1
|
Belevych AE, Bogdanov V, Terentyev DA, Gyorke S. Acute Detubulation of Ventricular Myocytes Amplifies the Inhibitory Effect of Cholinergic Agonist on Intracellular Ca 2+ Transients. Front Physiol 2021; 12:725798. [PMID: 34512394 PMCID: PMC8427700 DOI: 10.3389/fphys.2021.725798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022] Open
Abstract
Muscarinic receptors expressed in cardiac myocytes play a critical role in the regulation of heart function by the parasympathetic nervous system. How the structural organization of cardiac myocytes affects the regulation of Ca2+ handling by muscarinic receptors is not well-defined. Using confocal Ca2+ imaging, patch-clamp techniques, and immunocytochemistry, the relationship between t-tubule density and cholinergic regulation of intracellular Ca2+ in normal murine ventricular myocytes and myocytes with acute disruption of the t-tubule system caused by formamide treatment was studied. The inhibitory effect of muscarinic receptor agonist carbachol (CCh, 10 μM) on the amplitude of Ca2+ transients, evoked by field-stimulation in the presence of 100 nM isoproterenol (Iso), a β-adrenergic agonist, was directly proportional to the level of myocyte detubulation. The timing of the maximal rate of fluorescence increase of fluo-4, a Ca2+-sensitive dye, was used to classify image pixels into the regions functionally coupled or uncoupled to the sarcolemmal Ca2+ influx (ICa). CCh decreased the fraction of coupled regions and suppressed Ca2+ propagation from sarcolemma inside the cell. Formamide treatment reduced ICa density and decreased sarcoplasmic reticulum (SR) Ca2+ content. CCh did not change SR Ca2+ content in Iso-stimulated control and formamide-treated myocytes. CCh inhibited peak ICa recorded in the presence of Iso by ∼20% in both the control and detubulated myocytes. Reducing ICa amplitude up to 40% by changing the voltage step levels from 0 to –25 mV decreased Ca2+ transients in formamide-treated but not in control myocytes in the presence of Iso. CCh inhibited CaMKII activity, whereas CaMKII inhibition with KN93 mimicked the effect of CCh on Ca2+ transients in formamide-treated myocytes. It was concluded that the downregulation of t-tubules coupled with the diminished efficiency of excitation–contraction coupling, increases the sensitivity of Ca2+ release and propagation to muscarinic receptor-mediated inhibition of both ICa and CaMKII activity.
Collapse
Affiliation(s)
- Andriy E Belevych
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.,Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Vladimir Bogdanov
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.,Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Dmitry A Terentyev
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.,Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Sandor Gyorke
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.,Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
2
|
Accuracy and Precision of the Receptorial Responsiveness Method (RRM) in the Quantification of A 1 Adenosine Receptor Agonists. Int J Mol Sci 2019; 20:ijms20246264. [PMID: 31842299 PMCID: PMC6940880 DOI: 10.3390/ijms20246264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022] Open
Abstract
The receptorial responsiveness method (RRM) is a procedure that is based on a simple nonlinear regression while using a model with two variables (X, Y) and (at least) one parameter to be determined (cx). The model of RRM describes the co-action of two agonists that consume the same response capacity (due to the use of the same postreceptorial signaling in a biological system). While using RRM, uniquely, an acute increase in the concentration of an agonist (near the receptors) can be quantified (as cx), via evaluating E/c curves that were constructed with the same or another agonist in the same system. As this measurement is sensitive to the implementation of the curve fitting, the goal of the present study was to test RRM by combining different ways and setting options, namely: individual vs. global fitting, ordinary vs. robust fitting, and three weighting options (no weighting vs. weighting by 1/Y2 vs. weighting by 1/SD2). During the testing, RRM was used to estimate the known concentrations of stable synthetic A1 adenosine receptor agonists in isolated, paced guinea pig left atria. The estimates were then compared to the known agonist concentrations (to assess the accuracy of RRM); furthermore, the 95% confidence limits of the best-fit values were also considered (to evaluate the precision of RRM). It was found that, although the global fitting offered the most convenient way to perform RRM, the best estimates were provided by the individual fitting without any weighting, almost irrespective of the fact whether ordinary or robust fitting was chosen.
Collapse
|
3
|
Pak K, Zsuga J, Kepes Z, Erdei T, Varga B, Juhasz B, Szentmiklosi AJ, Gesztelyi R. The effect of adenosine deaminase inhibition on the A1 adenosinergic and M2 muscarinergic control of contractility in eu- and hyperthyroid guinea pig atria. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:853-68. [PMID: 25877465 PMCID: PMC4495724 DOI: 10.1007/s00210-015-1121-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/30/2015] [Indexed: 11/26/2022]
Abstract
The A1 adenosine and M2 muscarinic receptors exert protective (including energy consumption limiting) effects in the heart. We investigated the influence of adenosine deaminase (ADA) inhibition on a representative energy consumption limiting function, the direct negative inotropic effect elicited by the A1 adenosinergic and M2 muscarinergic systems, in eu- and hyperthyroid atria. Furthermore, we compared the change in the interstitial adenosine level caused by ADA inhibition and nucleoside transport blockade, two well-established processes to stimulate the cell surface A1 adenosine receptors, in both thyroid states. A classical isolated organ technique was applied supplemented with the receptorial responsiveness method (RRM), a concentration estimating procedure. Via measuring the contractile force, the direct negative inotropic capacity of N(6)-cyclopentyladenosine, a selective A1 receptor agonist, and methacholine, a muscarinic receptor agonist, was determined on the left atria isolated from 8-day solvent- and thyroxine-treated guinea pigs in the presence and absence of 2'-deoxycoformycin, a selective ADA inhibitor, and NBTI, a selective nucleoside transporter inhibitor. We found that ADA inhibition (but not nucleoside transport blockade) increased the signal amplification of the A1 adenosinergic (but not M2 muscarinergic) system. This action of ADA inhibition developed in both thyroid states, but it was greater in hyperthyroidism. Nevertheless, ADA inhibition produced a smaller rise in the interstitial adenosine concentration than nucleoside transport blockade did in both thyroid states. Our results indicate that ADA inhibition, besides increasing the interstitial adenosine level, intensifies the atrial A1 adenosinergic function in another (thyroid hormone-sensitive) way, suggesting a new mechanism of action of ADA inhibition.
