1
|
Heidari Z, Daei M, Boozari M, Jamialahmadi T, Sahebkar A. Curcumin supplementation in pediatric patients: A systematic review of current clinical evidence. Phytother Res 2021; 36:1442-1458. [PMID: 34904764 DOI: 10.1002/ptr.7350] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/01/2023]
Abstract
This systematic review was designed to determine the clinical efficacy and safety of curcumin supplementation for pediatric patients based on clinical trials in children. We systematically searched electronic databases including PubMed, EMBASE, Web of Science, and Scopus for all studies that investigated curcumin administration in the pediatric population without any time frame limitation. Finally, we identified 16 studies for this review. Clinical efficacy and safety of curcumin were assessed in children with inflammatory and immune disorders (including asthma, inflammatory bowel disease (IBD), and juvenile idiopathic arthritis (JIA)), metabolic disorders, autosomal dominant polycystic kidney disease (ADPKD), cystic fibrosis (CF), tetralogy of Fallot (TOF), and infectious diseases. Curcumin was administered in a wide range of doses (45 mg-4,000 mg daily) and durations (2-48 weeks). Overall, curcumin was well tolerated in all studies and improved the severity of inflammatory and immune disorders and metabolic diseases. However, more studies are needed to clarify the role of curcumin supplementation among children with ADPKD, CF, TOF, and infectious diseases. Because of substantial heterogeneity in methodological quality, design, outcomes, dose, duration of intake, formulations, and study populations across studies, no quantitative analysis was performed. Additional large-scale, randomized, placebo-controlled clinical trials are needed to confirm the results of the conducted studies.
Collapse
Affiliation(s)
- Zinat Heidari
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Daei
- Department of Clinical Pharmacy, Faculty of Pharmacy, Alborz University of Medical Sciences, Alborz, Iran
| | - Motahareh Boozari
- Department of Pharmacognosy, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Shirban F, Gharibpour F, Ehteshami A, Bagherniya M, Sathyapalan T, Sahebkar A. The Effects of Curcumin in the Treatment of Gingivitis: A Systematic Review of Clinical Trials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1291:179-211. [PMID: 34331691 DOI: 10.1007/978-3-030-56153-6_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Different modalities of treatments are available for management of gingival disease but most have adverse effects. Curcumin has anti-inflammatory properties and can be used for management of various inflammatory processes. This systematic review evaluates the effects of curcumin as an adjuvant to oral hygiene on plaque index (PI), gingival index (GI), gingival bleeding index (GBI), and inflammation in patients with gingivitis. A comprehensive search was conducted using PubMed/MEDLINE, Cochrane, SCOPUS, and Google Scholar. Based on the Population, Intervention, Control, and Outcome (PICO) model, clinical trials which tested the effects of curcumin as an adjunctive product or alone in control of gingival inflammation up until 21 February 2020 with language restrictions were selected. From the 422 papers found, 14 met the eligibility criteria. In most of these studies, curcumin treatment achieved significant reductions in PI, GI, GBI, and microbial colony count and was as effective as chlorhexidine mouthwash, with no serious adverse effects. We conclude that treatment with curcumin for gingivitis is safe as a natural herbal compound and is as effective as chlorhexidine mouthwash.
Collapse
Affiliation(s)
- Farinaz Shirban
- Department of Orthodontics, Dental Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fateme Gharibpour
- Department of Orthodontics, Dental Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ailin Ehteshami
- Department of Orthodontics, Dental Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Halal Research Center of IRI, FDA, Tehran, Iran.
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
3
|
Curcumin: a modulator of inflammatory signaling pathways in the immune system. Inflammopharmacology 2019; 27:885-900. [DOI: 10.1007/s10787-019-00607-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/20/2019] [Indexed: 12/24/2022]
|
4
|
Burge K, Gunasekaran A, Eckert J, Chaaban H. Curcumin and Intestinal Inflammatory Diseases: Molecular Mechanisms of Protection. Int J Mol Sci 2019; 20:ijms20081912. [PMID: 31003422 PMCID: PMC6514688 DOI: 10.3390/ijms20081912] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
Intestinal inflammatory diseases, such as Crohn’s disease, ulcerative colitis, and necrotizing enterocolitis, are becoming increasingly prevalent. While knowledge of the pathogenesis of these related diseases is currently incomplete, each of these conditions is thought to involve a dysfunctional, or overstated, host immunological response to both bacteria and dietary antigens, resulting in unchecked intestinal inflammation and, often, alterations in the intestinal microbiome. This inflammation can result in an impaired intestinal barrier allowing for bacterial translocation, potentially resulting in systemic inflammation and, in severe cases, sepsis. Chronic inflammation of this nature, in the case of inflammatory bowel disease, can even spur cancer growth in the longer-term. Recent research has indicated certain natural products with anti-inflammatory properties, such as curcumin, can help tame the inflammation involved in intestinal inflammatory diseases, thus improving intestinal barrier function, and potentially, clinical outcomes. In this review, we explore the potential therapeutic properties of curcumin on intestinal inflammatory diseases, including its antimicrobial and immunomodulatory properties, as well as its potential to alter the intestinal microbiome. Curcumin may play a significant role in intestinal inflammatory disease treatment in the future, particularly as an adjuvant therapy.
Collapse
Affiliation(s)
- Kathryn Burge
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Aarthi Gunasekaran
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Jeffrey Eckert
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Hala Chaaban
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| |
Collapse
|
5
|
Mohammadi A, Blesso CN, Barreto GE, Banach M, Majeed M, Sahebkar A. Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent. J Nutr Biochem 2018; 66:1-16. [PMID: 30660832 DOI: 10.1016/j.jnutbio.2018.12.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/04/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022]
Abstract
Monocytes and macrophages are important cells of the innate immune system that have diverse functions, including defense against invading pathogens, removal of dead cells by phagocytosis, antigen presentation in the context of MHC class I and class II molecules, and production of various pro-inflammatory cytokines and chemokines such as IL-1β, IL-6, TNF-α and MCP-1. In addition, pro-inflammatory (M1) and anti-inflammatory (M2) macrophages clearly play important roles in the progression of several inflammatory diseases. Therefore, therapies that target macrophage polarization and function by either blocking their trafficking to sites of inflammation, or skewing M1 to M2 phenotype polarization may hold clinical promise in several inflammatory diseases. Dietary-derived polyphenols have potent natural anti-oxidative properties. Within this group of polyphenols, curcumin has been shown to suppress macrophage inflammatory responses. Curcumin significantly reduces co-stimulatory molecules and also inhibits MAPK activation and the translocation of NF-κB p65. Curcumin can also polarize/repolarize macrophages toward the M2 phenotype. Curcumin-treated macrophages have been shown to be highly efficient at antigen capture and endocytosis via the mannose receptor. These novel findings provide new perspectives for the understanding of the immunopharmacological role of curcumin, as well as its therapeutic potential for impacting macrophage polarization and function in the context of inflammation-related disease. However, the precise effects of curcumin on the migration, differentiation, polarization and immunostimulatory functions of macrophages remain unknown. Therefore, in this review, we summarized whether curcumin can influence macrophage polarization, surface molecule expression, cytokine and chemokine production and their underlying pathways in the prevention of inflammatory diseases.
Collapse
Affiliation(s)
- Asadollah Mohammadi
- Cellular & Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, University of Western Australia, Perth, Australia.
| |
Collapse
|
6
|
Hesari A, Ghasemi F, Salarinia R, Biglari H, Tabar Molla Hassan A, Abdoli V, Mirzaei H. Effects of curcumin on NF-κB, AP-1, and Wnt/β-catenin signaling pathway in hepatitis B virus infection. J Cell Biochem 2018; 119:7898-7904. [PMID: 29923222 DOI: 10.1002/jcb.26829] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/28/2018] [Indexed: 12/30/2022]
Abstract
Curcumin is a yellow-orange powder derived from the Curcuma longa plant. Curcumin has been used extensively in traditional medicine for centuries. This component is non-toxic and shown different therapeutic properties such as anti-inflammatory, anti-cancer, antiviral, anti-bacterial, anti-fungal, anti-parasites, and anti-oxidant. Hepatitis B virus (HBV) is a small DNA member of the genus Orthohepadnavirus (Hepadnaviridae family) which is a highly contagious blood-borne viral pathogen. HBV infection is a major public health problem with 2 billion people infected throughout the world and 350 million suffering from chronic HBV infection. Increasing evidence indicated that curcumin as a natural product could be employed in the treatment of HBV patients. It has been showed that curcumin exerts its therapeutic effects on HBV patients via targeting a variety of cellular and molecular pathways such as Wnt/β-catenin, Ap1, STAT3, MAPK, and NF-κB signaling. Here, we summarized the therapeutic effects of curcumin on patients who infected with HBV. Moreover, we highlighted main signaling pathways (eg, NF-κB, AP1, and Wnt/β-catenin signaling) which affected by curcumin in HBV infections.
