraine-like pain. Moreover, NTG incubation caused a robust Ca2+ influx in cultured brainstem neurons, which was dramatically inhibited by GluA1 S831A (serine at the 831 site of GluA1 is mutated to alanine) phospho-deficient mutation, and treatment with 1-naphthyl acetyl spermine (NASPM), a selective Ca2+-permeable AMPA receptor channel blocker, dose-dependently blocked the NTG-evoked increase of Ca2+ influx in the cultured neurons. We further found that intra-Sp5C injection of NASPM significantly inhibited NTG-produced mechanical hypersensitivity. These results suggest that AMPA receptor phosphorylation at the Ser831 site in the Sp5C is critical for NTG-induced migraine-like pain.
Collapse
Affiliation(s)
- Yuanyuan Tang
- Department of Physiology and Neurobiology, Zhengzhou University School of Medicine, Zhengzhou, Henan, China; Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Sufang Liu
- Department of Physiology and Neurobiology, Zhengzhou University School of Medicine, Zhengzhou, Henan, China; Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Hui Shu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Ying Xing
- Department of Physiology and Neurobiology, Zhengzhou University School of Medicine, Zhengzhou, Henan, China.
| | - Feng Tao
- Department of Physiology and Neurobiology, Zhengzhou University School of Medicine, Zhengzhou, Henan, China; Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA; Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA.
| |
Collapse
|
29
|
Haddadi H, Rajaei Z, Alaei H, Shahidani S. Chronic treatment with carvacrol improves passive avoidance memory in a rat model of Parkinson's disease. ARQUIVOS DE NEURO-PSIQUIATRIA 2018; 76:71-77. [DOI: 10.1590/0004-282x20170193] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/08/2017] [Indexed: 11/22/2022]
Abstract
ABSTRACT The present study investigated the effects of carvacrol on motor and memory deficits as well as hyperalgesia in the 6-OHDA-lesioned rat model of Parkinson's disease. The animals were subjected to unilateral microinjection of 6-OHDA into the medial forebrain bundle and treated with carvacrol (25, 50 and 100 mg/kg, ip) for six weeks after surgery. The 6-OHDA-lesioned rats showed contralateral rotations towards the lesion side, which was accompanied by learning and memory deficits in a passive avoidance test and a decrease in tail withdrawal latency in a tail flick test at the end of week 6. The results also showed that treatment with carvacrol at a dose of 25 mg/kg ameliorated memory deficits, with no effect on rotations and hyperalgesia in lesioned rats. In conclusion, carvacrol improves memory impairments in rats with Parkinson's disease; therefore, it may serve as an adjunct therapy for the alleviation of memory deficits in Parkinson's disease patients.
Collapse
Affiliation(s)
| | - Ziba Rajaei
- Isfahan University of Medical Sciences, Iran
| | | | | |
Collapse
|
30
|
Bulboacă AE, Bolboacă SD, Stănescu IC, Sfrângeu CA, Bulboacă AC. Preemptive Analgesic and Antioxidative Effect of Curcumin for Experimental Migraine. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4754701. [PMID: 29204441 PMCID: PMC5674483 DOI: 10.1155/2017/4754701] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/11/2017] [Accepted: 09/24/2017] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Our study aimed to investigate the analgesic and antioxidative stress effects of Curcumin (CC) in experimental migraine induced by Nitroglycerin (NTG) on rats, compared with Indomethacin (ID) and Propranolol (PP) treatments. MATERIAL AND METHODS Five groups of 10 rats treated i.p. were investigated: control group (healthy rats) injected with saline solution (0.9%), NTG-control group injected with NTG (1 mg/100 gbw, bw = body weight), and three groups with pretreatment applied 30 min previous to the formalin test (NTG + CC group: Curcumin (10 mg/100 gbw), NTG + PP group: Propranolol (100 μg/100 gbw), and NTG + ID group: Indomethacin (0.5 mg/100 gbw)). Formalin test was performed and number of flinches and shakes were counted. Several oxidative stress parameters were also assessed. RESULTS The smallest values of malondialdehyde (MDA), nitric oxide (NOx), and total oxidative status (TOS) were observed on NTG + CC with significant differences as compared with the control group (p < 0.0001). The group pretreated with Curcumin proved significantly smaller number of flinches and shakes compared with both NTG + PP and NTG + ID. CONCLUSION Our study demonstrates a superior activity of Curcumin not only versus control, but also versus Propranolol and Indomethacin.