Collapse
Affiliation(s)
- Krisztian Pak
- />Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Judit Zsuga
- />Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Zita Kepes
- />Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Tamas Erdei
- />Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Balazs Varga
- />Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Bela Juhasz
- />Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Andras Jozsef Szentmiklosi
- />Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Rudolf Gesztelyi
- />Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| |
Collapse
|
4
|
Honda M, Komatsu R, Isobe T, Tabo M, Ishikawa T. Involvement of the autonomic nervous system in diurnal variation of corrected QT intervals in common marmosets. J Pharmacol Sci 2013; 121:131-7. [PMID: 23363785 DOI: 10.1254/jphs.12230fp] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Our previous study has shown that the corrected QT (QTc) interval of the electrocardiogram is longer during the dark period than during the light period in telemetered common marmosets. In the present study, we investigated the involvement of sympathetic and parasympathetic nervous activities in the changes of QTc interval associated with the light-dark cycle.Telemetry transmitters were implanted in six common marmosets to continuously record the electrocardiogram. The QT intervals obtained were corrected for the RR interval by applying individual probabilistic QT-rate correction formulae. Power spectral analysis of heart rate variability was performed to quantify each autonomic nervous function. Changes in QTc intervals and autonomic nervous tones were associated with the light-dark cycle. Parasympathetic nervous activity and QTc intervals significantly increased by approximately 10 ms during the dark period.Atropine, a muscarinic receptor antagonist, suppressed the increased parasympathetic tone and QTc prolongation during the dark period. In contrast, propranolol, a β-adrenoceptor antagonist, decreased the sympathetic activity and increased QTc intervals during the light period. These results suggest that the parasympathetic nerve functions prolong QTc intervals during the dark period, while the sympathetic nerve functions shorten them during the light period in common marmosets.
Collapse
Affiliation(s)
- Masaki Honda
- Research Division, Chugai Pharmaceutical Co., Ltd., Komakado, Gotemba City, Shizuoka, Japan.
| | | | | | | | | |
Collapse
|
5
|
Harvey RD. Muscarinic receptor agonists and antagonists: effects on cardiovascular function. Handb Exp Pharmacol 2012:299-316. [PMID: 22222704 DOI: 10.1007/978-3-642-23274-9_13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Muscarinic receptor activation plays an essential role in parasympathetic regulation of cardiovascular function. The primary effect of parasympathetic stimulation is to decrease cardiac output by inhibiting heart rate. However, pharmacologically, muscarinic agonists are actually capable of producing both inhibitory and stimulatory effects on the heart as well as vasculature. This reflects the fact that muscarinic receptors are expressed throughout the cardiovascular system, even though they are not always involved in mediating parasympathetic responses. In the heart, in addition to regulating heart rate by altering the electrical activity of the sinoatrial node, activation of M₂ receptors can affect conduction of electrical impulses through the atrioventricular node. These same receptors can also regulate the electrical and mechanical activity of the atria and ventricles. In the vasculature, activation of M₃ and M₅ receptors in epithelial cells can cause vasorelaxation, while activation of M₁ or M₃ receptors in vascular smooth muscle cells can cause vasoconstriction in the absence of endothelium. This review focuses on our current understanding of the signaling mechanisms involved in mediating these responses.
Collapse
Affiliation(s)
- Robert D Harvey
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| |
Collapse
|
6
|
Upregulation of cardiac NOS due to endotoxemia and vagal overactivity contributes to the hypotensive effect of chronic ethanol in female rats. Eur J Pharmacol 2010; 650:317-23. [PMID: 20970417 DOI: 10.1016/j.ejphar.2010.10.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/30/2010] [Accepted: 10/06/2010] [Indexed: 12/12/2022]
Abstract
We previously reported that chronic ethanol lowers blood pressure in female rats. In this study, hemodynamic, biochemical, and immunoblot analyses were performed to investigate: (i) the roles of cardiac contractility and autonomic activity in the hypotensive action of ethanol, and (ii) whether endotoxemia-induced upregulation of cardiac and/or vascular nitric oxide synthase (NOS) isoforms underlies the hypotensive and cardiac effects of ethanol. Telemetric monitoring of blood pressure, heart rate, and myocardial contractility (dP/dt(max)) was performed in female rats receiving liquid diet with or without ethanol (5% w/v, 13weeks). Autonomic control was assessed by frequency domain analysis of interbeat intervals (IBI) and systolic blood pressure (SBP). Compared with pair-fed controls, ethanol caused sustained reductions in blood pressure, heart rate, and+dP/dt(max). Ethanol feeding increased the spectral power of high-frequency band (IBI(HF), 0.75-3Hz) and decreased the low-frequency band (IBI(LF), 0.25-0.75Hz) and IBI(LF/HF) ratio, suggesting increased cardiac parasympathetic dominance. In contrast, vascular tone was not affected by ethanol because SBP spectral bands and plasma norepinephrine remained unchanged. Myocardial expressions of eNOS and its upstream regulators, phosphatidylinositol 3-kinase (PI3K) and Akt, and plasma endotoxin and nitrite/nitrate were increased by ethanol. Myocardial iNOS was also increased by ethanol whereas nNOS remained unchanged and aortic levels of all NOS isoforms were not altered by ethanol. These findings suggest that facilitation of myocardial PI3K/Akt/eNOS and iNOS pathways, due possibly to ethanol-induced endotoxemia and/or increased cardiac parasympathetic dominance, might constitute a cellular mechanism for the reduced myocardial contractility and hypotension caused by ethanol in female rats.