Collapse
Affiliation(s)
- AmirReza Hesari
- Faculty of Medicine, Department of Biotechnology, Arak University of Medical Sciences, Arak, Iran
| | - Faezeh Ghasemi
- Faculty of Medicine, Department of Biotechnology, Arak University of Medical Sciences, Arak, Iran
| | - Reza Salarinia
- Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamed Biglari
- Department of Environmental Health Engineering, School of Public Health, Gonabad University of Medical Sciences, Gonabad, Iran
| | | | - Vali Abdoli
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hamed Mirzaei
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Abstract
Curcumin is a polyphenol natural product isolated from turmeric, interacting with different cellular and molecular targets and, consequently, showing a wide range of pharmacological effects. Recent preclinical and clinical trials have revealed immunomodulatory properties of curcumin that arise from its effects on immune cells and mediators involved in the immune response, such as various T-lymphocyte subsets and dendritic cells, as well as different inflammatory cytokines. Systemic lupus erythematosus (SLE) is an inflammatory, chronic autoimmune-mediated disease characterized by the presence of autoantibodies, deposition of immune complexes in various organs, recruitment of autoreactive and inflammatory T cells, and excessive levels of plasma proinflammatory cytokines. The function and numbers of dendritic cells and T cell subsets, such as T helper 1 (Th1), Th17, and regulatory T cells have been found to be significantly altered in SLE. In the present report, we reviewed the results of in vitro, experimental (pre-clinical), and clinical studies pertaining to the modulatory effects that curcumin produces on the function and numbers of dendritic cells and T cell subsets, as well as relevant cytokines that participate in SLE.
Collapse
|
8
|
Milani A, Basirnejad M, Shahbazi S, Bolhassani A. Carotenoids: biochemistry, pharmacology and treatment. Br J Pharmacol 2017; 174:1290-1324. [PMID: 27638711 PMCID: PMC5429337 DOI: 10.1111/bph.13625] [Citation(s) in RCA: 387] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/21/2016] [Accepted: 08/31/2016] [Indexed: 01/06/2023] Open
Abstract
Carotenoids and retinoids have several similar biological activities such as antioxidant properties, the inhibition of malignant tumour growth and the induction of apoptosis. Supplementation with carotenoids can affect cell growth and modulate gene expression and immune responses. Epidemiological studies have shown a correlation between a high carotenoid intake in the diet with a reduced risk of breast, cervical, ovarian, colorectal cancers, and cardiovascular and eye diseases. Cancer chemoprevention by dietary carotenoids involves several mechanisms, including effects on gap junctional intercellular communication, growth factor signalling, cell cycle progression, differentiation-related proteins, retinoid-like receptors, antioxidant response element, nuclear receptors, AP-1 transcriptional complex, the Wnt/β-catenin pathway and inflammatory cytokines. Moreover, carotenoids can stimulate the proliferation of B- and T-lymphocytes, the activity of macrophages and cytotoxic T-cells, effector T-cell function and the production of cytokines. Recently, the beneficial effects of carotenoid-rich vegetables and fruits in health and in decreasing the risk of certain diseases has been attributed to the major carotenoids, β-carotene, lycopene, lutein, zeaxanthin, crocin (/crocetin) and curcumin, due to their antioxidant effects. It is thought that carotenoids act in a time- and dose-dependent manner. In this review, we briefly describe the biological and immunological activities of the main carotenoids used for the treatment of various diseases and their possible mechanisms of action. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Alireza Milani
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| | | | - Sepideh Shahbazi
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| | - Azam Bolhassani
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| |
Collapse
|
9
|
Abdollahi E, Momtazi AA, Johnston TP, Sahebkar A. Therapeutic effects of curcumin in inflammatory and immune‐mediated diseases: A nature‐made jack‐of‐all‐trades? J Cell Physiol 2017; 233:830-848. [DOI: 10.1002/jcp.25778] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 01/05/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Elham Abdollahi
- Department of Medical ImmunologySchool of Medicine, Mashhad University of Medical SciencesMashhadIran
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
| | - Amir Abbas Momtazi
- Student Research Committee, Nanotechnology Research Center, Department of Medical BiotechnologySchool of Medicine, Mashhad University of Medical SciencesMashhadIran
| | - Thomas P. Johnston
- Division of Pharmaceutical SciencesSchool of Pharmacy, University of Missouri‐Kansas CityKansas CityMissouri
| | - Amirhossein Sahebkar
- Biotechnology Research CenterMashhad University of Medical SciencesMashhadIran
- Neurogenic Inflammation Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
10
|
Abstract
Pulmonary oxidant stress plays an important pathogenetic role in disease conditions including acute lung injury/adult respiratory distress syndrome (ALI/ARDS), hyperoxia, ischemia-reperfusion, sepsis, radiation injury, lung transplantation, COPD, and inflammation. Reactive oxygen species (ROS), released from activated macrophages and leukocytes or formed in the pulmonary epithelial and endothelial cells, damage the lungs and initiate cascades of pro-inflammatory reactions propagating pulmonary and systemic stress. Diverse molecules including small organic compounds (e.g. gluthatione, tocopherol (vitamin E), flavonoids) serve as natural antioxidants that reduce oxidized cellular components, decompose ROS and detoxify toxic oxidation products. Antioxidant enzymes can either facilitate these antioxidant reactions (e.g. peroxidases using glutathione as a reducing agent) or directly decompose ROS (e.g. superoxide dismutases [SOD] and catalase). Many antioxidant agents are being tested for treatment of pulmonary oxidant stress. The administration of small antioxidants via the oral, intratracheal and vascular routes for the treatment of short- and long-term oxidant stress showed rather modest protective effects in animal and human studies. Intratracheal and intravascular administration of antioxidant enzymes are being currently tested for the treatment of acute oxidant stress. For example, intratracheal administration of recombinant human SOD is protective in premature infants exposed to hyperoxia. However, animal and human studies show that more effective delivery of drugs to cells experiencing oxidant stress is needed to improve protection. Diverse delivery systems for antioxidants including liposomes, chemical modifications (e.g. attachment of masking pegylated [PEG]-groups) and coupling to affinity carriers (e.g. antibodies against cellular adhesion molecules) are being employed and currently tested, mostly in animal and, to a limited extent, in humans, for the treatment of oxidant stress. Further studies are needed, however, in order to develop and establish effective applications of pulmonary antioxidant interventions useful in clinical practice. Although beyond the scope of this review, antioxidant gene therapies may eventually provide a strategy for the management of subacute and chronic pulmonary oxidant stress.
Collapse
Affiliation(s)
- Melpo Christofidou-Solomidou
- Institute of Environmental Medicine and Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
11
|
Sahebkar A, Serban MC, Ursoniu S, Banach M. Effect of curcuminoids on oxidative stress: A systematic review and meta-analysis of randomized controlled trials. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.01.005] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
12
|
Castro CN, Barcala Tabarrozzi AE, Winnewisser J, Gimeno ML, Antunica Noguerol M, Liberman AC, Paz DA, Dewey RA, Perone MJ. Curcumin ameliorates autoimmune diabetes. Evidence in accelerated murine models of type 1 diabetes. Clin Exp Immunol 2014; 177:149-60. [PMID: 24628444 DOI: 10.1111/cei.12322] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2014] [Indexed: 12/25/2022] Open
Abstract
Type 1 diabetes (T1DM) is a T cell-mediated autoimmune disease that selectively destroys pancreatic β cells. The only possible cure for T1DM is to control autoimmunity against β cell-specific antigens. We explored whether the natural compound curcumin, with anti-oxidant and anti-inflammatory activities, might down-regulate the T cell response that destroys pancreatic β cells to improve disease outcome in autoimmune diabetes. We employed two accelerated autoimmune diabetes models: (i) cyclophosphamide (CYP) administration to non-obese diabetic (NOD) mice and (ii) adoptive transfer of diabetogenic splenocytes into NODscid mice. Curcumin treatment led to significant delay of disease onset, and in some instances prevented autoimmune diabetes by inhibiting pancreatic leucocyte infiltration and preserving insulin-expressing cells. To investigate the mechanisms of protection we studied the effect of curcumin on key immune cell populations involved in the pathogenesis of the disease. Curcumin modulates the T lymphocyte response impairing proliferation and interferon (IFN)-γ production through modulation of T-box expressed in T cells (T-bet), a key transcription factor for proinflammatory T helper type 1 (Th1) lymphocyte differentiation, both at the transcriptional and translational levels. Also, curcumin reduces nuclear factor (NF)-κB activation in T cell receptor (TCR)-stimulated NOD lymphocytes. In addition, curcumin impairs the T cell stimulatory function of dendritic cells with reduced secretion of proinflammatory cytokines and nitric oxide (NO) and low surface expression of co-stimulatory molecules, leading to an overall diminished antigen-presenting cell activity. These in-vitro effects correlated with ex-vivo analysis of cells obtained from curcumin-treated mice during the course of autoimmune diabetes. These findings reveal an effective therapeutic effect of curcumin in autoimmune diabetes by its actions on key immune cells responsible for β cell death.