Collapse
Affiliation(s)
- Adriana E. Bulboacă
- Department of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Str., No. 4-6, 400012 Cluj-Napoca, Romania
| | - Sorana D. Bolboacă
- Department of Medical Informatics and Biostatistics, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Str., No. 6, 400349 Cluj-Napoca, Romania
| | - Ioana C. Stănescu
- Department of Neurology and Pediatric Neurology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Str., No. 43, 400012 Cluj-Napoca, Romania
| | - Carmen A. Sfrângeu
- Department of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Str., No. 4-6, 400012 Cluj-Napoca, Romania
| | - Angelo C. Bulboacă
- Department of Neurology and Pediatric Neurology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Str., No. 43, 400012 Cluj-Napoca, Romania
| |
Collapse
|
31
|
Simultaneous determination of ferulic acid and gastrodin of Tianshu Capsule in rat plasma by ultra-fast liquid chromatography with tandem mass spectrometry and its application to a comparative pharmacokinetic study in normal and migraine rats. J Sep Sci 2017; 40:4120-4127. [DOI: 10.1002/jssc.201700665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/24/2017] [Accepted: 08/16/2017] [Indexed: 11/07/2022]
|
32
|
Demartini C, Tassorelli C, Zanaboni AM, Tonsi G, Francesconi O, Nativi C, Greco R. The role of the transient receptor potential ankyrin type-1 (TRPA1) channel in migraine pain: evaluation in an animal model. J Headache Pain 2017; 18:94. [PMID: 28884307 PMCID: PMC5589714 DOI: 10.1186/s10194-017-0804-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/29/2017] [Indexed: 11/17/2022] Open
Abstract
Background Clinical and experimental studies have pointed to the possible involvement of the transient receptor potential ankyrin type-1 (TRPA1) channels in migraine pain. In this study, we aimed to further investigate the role of these channels in an animal model of migraine using a novel TRPA1 antagonist, ADM_12, as a probe. Methods The effects of ADM_12 on nitroglycerin-induced hyperalgesia at the trigeminal level were investigated in male rats using the quantification of nocifensive behavior in the orofacial formalin test. The expression levels of the genes coding for c-Fos, TRPA1, calcitonin gene-related peptide (CGRP) and substance P (SP) in peripheral and central areas relevant for migraine pain were analyzed. CGRP and SP protein immunoreactivity was also evaluated in trigeminal nucleus caudalis (TNC). Results In rats bearing nitroglycerin-induced hyperalgesia, ADM_12 showed an anti-hyperalgesic effect in the second phase of the orofacial formalin test. This effect was associated to a significant inhibition of nitroglycerin-induced increase in c-Fos, TRPA1 and neuropeptides mRNA levels in medulla-pons area, in the cervical spinal cord and in the trigeminal ganglion. No differences between groups were seen as regards CGRP and SP protein expression in the TNC. Conclusions These findings support a critical involvement of TRPA1 channels in the pathophysiology of migraine, and show their active role in counteracting hyperalgesia at the trigeminal level.
Collapse
Affiliation(s)
- Chiara Demartini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, "C. Mondino" National Neurological Institute, Pavia, Italy.,Department of Brain and Behavioral Sciences University of Pavia, Pavia, Italy
| | - Cristina Tassorelli
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, "C. Mondino" National Neurological Institute, Pavia, Italy.,Department of Brain and Behavioral Sciences University of Pavia, Pavia, Italy
| | - Anna Maria Zanaboni
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, "C. Mondino" National Neurological Institute, Pavia, Italy.,Department of Brain and Behavioral Sciences University of Pavia, Pavia, Italy
| | - Germana Tonsi
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, "C. Mondino" National Neurological Institute, Pavia, Italy.,Department of Brain and Behavioral Sciences University of Pavia, Pavia, Italy
| | - Oscar Francesconi
- Department of Chemistry 'Ugo Schiff', University of Florence, Florence, Italy
| | - Cristina Nativi
- Department of Chemistry 'Ugo Schiff', University of Florence, Florence, Italy.,FiorGen, University of Florence, Florence, Italy
| | - Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, "C. Mondino" National Neurological Institute, Pavia, Italy. .,IRCCS "National Neurological Institute C. Mondino" Foundation, Via Mondino, 2, 27100, Pavia, Italy.
| |
Collapse
|
33
|
Liu YY, Jiao ZY, Li W, Tian Q. PI3K/AKT signaling pathway activation in a rat model of migraine. Mol Med Rep 2017; 16:4849-4854. [PMID: 28791398 DOI: 10.3892/mmr.2017.7191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/03/2017] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate phosphatidylinositol 4,5-bisphosphate 3‑kinase (PI3K)/protein kinase B (AKT) signaling pathway activation in a rat model of migraine. A total of 60 male Sprague‑Dawley rats were randomly divided into three groups: Blank control; suspension control; and migraine model. The model group was subcutaneously injected with a glyceryl trinitrate suspension, using an optimized Tassorelli method to establish a rat model of migraine. The activation status of the PI3K/AKT signaling pathway was assessed via measurement of the phosphorylated (p)‑AKT level. The level of serum 5‑hydroxytryptamine was detected using an ELISA. The mRNA and protein expression levels of PI3K and AKT, and protein levels of p‑AKT were detected by reverse transcription quantitative polymerase chain reaction and western blot analysis. Expression of the PI3K gene was significantly increased (P<0.01) 6‑24 h following the glyceryl trinitrate injection. There was no significant difference in the expression of AKT between any of the groups at any time. Expression of p‑AKT (S473) was significantly increased in the migraine model group (P<0.01) compared with the controls groups. Immunohistochemical analysis indicated that phosphatase and tensin homolog (PTEN) continuously decreased in the migraine model group during 1‑12 h, however this was only significant in the 12 h group. Levels of PTEN had increased again by 24 h. Glycogen synthase kinase (GSK)‑3β expression exhibited a similar expression pattern to PTEN. The results indicated that the PI3K/AKT signal pathway may be activated in the brain tissue of the rat migraine models. The inhibition of PTEN, which is an upstream modulator of the PI3K/AKT signaling pathway, may enhance the activation of phosphatidylinositol‑3,4,5‑triphosphate, thus inhibiting the expression of GSK-3β.