Collapse
|
7
|
Genetic disruption of G proteins, G(i2)alpha or G(o)alpha, does not abolish inotropic and chronotropic effects of stimulating muscarinic cholinoceptors in atrium. Br J Pharmacol 2010; 158:1557-64. [PMID: 19906118 DOI: 10.1111/j.1476-5381.2009.00441.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Classically, stimulation of muscarinic cholinoceptors exerts negative inotropic and chronotropic effects in the atrium of mammalian hearts. These effects are crucial to the vagal regulation of the heart beat. This effect is assumed to be mediated via GTP binding (G) proteins, because they can be abolished by Pertussis toxin. However, it is unknown which G proteins are involved. EXPERIMENTAL APPROACH We studied contractility in isolated left or right atrium from genetically manipulated mice with deletion of one of two G proteins, either of the alpha subunit of G(i2) protein (G(i2)alpha) or of the alpha subunit of G(o) protein (G(o)alpha). Preparations were stimulated with carbachol alone or after pretreatment with the beta-adrenoceptor agonist isoprenaline. For comparison, the effects of carbachol on L-type Ca(2+)-channels in isolated ventricular cardiomyocytes were studied. KEY RESULTS The negative inotropic and chronotropic effects of carbachol alone or in the presence of isoprenaline were identical in atria from knockout or wild-type mice. However, the effect of carbachol on isoprenaline-activated L-type Ca(2+)-channel in isolated ventricular cardiomyocytes was greatly attenuated in both types of knockout mice studied. CONCLUSIONS AND IMPLICATIONS These data imply that there is either redundancy of G proteins for signal transduction or that Pertussis toxin-sensitive proteins other than G(i2)alpha and G(o)alpha mediate the vagal stimulation in the atrium. Moreover, different G proteins mediate the effect of carbachol in ventricle compared with atrium.
Collapse
|
8
|
Brack KE, Coote JH, Ng GA. Vagus nerve stimulation inhibits the increase in Ca2+ transient and left ventricular force caused by sympathetic nerve stimulation but has no direct effects alone--epicardial Ca2+ fluorescence studies using fura-2 AM in the isolated innervated beating rabbit heart. Exp Physiol 2009; 95:80-92. [PMID: 19700520 DOI: 10.1113/expphysiol.2009.048215] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The effects of direct autonomic nerve stimulation on the heart may be quite different to those of perfusion with pharmacological neuromodulating agents. This study was designed to investigate the effect of autonomic nerve stimulation on intracellular calcium fluorescence using fura-2 AM in the isolated Langendorff-perfused rabbit heart preparation with intact dual autonomic innervation. The effects of autonomic nerve stimulation on cardiac force and calcium transients were more obvious during intrinsic sinus rhythm. High-frequency (15 Hz, n = 5) right vagus nerve stimulation (VS) decreased heart rate from 142.7 +/- 2.6 to 75.5 +/- 10.2 beats min(-1) and left ventricular pressure from 36.4 +/- 3.2 to 25.9 +/- 1.9 mmHg, whilst simultaneously decreasing the diastolic and systolic level of the calcium transient. Direct sympathetic nerve stimulation (7 Hz, n = 8) increased heart rate (from 144.7 +/- 10.5 to 213.2 +/- 4.9 beats min(-1)) and left ventricular pressure (from 37.5 +/- 3.6 to 43.7 +/- 2.8 mmHg), whilst simultaneously increasing the diastolic and systolic level of the calcium transient. During constant ventricular pacing, the high-frequency right vagus nerve stimulation did not have any direct effect on ventricular force or the calcium transient (n = 8), but was effective in reducing the effect of direct sympathetic nerve stimulation.