Collapse
Affiliation(s)
- C N Castro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Han F, Luo B, Shi R, Han C, Zhang Z, Xiong J, Jiang M, Zhang Z. Curcumin ameliorates rat experimental autoimmune neuritis. J Neurosci Res 2014; 92:743-50. [DOI: 10.1002/jnr.23357] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/24/2013] [Accepted: 12/03/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Fuyu Han
- Institute of Immunology, Third Military Medical University of PLA; 30 Gaotanyan Mainstreet Chongqing People's Republic of China
| | - Bangwei Luo
- Institute of Immunology, Third Military Medical University of PLA; 30 Gaotanyan Mainstreet Chongqing People's Republic of China
| | - Rongchen Shi
- Institute of Immunology, Third Military Medical University of PLA; 30 Gaotanyan Mainstreet Chongqing People's Republic of China
| | - Changhao Han
- Institute of Immunology, Third Military Medical University of PLA; 30 Gaotanyan Mainstreet Chongqing People's Republic of China
| | - Zhonghao Zhang
- Institute of Immunology, Third Military Medical University of PLA; 30 Gaotanyan Mainstreet Chongqing People's Republic of China
| | - Jian Xiong
- Institute of Immunology, Third Military Medical University of PLA; 30 Gaotanyan Mainstreet Chongqing People's Republic of China
| | - Man Jiang
- Institute of Immunology, Third Military Medical University of PLA; 30 Gaotanyan Mainstreet Chongqing People's Republic of China
| | - Zhiren Zhang
- Institute of Immunology, Third Military Medical University of PLA; 30 Gaotanyan Mainstreet Chongqing People's Republic of China
| |
Collapse
|
14
|
Nahar PP, Driscoll MV, Li L, Slitt AL, Seeram NP. Phenolic mediated anti-inflammatory properties of a maple syrup extract in RAW 264.7 murine macrophages. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.09.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
15
|
Tolerability of curcumin in pediatric inflammatory bowel disease: a forced-dose titration study. J Pediatr Gastroenterol Nutr 2013; 56:277-9. [PMID: 23059643 PMCID: PMC3701433 DOI: 10.1097/mpg.0b013e318276977d] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is characterized by chronic intestinal inflammation in the absence of a recognized etiology. The primary therapies are medications that possess anti-inflammatory or immunosuppressive effects. Given the high use of complementary alternative medicines in pediatric IBD, a prospective tolerability study of curcumin, an herbal therapy with known anti-inflammatory effects, was conducted to assess possible dosage in children with IBD. METHODS Prospectively, patients with Crohn disease or ulcerative colitis in remission or with mild disease (Pediatric Crohn's Disease Activity Index [PCDAI] <30 or Pediatric Ulcerative Colitis Activity Index [PUCAI] score <34) were enrolled in a tolerability study. All patients received curcumin in addition to their standard therapy. Patients initially received 500 mg twice per day for 3 weeks. Using the forced-dose titration design, doses were increased up to 1 g twice per day at week 3 for a total of 3 weeks and then titrated again to 2 g twice per day at week 6 for 3 weeks. Validated measures of disease activity, using the PUCAI and PCDAI, and the Monitoring of Side Effect System score were obtained at weeks 3, 6, and 9. RESULTS All patients tolerated curcumin well, with the only symptom that was consistently reported during all 3 visits being an increase in gassiness, which occurred in only 2 patients. Three patients saw improvement in PUCAI/PCDAI score. CONCLUSIONS This pilot study suggests that curcumin may be used as an adjunctive therapy for individuals seeking a combination of conventional medicine and alternative medicine.
Collapse
|
16
|
Zheng M, Zhang Q, Joe Y, Lee BH, Ryu DG, Kwon KB, Ryter SW, Chung HT. Curcumin induces apoptotic cell death of activated human CD4+ T cells via increasing endoplasmic reticulum stress and mitochondrial dysfunction. Int Immunopharmacol 2013; 15:517-23. [PMID: 23415873 DOI: 10.1016/j.intimp.2013.02.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 01/09/2013] [Accepted: 02/01/2013] [Indexed: 12/31/2022]
Abstract
Curcumin, a natural polyphenolic antioxidant compound, exerts well-known anti-inflammatory and immunomodulatory effects, the latter which can influence the activation of immune cells including T cells. Furthermore, curcumin can inhibit the expression of pro-inflammatory cytokines and chemokines, through suppression of the NF-κB signaling pathway. The beneficial effects of curcumin in diseases such as arthritis, allergy, asthma, atherosclerosis, diabetes and cancer may be due to its immunomodulatory properties. We studied the potential of curcumin to modulate CD4+ T cells-mediated autoimmune disease, by examining the effects of this compound on human CD4+ lymphocyte activation. Stimulation of human T cells with PHA or CD3/CD28 induced IL-2 mRNA expression and activated the endoplasmic reticulum (ER) stress response. The treatment of T cells with curcumin induced the unfolded protein response (UPR) signaling pathway, initiated by the phosphorylation of PERK and IRE1. Furthermore, curcumin increased the expression of the ER stress associated transcriptional factors XBP-1, cleaved p50ATF6α and C/EBP homologous protein (CHOP) in human CD4+ and Jurkat T cells. In PHA-activated T cells, curcumin further enhanced PHA-induced CHOP expression and reduced the expression of the anti-apoptotic protein Bcl-2. Finally, curcumin treatment induced apoptotic cell death in activated T cells via eliciting an excessive ER stress response, which was reversed by the ER-stress inhibitor 4-phenylbutyric acid or transfection with CHOP-specific siRNA. These results suggest that curcumin can impact both ER stress and mitochondria functional pathways, and thereby could be used as a promising therapy in the context of Th1-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Min Zheng
- Department of Medical Science, University of Ulsan, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kanakasabai S, Casalini E, Walline CC, Mo C, Chearwae W, Bright JJ. Differential regulation of CD4(+) T helper cell responses by curcumin in experimental autoimmune encephalomyelitis. J Nutr Biochem 2012; 23:1498-507. [PMID: 22402368 DOI: 10.1016/j.jnutbio.2011.10.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 07/18/2011] [Accepted: 10/11/2011] [Indexed: 02/08/2023]
Abstract
Nutraceuticals and phytochemicals are important regulators of human health and diseases. Curcumin is a polyphenolic phytochemical isolated from the rhizome of the plant Curcuma longa (turmeric) that has been traditionally used for the treatment of inflammation and wound healing for centuries. Systematic analyses have shown that curcumin exerts its beneficial effects through antioxidant, antiproliferative and anti-inflammatory properties. We and others have shown earlier that curcumin ameliorates experimental autoimmune encephalomyelitis (EAE) model for multiple sclerosis. In this study, we show that C57BL/6 mice induced to develop EAE express elevated levels of interferon (IFN) γ and interleukin (IL)-17 in the central nervous system (CNS) and lymphoid organs that decreased significantly following in vivo treatment with curcumin. The EAE mice also showed elevated expression of IL-12 and IL-23 that decreased after treatment with curcumin. Ex vivo and in vitro treatment with curcumin resulted in a dose-dependent decrease in the secretion of IFNγ, IL-17, IL-12 and IL-23 in culture. The inhibition of EAE by curcumin was also associated with an up-regulation of IL-10, peroxisome proliferator activated receptor γ and CD4(+)CD25(+-)Foxp3(+) Treg cells in the CNS and lymphoid organs. These findings highlight that curcumin differentially regulates CD4(+) T helper cell responses in EAE.