Collapse
Affiliation(s)
- Yun-Yong Liu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Zi-Yao Jiao
- Department of Anesthesiology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Wei Li
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Qian Tian
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
34
|
Dallel R, Descheemaeker A, Luccarini P. Recurrent administration of the nitric oxide donor, isosorbide dinitrate, induces a persistent cephalic cutaneous hypersensitivity: A model for migraine progression. Cephalalgia 2017; 38:776-785. [DOI: 10.1177/0333102417714032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background A subgroup of migraineurs experience an increase in attack frequency leading to chronic migraine. Methods We assessed in rats the roles of dose and repeat administration of systemic isosorbide dinitrate (ISDN), a nitric oxide donor, on the occurrence and development of cephalic/face and extracephalic/hindpaw mechanical allodynia as a surrogate of migraine pain, and the effect of acute systemic sumatriptan and olcegepant and chronic systemic propranolol on these behavioral changes. Results A single high (H-ISDN) but not low (L-ISDN) dose of ISDN induces a reversible cephalic and extracephalic mechanical allodynia. However, with repeat administration, L-ISDN produces reversible cephalic but never extracephalic allodynia, whereas H-ISDN induces cephalic and extracephalic allodynia that are both potentiated. H-ISDN-induced cephalic allodynia thus gains persistency. Sumatriptan and olcegepant block single H-ISDN-induced behavioral changes, but only olcegepant reduces these acute changes when potentiated by repeat administration. Neither sumatriptan nor olcegepant prevent chronic cephalic hypersensitivity. Conversely, propranolol blocks repeat H-ISDN-induced chronic, but not acute, behavioral changes. Conclusions Repeated ISDN administration appears to be a naturalistic rat model for migraine progression, suitable for screening acute and preventive migraine therapies. It suggests frequent and severe migraine attacks associated with allodynia may be a risk factor for disease progression.
Collapse
Affiliation(s)
- Radhouane Dallel
- Université Clermont Auvergne, Clermont-Ferrand, France
- Centre Hospitalier Universitaire (CHU) de Clermont-Ferrand, Clermont-Ferrand, France
- Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| | - Amélie Descheemaeker
- Université Clermont Auvergne, Clermont-Ferrand, France
- Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| | - Philippe Luccarini
- Université Clermont Auvergne, Clermont-Ferrand, France
- Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| |
Collapse
|
35
|
Zhang XF, Zhang WJ, Dong CL, Hu WL, Sun YY, Bao Y, Zhang CF, Guo CR, Wang CZ, Yuan CS. Analgesia effect of baicalein against NTG-induced migraine in rats. Biomed Pharmacother 2017; 90:116-121. [PMID: 28343071 DOI: 10.1016/j.biopha.2017.03.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Migraine is a complex nervous system disease characterized by typical throbbing and unilateral headache, which causes severe healthy and social issues worldwide. The purpose of this study was to investigate the effect of baicalein (BAI) on the treatment of migraine. MATERIAL AND METHODS Twenty-four rats were randomly divided equally into four groups, including a blank group, model group, positive group (ibuprofen tablets 82mg/kg), and BAI group (60mg/kg). All rats were intragastrically treated with the corresponding treatment for 10 consecutive days, and they were subcutaneously injected with NTG (10mg/kg) 1h after the last treatment, except in the blank group. After model establishment, the behaviors of all rats, including scratching head and shaking body were observed continuously for 100min. Four hours after NTG treatment, all rats were anaesthetized and the blood was collected. Thereafter, nitric oxide (NO) in plasma was determined by colorimetric method, the level of calcitonin gene-related peptide (CGRP) and endothelin (ET) were detected by radioimmunoassay method. In addition, immunohistochemistry was applied to detect c-Fos neuronal activity in trigeminal nucleus caudalis (TNC). RESULTS Behavioral research showed that BAI administration alleviated the hyperalgesia in migraine rats. Compared with the model group, the levels of NO and CGRP in BAI administration groups were markedly decreased (p<0.01), and the levels of ET was significantly increased (p<0.01). Meanwhile, immunohistochemistry results showed that NTG treatment significantly activated c-Fos neurons while BAI treatment inhibited the expression of c-Fos. CONCLUSIONS BAI could alleviate the migraine-like headache induced by NTG, which is related to the regulation of vasoactive substances. These findings may contribute to the further study of BAI as a potential drug for migraine pharmacotherapy.