Collapse
Affiliation(s)
- Kieran E Brack
- Cardiology Group, Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Groby Road, Leicester LE39QP, UK.
| | | | | |
Collapse
|
9
|
Aslanidi OV, Boyett MR, Dobrzynski H, Li J, Zhang H. Mechanisms of transition from normal to reentrant electrical activity in a model of rabbit atrial tissue: interaction of tissue heterogeneity and anisotropy. Biophys J 2009; 96:798-817. [PMID: 19186122 DOI: 10.1016/j.bpj.2008.09.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 09/29/2008] [Indexed: 10/21/2022] Open
Abstract
Experimental evidence suggests that regional differences in action potential (AP) morphology can provide a substrate for initiation and maintenance of reentrant arrhythmias in the right atrium (RA), but the relationships between the complex electrophysiological and anatomical organization of the RA and the genesis of reentry are unclear. In this study, a biophysically detailed three-dimensional computer model of the right atrial tissue was constructed to study the role of tissue heterogeneity and anisotropy in arrhythmogenesis. The model of Lindblad et al. for a rabbit atrial cell was modified to incorporate experimental data on regional differences in several ionic currents (primarily, I(Na), I(CaL), I(K1), I(to), and I(sus)) between the crista terminalis and pectinate muscle cells. The modified model was validated by its ability to reproduce the AP properties measured experimentally. The anatomical model of the rabbit RA (including tissue geometry and fiber orientation) was based on a recent histological reconstruction. Simulations with the resultant electrophysiologically and anatomically detailed three-dimensional model show that complex organization of the RA tissue causes breakdown of regular AP conduction patterns at high pacing rates (>11.75 Hz): as the AP in the crista terminalis cells is longer, and electrotonic coupling transverse to fibers of the crista terminalis is weak, high-frequency pacing at the border between the crista terminalis and pectinate muscles results in a unidirectional conduction block toward the crista terminalis and generation of reentry. Contributions of the tissue heterogeneity and anisotropy to reentry initiation mechanisms are quantified by measuring action potential duration (APD) gradients at the border between the crista terminalis and pectinate muscles: the APD gradients are high in areas where both heterogeneity and anisotropy are high, such that intrinsic APD differences are not diminished by electrotonic interactions. Thus, our detailed computer model reconstructs complex electrical activity in the RA, and provides new insights into the mechanisms of transition from focal atrial tachycardia into reentry.
Collapse
Affiliation(s)
- Oleg V Aslanidi
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | | | | | | | | |
Collapse
|
10
|
Abstract
The role of Ca2+ in cardiac excitation-contraction (E-C) coupling has been established by simultaneous measurements of contractility and Ca2+ transients by means of aequorin in intact myocardium and Ca2+ sensitive fluorescent dyes in single myocytes. The E-C coupling process can be classified into 3 processes: upstream (Ca2+ mobilization), central (Ca2+ binding to troponin C) and downstream mechanism (thin filament regulation and crossbridge cycling). These mechanisms are regulated differentially by various inotropic interventions. Positive force-frequency relationship and effects of beta-adrenoceptor stimulation, phosphodiesterase 3 inhibitors and digitalis are essentially exerted via upstream mechanism. Alpha-adrenoceptor stimulation, endothelin-1, angiotensin II, and clinically available Ca2+ sensitizers, such as levosimendan and pimobendan, act by a combination of the upstream and central/downstream mechanism. The Frank-Starling mechanism and effects of Ca2+ sensitizers such as EMD 57033 and Org 30029 are primarily induced via the central/downstream mechanism. Whereas the upstream and central mechanisms are markedly suppressed in failing myocytes and under acidotic conditions, Ca2+ sensitizers such as EMD 57033 and Org 30029 can induce cardiotonic effects under such conditions. Ca2+ sensitizers have high therapeutic potential for the treatment of contractile dysfunction in congestive heart failure and ischemic heart diseases, because they have energetic advantages and less risk of Ca2+ overload and can maintain effectiveness under pathological conditions.
Collapse
Affiliation(s)
- Masao Endoh
- Department of Cardiovascular Pharmacology, Yamagata University School of Medicine, Yamagata, Japan.
| |
Collapse
|
11
|
Iancu RV, Ramamurthy G, Harvey RD. Spatial and temporal aspects of cAMP signalling in cardiac myocytes. Clin Exp Pharmacol Physiol 2008; 35:1343-8. [PMID: 18671712 DOI: 10.1111/j.1440-1681.2008.05020.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. beta(1)-Adrenoceptor and M(2) muscarinic receptor regulation of cAMP production plays a pivotal role in autonomic regulation of cardiac myocyte function. However, not all responses are easily explained by a uniform increase or decrease in cAMP activity throughout the entire cell. 2. Adenovirus expression of fluorescence resonance energy transfer (FRET)-based biosensors can be used to monitor cAMP activity in protein kinase A (PKA) signalling domains, as well as the bulk cytoplasmic domain of intact adult cardiac myocytes. 3. Data obtained using FRET-based biosensors expressed in different cellular microdomains have been used to develop a computational model of compartmentalized cAMP signalling. 4. A systems biology approach that uses quantitative computational modelling together with experimental data obtained using FRET-based biosensors has been used to provide evidence for the idea that compartmentation of cAMP signalling is necessary to explain the stimulatory responses to beta(1)-adrenoceptor activation as well as the complex temporal responses to M(2) muscarinic receptor activation.