Collapse
Affiliation(s)
- Saravanan Kanakasabai
- Neuroscience Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
18
|
Synthesis and anti-inflammatory evaluation of novel mono-carbonyl analogues of curcumin in LPS-stimulated RAW 264.7 macrophages. Eur J Med Chem 2010; 45:5773-80. [PMID: 20934787 DOI: 10.1016/j.ejmech.2010.09.037] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/11/2010] [Accepted: 09/16/2010] [Indexed: 11/23/2022]
Abstract
Curcumin is a multifunctional natural product with regulatory effects on inflammation. However, a major limitation for the application of curcumin is its poor bioavailability. We previously demonstrated that the mono-carbonyl analogues of curcumin possessed improved pharmacokinetic profiles. In this study, 33 novel mono-carbonyl analogues of curcumin were synthesized and their inhibition against TNF-α and IL-6 release was evaluated in LPS-stimulated RAW 264.7 macrophages. Based on the screening data, quantitative structure-activity relationship was conducted, indicating that electron-withdrawing groups in benzene ring are favourable to anti-inflammatory activities of B-class compounds. Furthermore, compounds AN1 and B82 demonstrated anti-inflammatory abilities in a dose-dependent manner. These raise the possibility that these compounds might serve as potential agents for the treatment of inflammatory diseases.
Collapse
|
19
|
Lee JC, Kinniry PA, Arguiri E, Serota M, Kanterakis S, Chatterjee S, Solomides CC, Javvadi P, Koumenis C, Cengel KA, Christofidou-Solomidou M. Dietary curcumin increases antioxidant defenses in lung, ameliorates radiation-induced pulmonary fibrosis, and improves survival in mice. Radiat Res 2010; 173:590-601. [PMID: 20426658 DOI: 10.1667/rr1522.1] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effectiveness of lung radiotherapy is limited by radiation tolerance of normal tissues and by the intrinsic radiosensitivity of lung cancer cells. The chemopreventive agent curcumin has known antioxidant and tumor cell radiosensitizing properties. Its usefulness in preventing radiation-induced pneumonopathy has not been tested previously. We evaluated dietary curcumin in radiation-induced pneumonopathy and lung tumor regression in a murine model. Mice were given 1% or 5% (w/w) dietary curcumin or control diet prior to irradiation and for the duration of the experiment. Lungs were evaluated at 3 weeks after irradiation for acute lung injury and inflammation by evaluating bronchoalveolar lavage (BAL) fluid content for proteins, neutrophils and at 4 months for pulmonary fibrosis. In a separate series of experiments, an orthotopic model of lung cancer using intravenously injected Lewis lung carcinoma (LLC) cells was used to exclude possible tumor radioprotection by dietary curcumin. In vitro, curcumin boosted antioxidant defenses by increasing heme oxygenase 1 (HO-1) levels in primary lung endothelial and fibroblast cells and blocked radiation-induced generation of reactive oxygen species (ROS). Dietary curcumin significantly increased HO-1 in lungs as early as after 1 week of feeding, coinciding with a steady-state level of curcumin in plasma. Although both 1% and 5% w/w dietary curcumin exerted physiological changes in lung tissues by significantly decreasing LPS-induced TNF-alpha production in lungs, only 5% dietary curcumin significantly improved survival of mice after irradiation and decreased radiation-induced lung fibrosis. Importantly, dietary curcumin did not protect LLC pulmonary metastases from radiation killing. Thus dietary curcumin ameliorates radiation-induced pulmonary fibrosis and increases mouse survival while not impairing tumor cell killing by radiation.
Collapse
Affiliation(s)
- James C Lee
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Liang G, Zhou H, Wang Y, Gurley EC, Feng B, Chen L, Xiao J, Yang S, Li X. Inhibition of LPS-induced production of inflammatory factors in the macrophages by mono-carbonyl analogues of curcumin. J Cell Mol Med 2009; 13:3370-9. [PMID: 19243473 PMCID: PMC4516492 DOI: 10.1111/j.1582-4934.2009.00711.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Accepted: 01/21/2009] [Indexed: 12/22/2022] Open
Abstract
Curcumin (diferuloylmethane) is an orange-yellow compound from turmeric (Curcuma longa), a spice found in curry powder. Traditionally known for its anti-inflammatory effects, curcumin has established itself in the last two decades to be a potent immunomodulatory agent that can regulate the activation of a variety of immunocytes and the expression of inflammatory factors. Considering that the beta-diketone moiety of curcumin may result in its instability and poor metabolic property, we previously designed a series of mono-carbonyl analogues of curcumin with enhanced stability by deleting this moiety. These compounds demonstrate improved pharmacokinetic profiles both in vitro and in vivo. In this study, we reported a total of 44 mono-carbonyl analogues, which have been evaluated for the inhibitory activities against LPS-induced TNF-alpha and IL-6 release in the macrophages. Based on the screening results of these analogues, five active compounds A01, A03, A13, B18 and C22 were investigated to inhibit TNF-alpha and IL-6 release in a dose-dependent manner, three of which further demonstrated inhibitory effects on LPS-induced TNF-alpha, IL-1beta, IL-6, MCP-1, COX-2, PGES, iNOS and p65 NF-kappaB mRNA production. The results indicated that these mono-carbonyl analogues may possess anti-inflammatory activities similar to curcumin despite the absence of the beta-diketone. These mono-carbonyl analogues may be a favourable alternative for the development of curcumin-based anti-inflammatory drugs both pharmacokinetically and pharmacologically. We further examined the biological properties of A13, the only hydrosoluble analogue when combined with hydrochloric acid. The results showed a dose-dependent inhibition of LPS-induced cytokine production. These data further indicated that compound A13 may be explored as a promising anti-inflammatory molecule.
Collapse
Affiliation(s)
- Guang Liang
- School of Pharmacy, Wenzhou Medical CollegeCollege Town, Wenzhou, Zhejiang, China
- College of Chemical Engineering, Nanjing University of Science and TechnologyNanjing, Jiangsu, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Yi Wang
- School of Pharmacy, Wenzhou Medical CollegeCollege Town, Wenzhou, Zhejiang, China
| | - Emily C Gurley
- Department of Microbiology and Immunology, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Biao Feng
- School of Pharmacy, Wenzhou Medical CollegeCollege Town, Wenzhou, Zhejiang, China
| | - Li Chen
- Department of Microbiology and Immunology, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Jian Xiao
- School of Pharmacy, Wenzhou Medical CollegeCollege Town, Wenzhou, Zhejiang, China
| | - Shulin Yang
- College of Chemical Engineering, Nanjing University of Science and TechnologyNanjing, Jiangsu, China
| | - Xiaokun Li
- School of Pharmacy, Wenzhou Medical CollegeCollege Town, Wenzhou, Zhejiang, China
- College of Chemical Engineering, Nanjing University of Science and TechnologyNanjing, Jiangsu, China
| |
Collapse
|
21
|
Immunomodulatory effects of curcumin treatment on murine schistosomiasis mansoni. Immunobiology 2009; 214:712-27. [PMID: 19249123 DOI: 10.1016/j.imbio.2008.11.017] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/28/2008] [Accepted: 11/29/2008] [Indexed: 11/23/2022]
Abstract
Curcumin is a polyphenol derived from the dietary spice turmeric. It has been shown to regulate numerous transcription factors, cytokines, adhesion molecules, and enzymes that have been linked to inflammation. In addition to inhibiting the growth of a variety of pathogens, curcumin has been shown to have nematocidal activity. The present study was designed to evaluate the schistosomicidal activity of curcumin in vivo as well as immunomodulation of granulomatous inflammation and liver pathology in acute schistosomiasis mansoni. Mice were infected each with 80 Schistosoma (S.) mansoni cercariae and injected intraperitoneally with curcumin at a total dose of 400mg/kg body weight. Curcumin was effective in reducing worm and tissue-egg burdens, hepatic granuloma volume and liver collagen content by 44.4%, 30.9%, 79%, and 38.6%, respectively. Curcumin treatment restored hepatic enzymes activities to the normal levels and enhanced catalase activity in the liver tissue of infected mice. Moreover, hepato-spleenomegaly and eosinophilia induced by S. mansoni infection were largely improved with curcumin treatment. Infected mice treated with curcumin showed low serum level of both interleukin (IL)-12 and tumor necrosis factor alpha (TNF-alpha), but IL-10 level was not significantly altered. Specific IgG and IgG1 responses against both soluble worm antigen (SWAP) and soluble egg antigen (SEA) were augmented with curcumin treatment, but IgM and IgG2a responses were not significantly changed. In conclusion, curcumin treatment modulates cellular and humoral immune responses of infected mice and lead to a significant reduction of parasite burden and liver pathology in acute murine schistosomiasis mansoni.