Collapse
Affiliation(s)
- Xiao-Fan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, JS 210009, China
| | - Wen-Jun Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, JS 210009, China
| | - Cui-Lan Dong
- The People's Hospital of Zhangqiu, Zhangqiu 250200, China
| | - Wan-Li Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, JS 210009, China
| | - Yu-Yao Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, JS 210009, China
| | - Yarigui Bao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, JS 210009, China
| | - Chun-Feng Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, JS 210009, China; Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA.
| | - Chang-Run Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, JS 210009, China.
| | - Chong-Zhi Wang
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chun-Su Yuan
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
36
|
Abstract
Migraine and other primary headache disorders affect a large population and cause debilitating pain. Establishing animal models that display behavioral correlates of long-lasting and ongoing headache, the most common and disabling symptom of migraine, is vital for the elucidation of disease mechanisms and identification of drug targets. We have developed a mouse model of headache, using dural application of capsaicin along with a mixture of inflammatory mediators (IScap) to simulate the induction of a headache episode. This elicited intermittent head-directed wiping and scratching as well as the phosphorylation of c-Jun N-terminal kinase in trigeminal ganglion neurons. Interestingly, dural application of IScap preferentially induced FOS protein expression in the excitatory but not inhibitory cervical/medullary dorsal horn neurons. The duration of IScap-induced behavior and the number of FOS-positive neurons correlated positively in individual mice; both were reduced to the control level by the pretreatment of antimigraine drug sumatriptan. Dural application of CGRP(8-37), the calcitonin gene-related peptide (CGRP) receptor antagonist, also effectively blocked IScap-induced behavior, which suggests that the release of endogenous CGRP in the dura is necessary for IScap-induced nociception. These data suggest that dural IScap-induced nocifensive behavior in mice may be mechanistically related to the ongoing headache in humans. In addition, dural application of IScap increased resting time in female mice. Taken together, we present the first detailed study using dural application of IScap in mice. This headache model can be applied to genetically modified mice to facilitate research on the mechanisms and therapeutic targets for migraine headache.
Collapse
|
37
|
Flores Ramos JM, Devoize L, Descheemaeker A, Molat JL, Luccarini P, Dallel R. The nitric oxide donor, isosorbide dinitrate, induces a cephalic cutaneous hypersensitivity, associated with sensitization of the medullary dorsal horn. Neuroscience 2017; 344:157-166. [DOI: 10.1016/j.neuroscience.2016.12.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/13/2016] [Accepted: 12/18/2016] [Indexed: 12/13/2022]
|
38
|
Christensen SL, Petersen S, Sørensen DB, Olesen J, Jansen-Olesen I. Cilostazol induces C-fos expression in the trigeminal nucleus caudalis and behavioural changes suggestive of headache with the migraine-like feature photophobia in female rats. Cephalalgia 2017; 38:452-465. [DOI: 10.1177/0333102417693833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Introduction Research in development of new migraine therapeutics is hindered by the lack of suitable, predictive animal models. Cilostazol provokes headache in healthy humans and migraineurs by increasing intracellular cAMP levels. We aimed to investigate whether cilostazol could provoke headache-like behaviours and c-fos expression in rats. In order to evaluate the predictive validity of the model, we examined the response to the migraine specific drug sumatriptan. Methods The effect of cilostazol (125 mg/kg p.o.) in female Sprague Dawley rats was evaluated on a range of spontaneous behavioural parameters, light sensitivity and mechanical sensitivity thresholds. We also measured c-fos expression in the trigeminal nucleus caudalis. Results Cilostazol increased light sensitivity and grooming behaviour. These manifestations were not inhibited by sumatriptan. Cilostazol also induced c-fos expression in the trigeminal nucleus caudalis. Furthermore, trigeminal – but not hind paw hyperalgesia was observed. Conclusion The altered behaviours are suggestive of cilostazol induced headache with migraine-like features, but not specific. The presence of head specific hyperalgesia and the c-fos response in the trigeminal nucleus caudalis imply that the model involves trigeminal nociception. The model will be useful for studying mechanisms related to the cAMP pathway in headache, but its predictive properties appear to be more limited due to the lack of response to sumatriptan.
Collapse
Affiliation(s)
- SL Christensen
- Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup, Denmark
- Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
| | - Steffen Petersen
- Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup, Denmark
- Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
| | - Dorte B Sørensen
- Experimental Animal Models, University of Copenhagen, Copenhagen, Denmark
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup, Denmark
| | - Inger Jansen-Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup, Denmark
- Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
39
|
Farajdokht F, Babri S, Karimi P, Alipour MR, Bughchechi R, Mohaddes G. Chronic ghrelin treatment reduced photophobia and anxiety-like behaviors in nitroglycerin- induced migraine: role of pituitary adenylate cyclase-activating polypeptide. Eur J Neurosci 2017; 45:763-772. [DOI: 10.1111/ejn.13486] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/19/2016] [Accepted: 11/21/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Fereshteh Farajdokht
- Neurosciences Research Center (NSRC); Tabriz University of Medical Sciences; Tabriz Iran
- Student Research Committee of Tabriz University of Medical Sciences; Tabriz Iran
| | - Shirin Babri
- Neurosciences Research Center (NSRC); Tabriz University of Medical Sciences; Tabriz Iran
| | - Pouran Karimi
- Neurosciences Research Center (NSRC); Tabriz University of Medical Sciences; Tabriz Iran
| | | | - Ramin Bughchechi
- Neurosciences Research Center (NSRC); Tabriz University of Medical Sciences; Tabriz Iran
| | - Gisou Mohaddes
- Neurosciences Research Center (NSRC); Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
40
|
Greco R, Siani F, Demartini C, Zanaboni A, Nappi G, Davinelli S, Scapagnini G, Tassorelli C. Andrographis Paniculata shows anti-nociceptive effects in an animal model of sensory hypersensitivity associated with migraine. FUNCTIONAL NEUROLOGY 2016; 31:53-60. [PMID: 27027895 DOI: 10.11138/fneur/2016.31.1.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Administration of nitroglycerin (NTG) to rats induces a hyperalgesic condition and neuronal activation of central structures involved in migraine pain. In order to identify therapeutic strategies for migraine pain, we evaluated the anti-nociceptive activity of Andrographis Paniculata (AP), a herbaceous plant, in the hyperalgesia induced by NTG administration in the formalin test. We also analyzed mRNA expression of cytokines in specific brain areas after AP treatment. Male Sprague-Dawley rats were pre-treated with AP extract 30 minutes before NTG or vehicle injection. The data show that AP extract significantly reduced NTG-induced hyperalgesia in phase II of the test, 4 hours after NTG injection. In addition, AP extract reduced IL-6 mRNA expression in the medulla and mesencephalon and also mRNA levels of TNFalpha in the mesencephalic region. These findings suggest that AP extract may be a potential therapeutic approach in the treatment of general pain, and possibly of migraine.