Collapse
Affiliation(s)
- Radu V Iancu
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | |
Collapse
|
12
|
Tanaka H, Hashimoto N. A Multiple Ion Channel Blocker, NIP-142, for the Treatment of Atrial Fibrillation. ACTA ACUST UNITED AC 2007; 25:342-56. [DOI: 10.1111/j.1527-3466.2007.00025.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Abstract
The experimental procedures to simultaneously detect contractile activity and Ca(2+) transients by means of the Ca(2+) sensitive bioluminescent protein aequorin in multicellular preparations, and the fluorescent dye indo-1 in single myocytes, provide powerful tools to differentiate the regulatory mechanisms of intrinsic and external inotropic interventions in intact cardiac muscle. The regulatory process of cardiac excitation-contraction coupling is classified into three categories; upstream (Ca(2+) mobilization), central (Ca(2+) binding to troponin C), and/or downstream (thin filament regulation of troponin C property or crossbridge cycling and crossbridge cycling activity itself) mechanisms. While a marked increase in contractile activity by the Frank-Starling mechanism is associated with only a small alteration in Ca(2+) transients (downstream mechanism), the force-frequency relationship is primarily due to a frequency-dependent increase of Ca(2+) transients (upstream mechanism) in mammalian ventricular myocardium. The characteristics of regulation induced by beta- and alpha-adrenoceptor stimulation are very different between the two mechanisms: the former is associated with a pronounced facilitation of an upstream mechanism, whereas the latter is primarily due to modulation of central and/or downstream mechanisms. alpha-Adrenoceptor-mediated contractile regulation is mimicked by endothelin ET(A)- and angiotensin II AT(1)-receptor stimulation. Acidosis markedly suppresses the regulation induced by Ca(2+) mobilizers, but certain Ca(2+) sensitizers are able to induce the positive inotropic effect with central and/or downstream mechanisms even under pathophysiological conditions.
Collapse
|
14
|
Vittone L, Said M, Mattiazzi A. beta 2-Adrenergic stimulation is involved in the contractile dysfunction of the stunned heart. Naunyn Schmiedebergs Arch Pharmacol 2006; 373:60-70. [PMID: 16575588 DOI: 10.1007/s00210-006-0045-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Accepted: 02/07/2006] [Indexed: 11/27/2022]
Abstract
Endogenous catecholamines released during myocardial ischemia have been considered both to aggravate cell injury and exacerbate arrhythmias and to exert a protective action on the post-ischemic contractile function. The present work was addressed to look for evidence to explain this controversy. The effects of cardiac catecholamine depletion and of alpha- and beta-adrenoceptor (AR) blockade on the post-ischemic contractile dysfunction, as well as its possible relationship with cardiac oxidative stress, were studied in isolated and perfused rat hearts submitted to 20 min of ischemia and 30 min of reperfusion (stunning). Catecholamine depletion improves the contractile recovery in the stunned heart. This mechanical effect was associated with decreased levels of lipid peroxidation. A similar enhancement of the contractile function during reperfusion was detected after the simultaneous blockade of alpha 1- and beta-ARs with prazosin plus propranolol. To ascertain which specific AR pathway was involved in the effects of catecholamines on the stunned heart, selective AR blockers, prazosin (alpha 1-blocker), atenolol (beta 1-blocker), ICI 118,551 (beta 2-blocker) and selective inhibitors of Gi-PI3K pathway (pertussis toxin and wortmannin) were alternatively combined. The results indicate that catecholamines released during ischemia exert a dual action on the contractile behavior of the stunned heart: a deleterious effect, related to the activation of the beta 2-AR-Gi-PI3K-pathway, which was counteracted by a beneficial effect, triggered by the stimulation of alpha 1-AR. Neither the depression nor the enhancement of the post-ischemic contractile recovery were related with the increase in ROS formation induced by endogenous catecholamines.
Collapse
Affiliation(s)
- Leticia Vittone
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina.
| | | | | |
Collapse
|
15
|
Brack KE, Coote JH, Ng GA. The effect of direct autonomic nerve stimulation on left ventricular force in the isolated innervated Langendorff perfused rabbit heart. Auton Neurosci 2006; 124:69-80. [PMID: 16455307 DOI: 10.1016/j.autneu.2005.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 11/10/2005] [Accepted: 11/28/2005] [Indexed: 11/22/2022]
Abstract
The relative contribution of the chronotropic effects of stimulating sympathetic and vagus nerves on cardiac inotropic changes in the isolated Langendorff perfused rabbit heart with intact dual autonomic nerves was studied. The force-frequency relationship was investigated, in addition to sympathetic nerve stimulation (SS) at 2 Hz (low), 5 Hz (med) and 10 Hz (high), and left and right vagus nerve stimulation (VS) studied at 2 Hz (low), 5 Hz (med) and 7 Hz (high) with and without right ventricular pacing. It was shown that a biphasic force-frequency relationship is present with a positive relationship at low heart rates and a negative force-frequency relationship at higher heart rates. There was a trend for left- and right-VS to decrease left ventricular pressure with a decrease in heart rate, whilst SS had the opposing effects in a frequency-dependent manner. When heart rate was kept constant, there was no effect from left- or right-VS, while SS increased left ventricular pressure in a frequency-dependent manner. Together these results suggest that SS, left- and right-VS alter left ventricular force by two different mechanisms. Left- and right-VS decrease left ventricular pressure predominantly via chronotropic effects whilst SS increases force predominantly by direct changes in contractility.