Collapse
|
22
|
Reuter S, Schnekenburger M, Cristofanon S, Buck I, Teiten MH, Daubeuf S, Eifes S, Dicato M, Aggarwal BB, Visvikis A, Diederich M. Tumor necrosis factor alpha induces gamma-glutamyltransferase expression via nuclear factor-kappaB in cooperation with Sp1. Biochem Pharmacol 2009; 77:397-411. [PMID: 18996094 DOI: 10.1016/j.bcp.2008.09.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 09/10/2008] [Accepted: 09/30/2008] [Indexed: 10/21/2022]
Abstract
Gamma-glutamyltransferase (GGT) cleaves the gamma-glutamyl moiety of glutathione (GSH), an endogenous antioxidant, and is involved in mercapturic acid metabolism and in cancer drug resistance when overexpressed. Moreover, GGT converts leukotriene (LT) C4 into LTD4 implicated in various inflammatory pathologies. So far the effect of inflammatory stimuli on regulation of GGT expression and activity remained to be addressed. We found that the proinflammatory cytokine tumor necrosis factor alpha (TNFalpha) induced GGT promoter transactivation, mRNA and protein synthesis, as well as enzymatic activity. Remicade, a clinically used anti-TNFalpha antibody, small interfering RNA (siRNA) against p50 and p65 nuclear factor-kappaB (NF-kappaB) isoforms, curcumin, a well characterized natural NF-kappaB inhibitor, as well as a dominant negative inhibitor of kappaB alpha (IkappaBalpha), prevented GGT activation at various levels, illustrating the involvement of this signaling pathway in TNFalpha-induced stimulation. Over-expression of receptor of TNFalpha-1 (TNFR1), TNFR-associated factor-2 (TRAF2), TNFR-1 associated death domain (TRADD), dominant negative (DN) IkappaBalpha or NF-kappaB p65 further confirmed GGT promoter activation via NF-kappaB. Linker insertion mutagenesis of 536 bp of the proximal GGT promoter revealed NF-kappaB and Sp1 binding sites at -110 and -78 relative to the transcription start site, responsible for basal GGT transcription. Mutation of the NF-kappaB site located at -110 additionally inhibited TNFalpha-induced promoter induction. Chromatin immunoprecipitation (ChIP) assays confirmed mutagenesis results and further demonstrated that TNFalpha treatment induced in vivo binding of both NF-kappaB and Sp1, explaining increased GGT expression, and led to RNA polymerase II recruitment under inflammatory conditions.
Collapse
Affiliation(s)
- Simone Reuter
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Fondation de Recherche Cancer et Sang, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540, Luxembourg
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Comparison of the immunomodulatory effects of the plant sterol β-sitosterol to simvastatin in peripheral blood cells from multiple sclerosis patients. Int Immunopharmacol 2009; 9:153-7. [DOI: 10.1016/j.intimp.2008.10.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/20/2008] [Accepted: 10/24/2008] [Indexed: 11/21/2022]
|
24
|
Takahashi M, Ishiko T, Kamohara H, Hidaka H, Ikeda O, Ogawa M, Baba H. Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) blocks the chemotaxis of neutrophils by inhibiting signal transduction through IL-8 receptors. Mediators Inflamm 2008; 2007:10767. [PMID: 17710245 PMCID: PMC1940327 DOI: 10.1155/2007/10767] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2006] [Revised: 01/24/2007] [Accepted: 04/05/2007] [Indexed: 12/15/2022] Open
Abstract
We investigated the impact of curcumin on neutrophils. Chemotactic activity via human recombinant IL-8 (hrIL-8) was significantly inhibited by curcumin. Curcumin reduced calcium ion flow induced by internalization of the IL-8 receptor. We analyzed flow cytometry to evaluate the status of the IL-8 receptor after curcumin treatment. The change in the distribution of receptors intracellularly and on the cell surface suggested that curcumin may affect the receptor trafficking pathway intracellulary.
Rab11 is a low molecular weight G protein associated with the CXCR recycling pathway. Following curcumin treatment, immunoprecipitation studies showed that the IL-8 receptor was associated with larger amounts of active Rab11 than that in control cells. These data suggest that curcumin induces the stacking of the Rab11 vesicle complex with CXCR1 and CXCR2 in the endocytic pathway. The mechanism for antiinflammatory response by curcumin may involve unique regulation of the Rab11 trafficking molecule in recycling of IL-8 receptors.
Collapse
Affiliation(s)
- Masafumi Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan
- *Masafumi Takahashi:
| | - Takatoshi Ishiko
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan
| | - Hidenobu Kamohara
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan
| | - Hideaki Hidaka
- Department of Surgery II, Faculty of Medicine, University of Miyazaki, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Osamu Ikeda
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan
| | - Michio Ogawa
- Department of Surgery, Kumamoto Rousai Hospital, Yatsushiro 866-8533, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan
| |
Collapse
|
25
|
Fahey AJ, Adrian Robins R, Constantinescu CS. Curcumin modulation of IFN-beta and IL-12 signalling and cytokine induction in human T cells. J Cell Mol Med 2008; 11:1129-37. [PMID: 17979888 PMCID: PMC4401279 DOI: 10.1111/j.1582-4934.2007.00089.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Curcumin is a polyphenol derived from the dietary spice turmeric. It possesses diverse anti-inflammatory and anti-cancer properties. Curcumin has been shown to exhibit an inhibitory effect on the production of inflammatory cytokines by human monocytes and has inhibited the animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE) in association with a decrease in interleukin 12 (IL-12) production and signal transducer and activator of transcription 4 (STAT4) activation. The type I interferon (IFN) IFN-has the ability to suppress IL-12. Both IL-12 and IFN-alpha/beta signal through the activation by phosphorylation of STAT4. Our aim was to investigate the effects of curcumin on the ability of T cells to respond to IL-12 or IFN-alpha/beta. We report that curcumin decreases IL-12-induced STAT4 phosphorylation, IFN-gamma production, and IL-12 Rbeta1 and beta2 expression. IFN-beta-induced STAT4 phosphorylation, IL-10 production and IFN receptor (IFNAR) subunits 1 and 2 expression were enhanced by curcumin. Curcumin increased IFN-alpha-induced IL-10 and IFNAR1 expression. Prior exposure to curcumin decreased IFN-alpha-induced IFNAR2 expression and did not modify the level of IFN-alpha-induced pSTAT4 generation. Thus, the effect of curcumin on STAT4 activation in T cells is dependent upon the stimulus to which the T cells have been exposed.
Collapse
Affiliation(s)
- Angela J Fahey
- Division of Clinical Neurology, University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
26
|
Abstract
The immune system has evolved to protect the host from microbial infection; nevertheless, a breakdown in the immune system often results in infection, cancer, and autoimmune diseases. Multiple sclerosis, rheumatoid arthritis, type 1 diabetes, inflammatory bowel disease, myocarditis, thyroiditis, uveitis, systemic lupus erythromatosis, and myasthenia gravis are organ-specific autoimmune diseases that afflict more than 5% of the population worldwide. Although the etiology is not known and a cure is still wanting, the use of herbal and dietary supplements is on the rise in patients with autoimmune diseases, mainly because they are effective, inexpensive, and relatively safe. Curcumin is a polyphenolic compound isolated from the rhizome of the plant Curcuma longa that has traditionally been used for pain and wound-healing. Recent studies have shown that curcumin ameliorates multiple sclerosis, rheumatoid arthritis, psoriasis, and inflammatory bowel disease in human or animal models. Curcumin inhibits these autoimmune diseases by regulating inflammatory cytokines such as IL-1beta, IL-6, IL-12, TNF-alpha and IFN-gamma and associated JAK-STAT, AP-1, and NF-kappaB signaling pathways in immune cells. Although the beneficial effects of nutraceuticals are traditionally achieved through dietary consumption at low levels for long periods of time, the use of purified active compounds such as curcumin at higher doses for therapeutic purposes needs extreme caution. A precise understanding of effective dose, safe regiment, and mechanism of action is required for the use of curcumin in the treatment of human autoimmune diseases.