Collapse
|
41
|
Benoliel R, Epstein J, Eliav E, Jurevic R, Elad S. Orofacial Pain in Cancer: Part I—Mechanisms. J Dent Res 2016; 86:491-505. [PMID: 17525348 DOI: 10.1177/154405910708600604] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The mechanisms involved, and possible treatment targets, in orofacial pain due to cancer are poorly understood. The aim of the first of this two-part series is to review the involved pathophysiological mechanisms and explore their possible roles in the orofacial region. However, there is a lack of relevant research in the trigeminal region, and we have therefore applied data accumulated from experiments on cancer pain mechanisms in rodent spinal models. In the second part, we review the clinical presentation of cancer-associated orofacial pain at various stages: initial diagnosis, during therapy (chemo-, radiotherapy, surgery), and in the post-therapy period. In the present article, we provide a brief outline of trigeminal functional neuro-anatomy and pain-modulatory pathways. Tissue destruction by invasive tumors (or metastases) induces inflammation and nerve damage, with attendant acute pain. In some cases, chronic pain, involving inflammatory and neuropathic mechanisms, may ensue. Distant, painful effects of tumors include paraneoplastic neuropathic syndromes and effects secondary to the release of factors by the tumor (growth factors, cytokines, and enzymes). Additionally, pain is frequent in cancer management protocols (surgery, chemotherapy, and radiotherapy). Understanding the mechanisms involved in cancer-related orofacial pain will enhance patient management.
Collapse
Affiliation(s)
- R Benoliel
- Department of Oral Medicine, The Hebrew University, Hadassah Faculty of Dental Medicine, PO Box 12272, Jerusalem 91120, Israel.
| | | | | | | | | |
Collapse
|
42
|
Farajdokht F, Babri S, Karimi P, Mohaddes G. Ghrelin attenuates hyperalgesia and light aversion-induced by nitroglycerin in male rats. Neurosci Lett 2016; 630:30-37. [DOI: 10.1016/j.neulet.2016.07.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/04/2016] [Accepted: 07/15/2016] [Indexed: 01/03/2023]
|
43
|
Christensen SL, Petersen S, Sørensen DB, Olesen J, Jansen-Olesen I. Infusion of low dose glyceryl trinitrate has no consistent effect on burrowing behavior, running wheel activity and light sensitivity in female rats. J Pharmacol Toxicol Methods 2016; 80:43-50. [DOI: 10.1016/j.vascn.2016.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/14/2016] [Accepted: 04/04/2016] [Indexed: 10/22/2022]
|
44
|
Tassorelli C, Greco R, Morazzoni P, Riva A, Sandrini G, Nappi G. Parthenolide is the Component of Tanacetum Parthenium that Inhibits Nitroglycerin-Induced Fos Activation: Studies in an Animal Model of Migraine. Cephalalgia 2016; 25:612-21. [PMID: 16033387 DOI: 10.1111/j.1468-2982.2005.00915.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tanacetum parthenium (TP) is a member of the Asteracee family long used empirically as a herbal remedy for migraine. So far, however, clinical trials have failed to prove consistently the effectiveness of TP extracts in preventing migraine attacks, probably as a consequence of the uncertainty as regards the active principle. In this study, the biological effects of different TP extracts and purified parthenolide were tested in an animal model of migraine based on the quantification of neuronal activation induced by nitroglycerin. The extract enriched in parthenolide significantly reduced nitroglycerin-induced Fos expression in the nucleus trigeminalis caudalis. Purified parthenolide inhibited nitroglycerin-induced neuronal activation in additional brain nuclei and, significantly, the activity of nuclear factor-κB. These findings strongly suggest that parthenolide is the component responsible for the biological activity of TP as regards its antimigraine effect and provide important information for future controlled clinical trials.