Collapse
Affiliation(s)
- Kieran E Brack
- Department of Physiology, Division of Medical Sciences, University of Birmingham, Medical School, Vincent Drive, Edgbaston, Birmingham, B15 2TT, UK.
| | | | | |
Collapse
|
16
|
Matsuda T, Ito M, Ishimaru S, Tsuruoka N, Saito T, Iida-Tanaka N, Hashimoto N, Yamashita T, Tsuruzoe N, Tanaka H, Shigenobu K. Blockade by NIP-142, an Antiarrhythmic Agent, of Carbachol-Induced Atrial Action Potential Shortening and GIRK1/4 Channel. J Pharmacol Sci 2006; 101:303-10. [PMID: 16891768 DOI: 10.1254/jphs.fp0060324] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Mechanisms for the atria-specific action potential-prolonging action of NIP-142 ((3R*,4S*)-4-cyclopropylamino-3,4-dihydro-2,2-dimethyl-6-(4-methoxyphenylacetylamino)-7-nitro-2H-1-benzopyran-3-ol), a benzopyran compound that terminates experimental atrial arrhythmia, was examined. In isolated guinea-pig atrial tissue, NIP-142 reversed the shortening of action potential duration induced by either carbachol or adenosine. These effects were mimicked by tertiapin, but not by E-4031. NIP-142 concentration-dependently blocked the human G protein-coupled inwardly rectifying potassium channel current (GIRK1/4 channel current) expressed in HEK-293 cells with an EC50 value of 0.64 microM. At higher concentrations, NIP-142 blocked the human ether a go-go related gene (HERG) channel current with an EC50 value of 44 microM. In isolated guinea-pig papillary muscles, NIP-142 had no effect on the negative inotropic effect of carbachol under beta-adrenergic stimulation, indicating lack of effect on the muscarinic receptor and Gi protein. These results suggest that NIP-142 directly inhibits the acetylcholine-activated potassium current.
Collapse
Affiliation(s)
- Tomoyuki Matsuda
- Department of Pharmacology, Toho University Faculty of Pharmaceutical Sciences, Funabashi, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chu L, Zhang JX, Norota I, Endoh M. Differential action of a protein tyrosine kinase inhibitor, genistein, on the positive inotropic effect of endothelin-1 and norepinephrine in canine ventricular myocardium. Br J Pharmacol 2005; 144:430-42. [PMID: 15655501 PMCID: PMC1576021 DOI: 10.1038/sj.bjp.0706097] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Experiments were carried out in isolated canine ventricular trabeculae and acetoxymethylester of indo-1-loaded single myocytes to elucidate the role of protein tyrosine kinase (PTK) in the inotropic effect of endothelin-1 (ET-1) induced by crosstalk with norepinephrine (NE). The PTK inhibitor genistein was used as a pharmacological tool. Genistein but not daidzein inhibited the positive inotropic effect and the increase in Ca(2+) transients induced by ET-1 by crosstalk with NE at low concentrations. Genistein and daidzein antagonized the negative inotropic effect and the decrease in Ca(2+) transients induced by ET-1 by crosstalk with NE at high concentrations, but genistein did not affect the antiadrenergic effect of carbachol. Genistein but not daidzein enhanced the positive inotropic effect and the increase in Ca(2+) transients induced by NE via beta-adrenoceptors, while the enhancing effect of genistein was abolished by the protein tyrosine phosphatase inhibitor vanadate. These findings indicate that genistein (1) induces a positive inotropic effect in association with an increase in Ca(2+) transients, (2) inhibits the positive inotropic effect of ET-1 induced by crosstalk with NE, and (3) enhances the positive inotropic effect of NE induced via beta-adrenoceptors by inhibition of PTK. In addition, genistein inhibits the negative inotropic effect of ET-1 induced by crosstalk with NE through a PTK-unrelated mechanism. PTK may play a crucial role in the receptor-mediated regulation of cardiac contractile function in canine ventricular myocardium.
Collapse
Affiliation(s)
- Li Chu
- Department of Cardiovascular Pharmacology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Jian-Xin Zhang
- Department of Cardiovascular Pharmacology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Ikuo Norota
- Department of Cardiovascular Pharmacology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Masao Endoh
- Department of Cardiovascular Pharmacology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
- Author for correspondence:
| |
Collapse
|
18
|
Zang WJ, Chen LN, Yu XJ, Fang P, Lu J, Sun Q. Comparison of effects of acetylcholine on electromechanical characteristics in guinea-pig atrium and ventricle. Exp Physiol 2004; 90:123-30. [PMID: 15466461 DOI: 10.1113/expphysiol.2004.027888] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The direct negative effects of acetylcholine (ACh) on guinea-pig atria and ventricles were investigated using standard microelectrodes, a force transducer and a video edge-detection system. It was found that: (1) ACh (at 0.001-100 microm) decreased the force of contraction and shortened the action potential duration (APD) in both atria and ventricles in a concentration-dependent manner, and that the atria were more sensitive to ACh than the ventricles; and (2) the direct negative inotropic effect of ACh (1 microm) on an isolated cardiac cell was similar to that on the isolated myocardium. But this effect was not present in all isolated ventricular cells, while all the atrial cells responded to ACh. In conclusion, ACh had direct inhibitory effects on both atrial and ventricular tissue and myocytes, although the effects were greater in atria than in ventricles; and the negative inotropic effect of ACh was closely related to the shortening of the APD.