Collapse
Affiliation(s)
- John J Bright
- Neuroscience Research Laboratory, Methodist Research Institute, Clarian Health, Indianapolis, IN 46202, USA.
| |
Collapse
|
27
|
Kuttan G, Kumar KBH, Guruvayoorappan C, Kuttan R. Antitumor, anti-invasion, and antimetastatic effects of curcumin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 595:173-84. [PMID: 17569210 DOI: 10.1007/978-0-387-46401-5_6] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Curcumin was found to be cytotoxic in nature to a wide variety of tumor cell lines of different tissue origin. The action of curcumin is dependent on with the cell type, the concentration of curcumin (IC50: 2-40 microg/mL), and the time of the treatment. The major mechanism by which curcumin induces cytotoxicity is the induction of apoptosis. Curcumin decreased the expression of antiapoptotic members of the Bcl-2 family and elevated the expression of p53, Bax, procaspases 3, 8, and 9. Curcumin prevents the entry of nuclear factor KB (NF-KB) into the nucleus there by decreasing the expression of cell cycle regulatory proteins and survival factors such as Bcl-2 and survivin. Curcumin arrested the cell cycle by preventing the expression of cyclin D1, cdk-1 and cdc-25. Curcumin inhibited the growth of transplantable tumors in different animal models and increased the life span of tumor-harboring animals. Curcumin inhibits metastasis of tumor cells as shown in in vitro as well as in vivo models, and the possible mechanism is the inhibition of matrix metalloproteases. Curcumin was found to suppress the expression of cyclooxygenase-2, vascular endothelial growth factor, and intercellular adhesion molecule- and elevated the expression of antimetastatic proteins, the tissue inhibitor of metalloproteases-2, nonmetastatic gene 23, and Ecadherin. These results indicate that curcumin acts at various stages of tumor cell progression.
Collapse
Affiliation(s)
- Girija Kuttan
- Department of Immunology, Amala Cancer Research Centre, Thrissur Kerala, India.
| | | | | | | |
Collapse
|
28
|
Aggarwal BB, Sundaram C, Malani N, Ichikawa H. CURCUMIN: THE INDIAN SOLID GOLD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 595:1-75. [PMID: 17569205 DOI: 10.1007/978-0-387-46401-5_1] [Citation(s) in RCA: 842] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Turmeric, derived from the plant Curcuma longa, is a gold-colored spice commonly used in the Indian subcontinent, not only for health care but also for the preservation of food and as a yellow dye for textiles. Curcumin, which gives the yellow color to turmeric, was first isolated almost two centuries ago, and its structure as diferuloylmethane was determined in 1910. Since the time of Ayurveda (1900 Bc) numerous therapeutic activities have been assigned to turmeric for a wide variety of diseases and conditions, including those of the skin, pulmonary, and gastrointestinal systems, aches, pains, wounds, sprains, and liver disorders. Extensive research within the last half century has proven that most of these activities, once associated with turmeric, are due to curcumin. Curcumin has been shown to exhibit antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, and anticancer activities and thus has a potential against various malignant diseases, diabetes, allergies, arthritis, Alzheimer's disease, and other chronic illnesses. These effects are mediated through the regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other enzymes. Curcumin exhibits activities similar to recently discovered tumor necrosis factor blockers (e.g., HUMIRA, REMICADE, and ENBREL), a vascular endothelial cell growth factor blocker (e.g., AVASTIN), human epidermal growth factor receptor blockers (e.g., ERBITUX, ERLOTINIB, and GEFTINIB), and a HER2 blocker (e.g., HERCEPTIN). Considering the recent scientific bandwagon that multitargeted therapy is better than monotargeted therapy for most diseases, curcumin can be considered an ideal "Spice for Life".
Collapse
MESH Headings
- Animals
- Anti-Bacterial Agents/chemistry
- Anti-Bacterial Agents/pharmacology
- Anti-Bacterial Agents/therapeutic use
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Antifungal Agents/chemistry
- Antifungal Agents/pharmacology
- Antifungal Agents/therapeutic use
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Antioxidants/chemistry
- Antioxidants/pharmacology
- Antioxidants/therapeutic use
- Antiviral Agents/chemistry
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Arthritis, Rheumatoid/drug therapy
- Curcuma/chemistry
- Curcumin/analogs & derivatives
- Curcumin/chemistry
- Curcumin/metabolism
- Curcumin/pharmacology
- Curcumin/therapeutic use
- Humans
- India
- Medicine, Ayurvedic
- Models, Biological
- Molecular Structure
- Neoplasms/drug therapy
- Phytotherapy
- Plants, Medicinal
- Spices
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
29
|
Gautam SC, Gao X, Dulchavsky S. Immunomodulation by curcumin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 595:321-41. [PMID: 17569218 DOI: 10.1007/978-0-387-46401-5_14] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Turmeric, the bright yellow spice extracted from the tuberous rhizome of the plant Curcuma longa, has been used in traditional Indian and Chinese systems of medicine for centuries to treat a variety of ailments, including jaundice and hepatic disorders, rheumatism, anorexia, diabetic wounds, and menstrual difficulties. Most of the medicinal effects of turmeric have been attributed to curcumin, the principal curcumanoid found in turmeric. Recent evidence that curcumin exhibits strong anti-inflammatory and antioxidant activities and modulates the expression of transcription factors, cell cycle proteins, and signal transducing kinases has prompted the mechanism-based studies on the potential of curcumin to primarily prevent and treat cancer and inflammatory diseases. Little work has been done to study the effect of curcumin on the development of immune responses. This review discusses current knowledge on the immunomodulatory effects of curcumin on various facets of the immune response, including its effect on lymphoid cell populations, antigen presentation, humoral and cell-mediated immunity, and cytokine production.
Collapse
Affiliation(s)
- Subhash C Gautam
- Department of Surgery, Henry Ford Health System, Detroit, MI 48202, USA.
| | | | | |
Collapse
|
30
|
Jagetia GC, Aggarwal BB. "Spicing up" of the immune system by curcumin. J Clin Immunol 2007; 27:19-35. [PMID: 17211725 DOI: 10.1007/s10875-006-9066-7] [Citation(s) in RCA: 345] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 12/11/2006] [Indexed: 02/06/2023]
Abstract
Curcumin (diferuloylmethane) is an orange-yellow component of turmeric (Curcuma longa), a spice often found in curry powder. Traditionally known for its an antiinflammatory effects, curcumin has been shown in the last two decades to be a potent immunomodulatory agent that can modulate the activation of T cells, B cells, macrophages, neutrophils, natural killer cells, and dendritic cells. Curcumin can also downregulate the expression of various proinflammatory cytokines including TNF, IL-1, IL-2, IL-6, IL-8, IL-12, and chemokines, most likely through inactivation of the transcription factor NF-kappaB. Interestingly, however, curcumin at low doses can also enhance antibody responses. This suggests that curcumin's reported beneficial effects in arthritis, allergy, asthma, atherosclerosis, heart disease, Alzheimer's disease, diabetes, and cancer might be due in part to its ability to modulate the immune system. Together, these findings warrant further consideration of curcumin as a therapy for immune disorders.
Collapse
Affiliation(s)
- Ganesh Chandra Jagetia
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
31
|
Abstract
Curcumin (diferuloylmethane) is an orange-yellow component of turmeric (Curcuma longa), a spice often found in curry powder. Traditionally known for its an antiinflammatory effects, curcumin has been shown in the last two decades to be a potent immunomodulatory agent that can modulate the activation of T cells, B cells, macrophages, neutrophils, natural killer cells, and dendritic cells. Curcumin can also downregulate the expression of various proinflammatory cytokines including TNF, IL-1, IL-2, IL-6, IL-8, IL-12, and chemokines, most likely through inactivation of the transcription factor NF-kappaB. Interestingly, however, curcumin at low doses can also enhance antibody responses. This suggests that curcumin's reported beneficial effects in arthritis, allergy, asthma, atherosclerosis, heart disease, Alzheimer's disease, diabetes, and cancer might be due in part to its ability to modulate the immune system. Together, these findings warrant further consideration of curcumin as a therapy for immune disorders.