Collapse
Affiliation(s)
- C Tassorelli
- Laboratory of Pathophysiology of Integrative Autonomic Systems, IRCCS Neurological Institute C. Mondino Foundation and University Centre for the Study of Adaptive Disorder and Headache, Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
45
|
Offenhauser N, Zinck T, Hoffmann J, Schiemann K, Schuh-Hofer S, Rohde W, Arnold G, Dirnagl U, Jansen-Olesen I, Reuter U. CGRP Release and c-fos Expression within Trigeminal Nucleus Caudalis of the Rat following Glyceryltrinitrate Infusion. Cephalalgia 2016; 25:225-36. [PMID: 15689199 DOI: 10.1111/j.1468-2982.2004.00845.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuropeptide release and the expression of c-fos like immunoreactivity (c-fos LI) within trigeminal nucleus caudalis neurons (TNC) are activation markers of the trigeminal nerve system. Glyceryltrinitrate (GTN) is believed to stimulate the trigeminal nerve system, thereby causing headache. We examined the effects of a 30 min NO-donor infusion on CGRP release in jugular vein blood and c-fos LI within TNC of the rat. GTN (2 and 50 μg/kg/min) or NONOate infusion (25 nmol/kg/min) did not cause any CGRP release during and shortly after infusion, whereas administration of capsaicin resulted in strongly increased CGRP levels. GTN infusion (2 μg/kg/min for 30 min) did not lead to enhanced c-fos LI after 2 h and 4 h, whereas capsaicin infusion caused a time- and dose-dependent expression of c-fos LI within laminae I and II of the TNC. Surprisingly, GTN attenuated capsaicin-induced c-fos expression by 64%. The nitric oxide synthase (NOS) inhibitor L-NAME (5 and 50 mg/kg) reduced capsaicin-induced c-fos LI dose dependently (reduction by 13% and 59%). We conclude that GTN may lead to headaches by mechanisms independent of CGRP release from trigeminal nerve fibres. GTN doses comparable to those used in humans did not activate or sensitize the trigeminal nerve system. Both GTN and L-NAME reduced capsaicin-induced c-fos LI. This is most likely due to a feedback inhibition of nitric oxide synthases, which indicates that the c-fos response to capsaicin within TNC is mediated by NO dependent mechanisms.
Collapse
Affiliation(s)
- N Offenhauser
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bobade V, Bodhankar SL, Aswar U, Vishwaraman M, Thakurdesai P. Prophylactic effects of asiaticoside-based standardized extract of Centella asiatica (L.) Urban leaves on experimental migraine: Involvement of 5HT1A/1B receptors. Chin J Nat Med 2016; 13:274-82. [PMID: 25908624 DOI: 10.1016/s1875-5364(15)30014-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Indexed: 11/25/2022]
Abstract
The present study aimed at evaluation of prophylactic efficacy and possible mechanisms of asiaticoside (AS) based standardized extract of Centella asiatica (L.) Urban leaves (INDCA) in animal models of migraine. The effects of oral and intranasal (i.n.) pretreatment of INDCA (acute and 7-days subacute) were evaluated against nitroglycerine (NTG, 10 mg·kg(-1), i.p.) and bradykinin (BK, 10 μg, intra-arterial) induced hyperalgesia in rats. Tail flick latencies (from 0 to 240 min) post-NTG treatment and the number of vocalizations post-BK treatment were recorded as a measure of hyperalgesia. Separate groups of rats for negative (Normal) and positive (sumatriptan, 42 mg·kg(-1), s.c.) controls were included. The interaction of INDCA with selective 5-HT1A, 5-HT1B, and 5-HT1D receptor antagonists (NAN-190, Isamoltane hemifumarate, and BRL-15572 respectively) against NTG-induced hyperalgesia was also evaluated. Acute and sub-acute pre-treatment of INDCA [10 and 30 mg·kg(-1) (oral) and 100 μg/rat (i.n.) showed significant anti-nociception activity, and reversal of the NTG-induced hyperalgesia and brain 5-HT concentration decline. Oral pre-treatment with INDCA (30 mg·kg(-1), 7 d) showed significant reduction in the number of vocalization. The anti-nociceptive effects of INDCA were blocked by 5-HT1A and 5-HT1B but not 5-HT1D receptor antagonists. In conclusion, INDCA demonstrated promising anti-nociceptive effects in animal models of migraine, probably through 5-HT1A/1B medicated action.
Collapse
Affiliation(s)
- Vijeta Bobade
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Pune-411038, India
| | - Subhash L Bodhankar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Pune-411038, India.