Collapse
Affiliation(s)
- W J Zang
- School of Medicine, Department of Pharmacology, Division of Cardiovascular Physiology and Pharmacology, Ki'an Jiaotong University, Xi'an, 710061, China.
| | | | | | | | | | | |
Collapse
|
19
|
Okoshi K, Nakayama M, Yan X, Okoshi MP, Schuldt AJT, Marchionni MA, Lorell BH. Neuregulins regulate cardiac parasympathetic activity: muscarinic modulation of beta-adrenergic activity in myocytes from mice with neuregulin-1 gene deletion. Circulation 2004; 110:713-7. [PMID: 15289373 DOI: 10.1161/01.cir.0000138109.32748.80] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neuregulins are required for maintenance of acetylcholine receptor-inducing activity of nicotinic receptors in neurons and skeletal muscle, but effects of neuregulins on muscarinic receptors are not known. In the normal heart, parasympathetic activation counterbalances beta-adrenergic activation. To test the hypothesis that neuregulins modify parasympathetic function in the heart, we studied cardiomyocytes from mice heterozygous for neuregulin-1 gene deletion (NRG-1+/-) and examined the effects of beta-adrenergic stimulation on contractility in the presence and absence of the muscarinic agonist carbachol. METHODS AND RESULTS We evaluated contraction and intracellular Ca2+ transients ([Ca2+]i) in left ventricular (LV) myocytes loaded with Fluo-3 from NRG-1+/- and wild-type (WT) mice. Under baseline conditions (0.5 Hz, 1.5 mmol/L [Ca2+]o, 25 degrees C), characteristics of myocyte contraction/relengthening and systolic/diastolic [Ca2+]i were not different between WT and NRG-1+/- mice. The steady-state increases in fractional shortening (FS) and peak-systolic [Ca2+]i in response to isoproterenol were similar in both groups. In WT myocytes stimulated with isoproterenol, carbachol decreased FS, peak-systolic [Ca2+]i, and cAMP levels. In NRG-1+/- myocytes, carbachol did not attenuate either FS or peak-systolic [Ca2+]i, associated with the failure to decrease cAMP levels. Investigation of muscarinic receptor signaling showed no difference of LV protein levels of muscarinic M2 receptors or G protein Galpha(i1,2), Galpha(i3), and Galpha(o) subunits. CONCLUSIONS Cardiomyocytes deficient in neuregulin signaling are unable to adequately counterbalance beta-adrenergic activation by inhibitory parasympathetic activity. This mechanism may contribute to the known increased risk of heart failure in injured human hearts when neuregulin signaling is suppressed.
Collapse
Affiliation(s)
- Katashi Okoshi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass 02215, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The parasympathetic component of the autonomic nervous system plays an important role in the physiological regulation of cardiac function by exerting significant influence over the initiation as well as propagation of electrical impulses, in addition to being able to regulate contractile force. These effects are mediated in whole or in part through changes in ion channel activity that occur in response to activation of M(2) muscarinic cholinergic receptors following release of the neurotransmitter acetylcholine. The coupling of M(2) receptor activation to most changes in cardiac ion channel function can be explained by one of two general paradigms. The first involves direct G protein-dependent regulation of ion channel activity. The second involves indirect regulation of ion channel activity through modulation of cAMP-dependent responses. This review focuses on recent advances in our understanding of the mechanisms by which M(2) muscarinic receptor activation both inhibits and facilitates cAMP-dependent ion channel responses in the heart.
Collapse
Affiliation(s)
- Robert D Harvey
- Department of Physiology and Biophysics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4970, U.S.A.
| | | |
Collapse
|
21
|
Abstract
In the mammalian heart, cardiac function is under the control of the sympathetic and parasympathetic nervous system. All regions of the mammalian heart are innervated by parasympathetic (vagal) nerves, although the supraventricular tissues are more densely innervated than the ventricles. Vagal activation causes stimulation of cardiac muscarinic acetylcholine receptors (M-ChR) that modulate pacemaker activity via I(f) and I(K.ACh), atrioventricular conduction, and directly (in atrium) or indirectly (in ventricles) force of contraction. However, the functional response elicited by M-ChR-activation depends on species, age, anatomic structure investigated, and M-ChR-agonist concentration used. Among the five M-ChR-subtypes M(2)-ChR is the predominant isoform present in the mammalian heart, while in the coronary circulation M(3)-ChR have been identified. In addition, evidence for a possible existence of an additional, not M(2)-ChR in the heart has been presented. M-ChR are subject to regulation by G-protein-coupled-receptor kinase. Alterations of cardiac M(2)-ChR in age and various kinds of disease are discussed.
Collapse
Affiliation(s)
- S Dhein
- Institute of Pharmacology, University of Halle-Wittenberg, Germany.
| | | | | |
Collapse
|
22
|
Takahashi R, Endoh M. Increase in myofibrillar Ca2+ sensitivity induced by UD-CG 212 Cl, an active metabolite of pimobendan, in canine ventricular myocardium. J Cardiovasc Pharmacol 2001; 37:209-18. [PMID: 11210003 DOI: 10.1097/00005344-200102000-00008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We performed experiments in canine ventricular trabeculae loaded with aequorin to elucidate the mechanism of positive inotropic effect of UD-CG 212 Cl (4,5-dihydro-6-[2-(4-hydroxyphenyl)-1H-benzimidazole-5-yl]-5-methyl-3(2H)-pyridazinone), an active metabolite of pimobendan. The maximum response to UD-CG 212 Cl achieved at 10(-5) M was 18% of ISOmax and it was associated with an increase in Ca2+ transients of 7% of ISOmax. For a given increase in force, the increase in Ca2+ transients induced by UD-CG 212 Cl was less than that induced by elevation of [Ca2+]o. The positive inotropic effect of UD-CG 212 Cl was not associated with an impairment of relaxation and it was abolished by carbachol. In conclusion, UD-CG 212 Cl has a positive inotropic effect partly due to an increase in myofibrillar Ca2+ sensitivity that is exerted via cross talk with a signal transduction pathway that involves cAMP.