Collapse
Affiliation(s)
- Ganesh Chandra Jagetia
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
32
|
Zhang M, Deng CS, Zheng JJ, Xia J. Curcumin regulated shift from Th1 to Th2 in trinitrobenzene sulphonic acid-induced chronic colitis. Acta Pharmacol Sin 2006; 27:1071-7. [PMID: 16867261 DOI: 10.1111/j.1745-7254.2006.00322.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM To investigate the therapeutic effects of curcumin (Cur) on trinitrobenzene sulphonic acid (TNBS)-induced colitis and the effects of Cur on the balance of Th1/Th2 cytokines. METHODS Colitis was induced by TNBS and treated with Cur (30 mg/kg/d, ip), dexamethasone (Dex, 2 mg/kg/d), or Cur plus dexamethasone (Cur+Dex, 30 mg/kg/d Cur ip+2 mg/kg/d Dex,ip). mRNA in colon mucosa were detected by real-time quantitative polymerase chain reaction. Intracellular cytokines were detected by flow cytometry and concentrations of cytokines in sera were detected by enzyme-linked immunosorbent analysis. RESULTS Both Cur and Dex improved body weight loss, ameliorated histological images and decreased macroscopic score and myeloperoxidase activity. Cur decreased the expression of Th1 cytokines (IL-12, IFN-gamma, TNF-alpha, IL-1) and increased the expression of Th2 cytokines (IL-4 and IL-10) in colon mucosa. Cur also increased the proportion of IFN-gamma/IL-4 in splenocytes and circulation. Dex and Cur+Dex decreased the expression of Th1 cytokines but could not increase the expression of Th2 cytokines and the proportion of IFN-gamma/IL-4. CONCLUSION Cur exerted therapeutic effects on colitis by regulating the shift from Th1 to Th2.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | | | | | | |
Collapse
|
33
|
Pérez-Arriaga L, Mendoza-Magaña ML, Cortés-Zárate R, Corona-Rivera A, Bobadilla-Morales L, Troyo-Sanromán R, Ramírez-Herrera MA. Cytotoxic effect of curcumin on Giardia lamblia trophozoites. Acta Trop 2006; 98:152-61. [PMID: 16678115 DOI: 10.1016/j.actatropica.2006.03.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 03/24/2006] [Accepted: 03/30/2006] [Indexed: 11/21/2022]
Abstract
Giardia lamblia is one of the most important worldwide causes of intestinal infections produced by protozoa. Thus, the search for new alternative therapeutic approaches for this parasitic disease is very important. Common drugs used to control and eradicate this infection, frequently exhibit side effects that force patients to abandon treatment. The present work evaluates the anti-protozoan activity of curcumin, the main constituent of turmeric. Axenic G. lamblia (Portland 1 strain) cultures were exposed to different concentrations of curcumin. Its effects were evaluated on parasite growth, adhesion capacity and parasite morphology. We also evaluated the capacity of curcumin to induce an apoptosis-like effect. All curcumin concentrations inhibited trophozoite growth and adhesion in more than 50% in dose and time dependent manner. Morphological changes were described as protrusions formed under the cytoplasmic membrane, deformation due to swelling and cell agglutination. Curcumin induced apoptosis-like nuclear staining in dose and time dependent manner. In conclusion, curcumin exhibited a cytotoxic effect in G. lamblia inhibiting the parasite growth and adherent capacity, induced morphological alterations, provoked apoptosis-like changes. Future in vitro and in vivo experiments are endowed to elucidate the effect of curcumin in an experimental model of G. lamblia infection, analyze the involvement of ion channels in the swelling effect of curcumin during an apparent osmotic deregulation in G. lamblia trophozoites. This will lead to the proposal of the action mechanism of curcumin as well as the description of mechanism involved during the activation process for the apoptotic-like effect.
Collapse
Affiliation(s)
- L Pérez-Arriaga
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara, Jalisco, CP 44340, México
| | | | | | | | | | | | | |
Collapse
|
34
|
Yadav VS, Mishra KP, Singh DP, Mehrotra S, Singh VK. Immunomodulatory effects of curcumin. Immunopharmacol Immunotoxicol 2005; 27:485-97. [PMID: 16237958 DOI: 10.1080/08923970500242244] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Curcumin (diferuloylmethane), found in the spice turmeric, exhibits anti-inflammatory, antioxidant, and chemopreventive activities. However, the effect of curcumin on the immunological responses largely remains unknown. In this study we have investigated the effect of curcumin on mitogen (phytohaemagglutinin; PHA) stimulated T-cell proliferation, natural killer (NK) cell cytotoxicity, production of cytokines by human peripheral blood mononuclear cells (PBMCs), nitric oxide (NO) production in mouse macrophage cells, RAW-264.7. Furthermore, we have carried out an electromobility shift assay to elucidate the mechanism of action of curcumin at DNA protein interaction level. We observed that curcumin inhibits PHA-induced T-cell proliferation, interleukin-2 production, NO generation, and lipopolysachharide-induced nuclear factor-kappaB (NF-kappaB) and augments NK cell cytotoxicity. Our results suggest that curcumin most likely inhibits cell proliferation and cytokine production by inhibiting NF-kappaB target genes involved in the induction of these immune parameters.
Collapse
Affiliation(s)
- V S Yadav
- Department of Immunology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, India
| | | | | | | | | |
Collapse
|
35
|
Ansari MJ, Ahmad S, Kohli K, Ali J, Khar RK. Stability-indicating HPTLC determination of curcumin in bulk drug and pharmaceutical formulations. J Pharm Biomed Anal 2005; 39:132-8. [PMID: 15941643 DOI: 10.1016/j.jpba.2005.03.021] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 03/31/2005] [Accepted: 03/31/2005] [Indexed: 10/25/2022]
Abstract
A simple, selective, precise and stability-indicating high-performance thin-layer chromatographic method of analysis of curcumin both as a bulk drug and in formulations was developed and validated. The method employed TLC aluminium plates precoated with silica gel 60 F-254 as the stationary phase. The solvent system consisted of chloroform:methanol (9.25:0.75 v/v). This system was found to give compact spots for curcumin (R(f) value of 0.48 +/- 0.02). Densitometric analysis of curcumin was carried out in the absorbance mode at 430 nm. The linear regression analysis data for the calibration plots showed good linear relationship with r = 0.996 and 0.994 with respect to peak height and peak area, respectively, in the concentration range 50-300 ng per spot. The mean value +/- S.D. of slope and intercept were 1.08 +/- 0.01, 51.93 +/- 0.54 and 8.39 +/- 0.21, 311.55 +/ -3.23 with respect to peak height and area, respectively. The method was validated for precision, recovery and robustness. The limits of detection and quantitation were 8 and 25 ng per spot, respectively. Curcumin was subjected to acid and alkali hydrolysis, oxidation and photodegradation. The drug undergoes degradation under acidic, basic, light and oxidation conditions. This indicates that the drug is susceptible to acid, base hydrolysis, oxidation and photo oxidation. Statistical analysis proves that the method is repeatable, selective and accurate for the estimation of said drug. As the method could effectively separate the drug from its degradation product, it can be employed as a stability-indicating one.
Collapse
Affiliation(s)
- M J Ansari
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard University, New Delhi, India.
| | | | | | | | | |
Collapse
|
36
|
Kim GY, Kim KH, Lee SH, Yoon MS, Lee HJ, Moon DO, Lee CM, Ahn SC, Park YC, Park YM. Curcumin inhibits immunostimulatory function of dendritic cells: MAPKs and translocation of NF-kappa B as potential targets. THE JOURNAL OF IMMUNOLOGY 2005; 174:8116-24. [PMID: 15944320 DOI: 10.4049/jimmunol.174.12.8116] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Curcumin has been shown to exhibit anti-inflammatory, antimutagenic, and anticarcinogenic activities. However, the effect of curcumin on the maturation and immunostimulatory function of dendritic cells (DC) largely remains unknown. In this study, we examined whether curcumin can influence surface molecule expression, cytokine production, and their underlying signaling pathways in murine bone marrow-derived DC. DC were derived from murine bone marrow cells and used as immature or LPS-stimulated mature cells. The DC were tested for surface molecule expression, cytokine production, dextran uptake, the capacity to induce T cell differentiation, and their underlying signaling pathways. Curcumin significantly suppressed CD80, CD86, and MHC class II expression, but not MHC class I expression, in the DC. The DC also exhibited impaired IL-12 expression and proinflammatory cytokine production (IL-1beta, IL-6, and TNF-alpha). The curcumin-treated DC were highly efficient at Ag capture, via mannose receptor-mediated endocytosis. Curcumin inhibited LPS-induced MAPK activation and the translocation of NF-kappaB p65. In addition, the curcumin-treated DC showed an impaired induction of Th1 responses and a normal cell-mediated immune response. These novel findings provide new insight into the immunopharmacological role of curcumin in impacting on the DC. These novel findings open perspectives for the understanding of the immunopharmacological role of curcumin and therapeutic adjuvants for DC-related acute and chronic diseases.