| | - Urmila Aswar
- Department of Pharmacology, Sinhgad Institute of Pharmacy, Narhe, Pune 411041, India
| | - Mohan Vishwaraman
- Indus Biotech Private Limited, 1, Rahul residency, Kondhwa, Pune-411026, India
| | - Prasad Thakurdesai
- Indus Biotech Private Limited, 1, Rahul residency, Kondhwa, Pune-411026, India
| |
Collapse
|
47
|
Ferrari LF, Levine JD, Green PG. Mechanisms mediating nitroglycerin-induced delayed-onset hyperalgesia in the rat. Neuroscience 2016; 317:121-9. [PMID: 26779834 DOI: 10.1016/j.neuroscience.2016.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 12/22/2022]
Abstract
Nitroglycerin (glycerol trinitrate, GTN) induces headache in migraineurs, an effect that has been used both diagnostically and in the study of the pathophysiology of this neurovascular pain syndrome. An important feature of this headache is a delay from the administration of GTN to headache onset that, because of GTN's very rapid metabolism, cannot be due to its pharmacokinetic profile. It has recently been suggested that activation of perivascular mast cells, which has been implicated in the pathophysiology of migraine, may contribute to this delay. We reported that hyperalgesia induced by intradermal GTN has a delay to onset of ∼ 30 min in male and ∼ 45 min in female rats. This hyperalgesia was greater in females, was prevented by pretreatment with the anti-migraine drug, sumatriptan, as well as by chronic pretreatment with the mast cell degranulator, compound 48/80. The acute administration of GTN and compound 48/80 both induced hyperalgesia that was prevented by pretreatment with octoxynol-9, which attenuates endothelial function, suggesting that GTN and mast cell-mediated hyperalgesia are endothelial cell-dependent. Furthermore, A-317491, a P2X3 antagonist, which inhibits endothelial cell-dependent hyperalgesia, also prevents GTN and mast cell-mediated hyperalgesia. We conclude that delayed-onset mechanical hyperalgesia induced by GTN is mediated by activation of mast cells, which in turn release mediators that stimulate endothelial cells to release ATP, to act on P2X3, a ligand-gated ion channel, in perivascular nociceptors. A role of the mast and endothelial cell in GTN-induced hyperalgesia suggests potential novel risk factors and targets for the treatment of migraine.
Collapse
Affiliation(s)
- L F Ferrari
- Department of Oral & Maxillofacial Surgery, University of California at San Francisco, San Francisco, CA 94143-0440, United States; Division of Neuroscience, University of California at San Francisco, San Francisco, CA 94143-0440, United States
| | - J D Levine
- Department of Oral & Maxillofacial Surgery, University of California at San Francisco, San Francisco, CA 94143-0440, United States; Department of Dental Science and Medicine, University of California at San Francisco, San Francisco, CA 94143-0440, United States; Division of Neuroscience, University of California at San Francisco, San Francisco, CA 94143-0440, United States.
| | - P G Green
- Department of Oral & Maxillofacial Surgery, University of California at San Francisco, San Francisco, CA 94143-0440, United States; Department of Preventative & Restorative, University of California at San Francisco, San Francisco, CA 94143-0440, United States; Division of Neuroscience, University of California at San Francisco, San Francisco, CA 94143-0440, United States
| |
Collapse
|
48
|
Wang Q, Shen L, Ma SY, Chen MW, Lin X, Hong YL, Feng Y. Determination of the levels of two types of neurotransmitter and the anti-migraine effects of different dose-ratios of Ligusticum chuanxiong and Gastrodia elata. J Food Drug Anal 2016; 24:189-198. [PMID: 28911403 PMCID: PMC9345439 DOI: 10.1016/j.jfda.2015.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/23/2015] [Accepted: 08/19/2015] [Indexed: 11/18/2022] Open
Abstract
Ligusticum chuanxiong (LC)–Gastrodia elata (GE) compatibility is widely used in the clinic for the treatment of migraine. It has been shown that the changes of neurotransmitters in the central nervous system are closely related to the pathogenesis of migraine; whether LC–GE compatibility might affect the neurotransmitters in migraine rats has not yet been studied. In this study, high performance liquid chromatography-fluorescence detector methods for quantification of serotonin (5-hydroxytryptamine, 5-HT) and excitatory amino acids (EAAs) in rat brain were developed. The 5-HT was measured directly, while EAAs were determined by using dansyl chloride as precolumn derivative reagent. The validation of the methods, including selectivity, linearity, sensitivity, precision, accuracy, recoveries, and stability were carried out and demonstrated to meet the requirements of quantitative analysis. Compared with the model group, the expression of 5-HT in migraine rat brain was enhanced from 30 minutes to 120 minutes and glutamate (L-Glu) was suppressed from 30 minutes to 60 minutes in an LC–GE (4:3) group compared with the model group (p < 0.05, p < 0.01, respectively). These findings showed that the analytical methods were simple, sensitive, selective, and low cost, and LC–GE 4:3 compatibility could have better efficacy for treating migraine through upregulating 5-HT levels and downregulating L-Glu levels.