Collapse
Affiliation(s)
- R Takahashi
- Department of Pharmacology, Yamagata University School of Medicine, Japan
| | | |
Collapse
|
23
|
Nagata K, Ye C, Jain M, Milstone DS, Liao R, Mortensen RM. Galpha(i2) but not Galpha(i3) is required for muscarinic inhibition of contractility and calcium currents in adult cardiomyocytes. Circ Res 2000; 87:903-9. [PMID: 11073886 DOI: 10.1161/01.res.87.10.903] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Parasympathetic stimulation of the heart acts through M(2)-muscarinic acetylcholine receptors to regulate ion channel activity and subsequent inotropic status. Although muscarinic signal transduction is mediated via pertussis toxin-sensitive G proteins Galpha(i/o), the specific signal transduction requirements of Galpha(i2) and Galpha(i3) in mediating muscarinic regulated L-type calcium currents (I(Ca, L)), intracellular calcium, and cell contractility remain to be determined. Adult ventricular myocytes were isolated from Galpha(i2)-null mice, Galpha(i3)-null mice, and their wild-type littermates. Cell shortening, intracellular calcium levels, and I(Ca, L) were all measured in response to isoproterenol, a beta-adrenergic receptor agonist, and carbachol, a cholinergic receptor agonist. With isoproterenol stimulation, myocytes from all groups demonstrated a marked increase in calcium currents, correlating with augmented intracellular calcium transient amplitude and cell shortening. Carbachol significantly attenuated the isoproterenol response in wild-type and Galpha(i3)-null cells but had no effect in Galpha(i2)-null cells. This study demonstrates that Galpha(i2), but not Galpha(i3), is required for muscarinic inhibition of the beta-adrenergic response in adult murine ventricular myocytes.
Collapse
Affiliation(s)
- K Nagata
- Whitaker Cardiovascular Institute, Cardiac Muscle Research Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
24
|
Takahashi R, Talukder MA, Endoh M. Inotropic effects of OR-1896, an active metabolite of levosimendan, on canine ventricular myocardium. Eur J Pharmacol 2000; 400:103-12. [PMID: 10913591 DOI: 10.1016/s0014-2999(00)00385-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We performed experiments in dog ventricular trabeculae loaded with aequorin to elucidate the mechanism of positive inotropic effect of (R)-N-[4-(4-methyl-6-oxo-1,4,5, 6-tetrahydro-pyridazin-3-yl)-phenyl]-acetamide (OR-1896), an active metabolite of (R)-([4-(1,4,5, 6-tetrahydro-4-methyl-6-oxo-3-pyridazinyl)phenyl]-hydrazono)-pr opaned initrile (levosimendan). Concentration-response curve for OR-1896 was biphasic: positive inotropic effect of OR-1896 reached a plateau at 10(-5) M (1st phase) and the concentration-response curve became steeper at 10(-3) M and higher (2nd phase). Maximum response of the 1st phase was 29% of maximal response to isoproterenol and associated with an increase in Ca(2+) transients of 13% of the maximal response to isoproterenol. For a given increase in force, the increase in Ca(2+) transients by OR-1896 was lower than that induced by elevation of [Ca(2+)](o). The positive inotropic effect of OR-1896 was not associated with impairment of relaxation and it was abolished by carbachol. In conclusion, OR-1896 has a positive inotropic effect partly due to an increase in myofibrillar Ca(2+) sensitivity that is exerted via cross-talk with signal transduction mediated by cAMP.
Collapse
Affiliation(s)
- R Takahashi
- Department of Pharmacology, Yamagata University School of Medicine, 990-9585, Yamagata, Japan
| | | | | |
Collapse
|
25
|
Takahashi R, Talukder MA, Endoh M. Effects of OR-1896, an active metabolite of levosimendan, on contractile force and aequorin light transients in intact rabbit ventricular myocardium. J Cardiovasc Pharmacol 2000; 36:118-25. [PMID: 10892669 DOI: 10.1097/00005344-200007000-00016] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We performed experiments in rabbit ventricular papillary muscles loaded with aequorin to elucidate the mechanism of positive inotropic effect (PIE) of OR-1896, an active metabolite of levosimendan. The concentration-response curve (CRC) for OR-1896 was biphasic: PIE of OR-1896 reached a plateau at 10(-5) M (first phase), and the CRC became steeper at 10(-3) M and higher (second phase). Maximal response of the first phase was 11% of the maximal response to isoproterenol (ISOmax) and associated with an increase in Ca2+ transients of 5% of ISOmax. For a given degree of PIE, the increase in Ca2+ transients by OR-1896 was lower than that induced by elevation of [Ca2+]o. The PIE of OR-1896 was not associated with impairment of relaxation, and it was abolished by carbachol. In conclusion, OR-1896 has a PIE partly due to an increase in myofibrillar Ca2+ sensitivity that is exerted through crosstalk with signal transduction mediated by cyclic adenosine monophosphate (cAMP).
Collapse
Affiliation(s)
- R Takahashi
- Department of Pharmacology, Yamagata University School of Medicine, Japan
| | | | | |
Collapse
|