Collapse
Affiliation(s)
- Qiang Wang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai,
China
| | - Lan Shen
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai,
China
- Corresponding author. School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Room 10405, Number 1200 Cailun Road, Shanghai 201203, China. E-mail address: (L. Shen)
| | - Shi-Yu Ma
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai,
China
| | - Mei-Wan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao,
China
| | - Xiao Lin
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai,
China
| | - Yan-Long Hong
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai,
China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai,
China
| |
Collapse
|
49
|
Farkas S, Bölcskei K, Markovics A, Varga A, Kis-Varga Á, Kormos V, Gaszner B, Horváth C, Tuka B, Tajti J, Helyes Z. Utility of different outcome measures for the nitroglycerin model of migraine in mice. J Pharmacol Toxicol Methods 2015; 77:33-44. [PMID: 26456070 DOI: 10.1016/j.vascn.2015.09.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Majority of the work for establishing nitroglycerin (NTG)-induced migraine models in animals was done in rats, though recently some studies in mice were also reported. Different special formulations of NTG were investigated in various studies; however, NTG treated groups were often compared to simple saline treated control groups. The aim of the present studies was to critically assess the utility of a panel of potential outcome measures in mice by revisiting previous findings and investigating endpoints that have not been tested in mice yet. METHODS We investigated two NTG formulations, Nitrolingual and Nitro Pohl, at an intraperitoneal dose of 10mg/kg, in comparison with relevant vehicle controls, and evaluated the following outcome measures: light aversive behaviour, cranial blood perfusion by laser Doppler imaging, number of c-Fos- and neuronal nitrogen monoxide synthase (nNOS)-immunoreactive neurons in the trigeminal nucleus caudalis (TNC) and trigeminal ganglia, thermal hyperalgesia and tactile allodynia of the hind paw and orofacial pain hypersensitivity. RESULTS We could not confirm previous reports of significant NTG-induced changes in light aversion and cranial blood perfusion of mice but we observed considerable effects elicited by the vehicle of Nitrolingual. In contrast, the vehicle of Nitro Pohl was apparently inert. Increased c-Fos expression in the TNC, thermal hyperalgesia, tactile allodynia and orofacial hypersensitivity were apparently good endpoints in mice that were increased by NTG-administration. The NTG-induced increase in c-Fos expression was prevented by topiramate but not by sumatriptan treatment. However, the NTG-induced orofacial hypersensitivity was dose dependently attenuated by sumatriptan. DISCUSSION Our results pointed to utilisable NTG formulations and outcome measures for NTG-induced migraine models in mice. Pending further cross-validation with positive and negative control drugs in these mouse models and in the human NTG models of migraine, these tests might be valuable translational research tools for development of new anti-migraine drugs.
Collapse
Affiliation(s)
- Sándor Farkas
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary; Research Division, Gedeon Richter Plc., H-1103 Budapest, Gyömrői út 19-21, Hungary.
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság út 20, H-7624 Pécs, Hungary.
| | - Adrienn Markovics
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság út 20, H-7624 Pécs, Hungary.
| | - Anita Varga
- Laboratory of Neuropharmacology, Pharmacological and Drug Safety Research, Gedeon Richter Plc., H-1103 Budapest, Gyömrői út 19-21, Hungary.
| | - Ágnes Kis-Varga
- Laboratory of Neuropharmacology, Pharmacological and Drug Safety Research, Gedeon Richter Plc., H-1103 Budapest, Gyömrői út 19-21, Hungary.
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary.
| | - Balázs Gaszner
- Department of Anatomy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary.
| | - Csilla Horváth
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary; Laboratory of Neuropharmacology, Pharmacological and Drug Safety Research, Gedeon Richter Plc., H-1103 Budapest, Gyömrői út 19-21, Hungary.
| | - Bernadett Tuka
- Neurology Department, University of Szeged, Faculty of Medicine, H-6725 Szeged, Semmelweis u. 6, Hungary; MTA-SZTE Neuroscience Research Group, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - János Tajti
- Neurology Department, University of Szeged, Faculty of Medicine, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság út 20, H-7624 Pécs, Hungary; MTA-PTE NAP B Chronic Pain Research Group, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary.
| |
Collapse
|
50
|
Role of phosphorylated extracellular signal-regulated kinase, calcitonin gene-related peptide and cyclooxygenase-2 in experimental rat models of migraine. Mol Med Rep 2015; 12:1803-9. [PMID: 25892078 PMCID: PMC4463979 DOI: 10.3892/mmr.2015.3616] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 02/05/2015] [Indexed: 01/05/2023] Open
Abstract
Although migraine is a common neurological condition, the pathomechanism is not yet fully understood. Activation of the trigeminovascular system (TVS) has an important function in this disorder and neurogenic inflammation and central sensitization are important mechanisms underlying this condition. Nitroglycerin (NTG) infusion in rats closely mimics a universally accepted human model of migraine. Electrical stimulation of the trigeminal ganglion (ESTG) of rats can also activate TVS during a migraine attack. Numerous studies have revealed that phosphorylated extracellular signal-regulated kinase (p-ERK), calcitonin gene-related peptide (CGRP) and cyclooxygenase-2 (COX-2) are involved in pain and nociceptive pathways. However, few studies have examined whether p-ERK, CGRP and COX-2 are involved in neurogenic inflammation and central sensitization. In the present study, the expression of p-ERK, CGRP and COX-2 was detected in the dura mater, trigeminal ganglion (TG) and spinal trigeminal nucleus caudalis in NTG-induced rats and ESTG models by immunohistochemistry. The three areas considered were crucial components of the TVS. The selective COX-2 inhibitor nimesulide was used in ESTG rats to examine the association between p-ERK, CGRP and COX-2. The results demonstrated that p-ERK, CGRP and COX-2 mediated neurogenic inflammation and central sensitization in migraine. In addition, the expression of p-ERK and CGRP was attenuated by the COX-2 inhibitor.
Collapse
|