Collapse
Affiliation(s)
- Gi-Young Kim
- Department of Microbiology and Immunology, and National Research Lab of Dendritic Cell Differentiation & Regulation and Medical Research Institute, Pusan National University College of Medicine, Pusan, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tomita M, Holman BJ, Santoro CP, Santoro TJ. Astrocyte production of the chemokine macrophage inflammatory protein-2 is inhibited by the spice principle curcumin at the level of gene transcription. J Neuroinflammation 2005; 2:8. [PMID: 15733321 PMCID: PMC553992 DOI: 10.1186/1742-2094-2-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 02/25/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND: In neuropathological processes associated with neutrophilic infiltrates, such as experimental allergic encephalitis and traumatic injury of the brain, the CXC chemokine, macrophage inflammatory protein-2 (MIP-2) is thought to play a pivotal role in the induction and perpetuation of inflammation in the central nervous system (CNS). The origin of MIP-2 in inflammatory disorders of the brain has not been fully defined but astrocytes appear to be a dominant source of this chemokine.Curcumin is a spice principle in, and constitutes approximately 4 percent of, turmeric. Curcumin's immunomodulating and antioxidant activities suggest that it might be a useful adjunct in the treatment of neurodegenerative illnesses characterized by inflammation. Relatively unexplored, but relevant to its potential therapeutic efficacy in neuroinflammatory syndromes is the effect of curcumin on chemokine production. To examine the possibility that curcumin may influence CNS inflammation by mechanisms distinct from its known anti-oxidant activities, we studied the effect of this spice principle on the synthesis of MIP-2 by astrocytes. METHODS: Primary astrocytes were prepared from neonatal brains of CBA/CaJ mice. The cells were stimulated with lipopolysaccharide in the presence or absence of various amount of curcumin or epigallocatechin gallate. MIP-2 mRNA was analyzed using semi-quantitative PCR and MIP-2 protein production in the culture supernatants was quantified by ELISA. Astrocytes were transfected with a MIP-2 promoter construct, pGL3-MIP-2, and stimulated with lipopolysaccharide in the presence or absence of curcumin. RESULTS: The induction of MIP-2 gene expression and the production of MIP-2 protein were inhibited by curcumin. Curcumin also inhibited lipopolysaccharide-induced transcription of the MIP-2 promoter reporter gene construct in primary astrocytes. However MIP-2 gene induction by lipopolysaccharide was not inhibited by another anti-oxidant, epigallocatechin gallate. CONCLUSION: Our results indicate that curcumin potently inhibits MIP-2 production at the level of gene transcription and offer further support for its potential use in the treatment of inflammatory conditions of the CNS.
Collapse
Affiliation(s)
- Michiyo Tomita
- Department of Medicine, University of North Dakota School of Medicine & Health Sciences, 501 North Columbia Road, Grand Forks, ND 58201, USA
| | - Brita J Holman
- Boston University, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | | | - Thomas J Santoro
- Department of Medicine, University of North Dakota School of Medicine & Health Sciences, 501 North Columbia Road, Grand Forks, ND 58201, USA
- Research Service, Fargo VA Medical Center, 2101 Elm Street, Fargo, ND 58102, USA
| |
Collapse
|
38
|
Affiliation(s)
- John J Bright
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA.
| |
Collapse
|
39
|
Gao X, Kuo J, Jiang H, Deeb D, Liu Y, Divine G, Chapman RA, Dulchavsky SA, Gautam SC. Immunomodulatory activity of curcumin: suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production in vitro. Biochem Pharmacol 2004; 68:51-61. [PMID: 15183117 DOI: 10.1016/j.bcp.2004.03.015] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Accepted: 03/19/2004] [Indexed: 12/24/2022]
Abstract
Curcumin (diferuloylmethane), a major curcumanoid found in the spice turmeric, exhibits anti-inflammatory, anti-oxidant, and chemopreventive activities. However, the effect of curcumin on the development of T cell-mediated immunological responses largely remains unknown. In this study we have investigated the effect of curcumin on mitogen/antigen induced proliferation of splenic lymphocytes, induction of cytotoxic T lymphocytes (CTLs), lymphokine activated killer (LAK) cells, and the production of cytokines by T lymphocytes and macrophages. We found that mitogen, interleukin-2 (IL-2) or alloantigen induced proliferation of splenic lymphocytes, and development of cytotoxic T lymphocytes is significantly suppressed at 12.5-30 micromol/L curcumin. The generation of LAK cells at similar concentrations was less sensitive to the suppressive effect of curcumin compared to the generation of antigen specific CTLs. Curcumin irreversibly impaired the production of these immune functions, since lymphoid cells failed to respond to the activation signals following 8h pretreatment with curcumin. Curcumin also inhibited the expression/production of IL-2 and interferon-gamma (IFN-gamma) by splenic T lymphocytes and IL-12 and tumor necrosis factor-alpha (TNF-alpha) by peritoneal macrophages irreversibly. Curcumin inhibited the activation of the transcription factor nuclear factor kappaB (NF-kappaB) without affecting the levels of constitutively expressed NF-kappaB. The latter result suggests that curcumin most likely inhibits cell proliferation, cell-mediated cytotoxicity (CMC), and cytokine production by inhibiting NF-kappaB target genes involved in induction of these immune responses.
Collapse
Affiliation(s)
- Xiaohua Gao
- Division of Surgical Research, Department of Surgery, Henry Ford Health System, One Ford Place-4D, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Vandenbroeck K, Alloza I, Gadina M, Matthys P. Inhibiting cytokines of the interleukin-12 family: recent advances and novel challenges. J Pharm Pharmacol 2004; 56:145-60. [PMID: 15005873 DOI: 10.1211/0022357022962] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Interleukin-12 (IL-12) and the more recently discovered IL-23 and IL-27 constitute a unique family of structurally related, heterodimeric cytokines that regulate cell-mediated immune responses and T helper 1 (Th1)-type inflammatory reactions. Not surprisingly, the potentiality of treating conditions such as multiple sclerosis (MS) and rheumatoid arthritis (RA) through pharmacological interference with IL-12 pathways has received widespread attention. In this review we have examined over 50 substances with reported IL-12 inhibitory effects. We demonstrate that a majority of these belong to a limited number of major functional classes, each of which targets discrete events in the IL-12 biological pathway. Thus, most IL-12 inhibitory substances appear to work either through inhibition of transcription factor NF-kappa B activation, up-regulation of intracellular cAMP, blockage of posttranslational processing or interference with signal transduction pathways. In addition, cyclophilin-binding drugs, and generic inhibitors of nuclear histone deacetylases, and of ion channels, pumps and antiporters are emerging as potential leads to novel targets for interference with IL-12 production. Many inhibitors of NF-kappa B and of IL-12 signal transduction have been proven effective in limiting or preventing disease in experimental autoimmune encephalomyelitis (EAE) models of MS. The sharing of the p40 subunit, the IL-12R beta 1 and components of the signal transduction pathways between IL-12 and IL-23 raises the question as to whether the beneficial effects of various drugs previously ascribed to inhibition of IL-12 may, in fact, have been due to concurrent blockage of both cytokines, or of IL-23, rather than IL-12. Moreover, the homodimeric beta(2)-form of IL-12, though originally considered to display only antagonistic effects, is now emerging as a pronounced agonist in a variety of inflammatory processes. Reassessment of IL-12 inhibitory compounds is therefore needed to scrutinize their effects on IL-12 alpha beta, beta(2) and IL-23 formation. This is likely to open exciting perspectives to the identification of drugs that target these cytokines either indiscriminately or selectively. The functional diversity of presently available inhibitors should facilitate an unprecedented flexibility in designing future trials for the treatment of IL-12- and IL-23-mediated disorders.
Collapse
Affiliation(s)
- Koen Vandenbroeck
- Cytokine Biology and Genetics Programme, Biomolecular Sciences Research Group, School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | | | | | | |
Collapse
|
41
|
Salh B, Assi K, Templeman V, Parhar K, Owen D, Gómez-Muñoz A, Jacobson K. Curcumin attenuates DNB-induced murine colitis. Am J Physiol Gastrointest Liver Physiol 2003; 285:G235-43. [PMID: 12637253 DOI: 10.1152/ajpgi.00449.2002] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Numerous therapies used for inflammatory bowel disease (IBD) target the transcription factor NF-kappaB, which is involved in the production of cytokines and chemokines integral for inflammation. Here we show that curcumin, a component of the spice turmeric, is able to attenuate colitis in the dinitrobenzene sulfonic acid (DNB)-induced murine model of colitis. When given before the induction of colitis it reduced macroscopic damage scores and NF-kappaB activation. This was accompanied by a reduction in myeloperoxidase activity, and using semiquantitative RT-PCR, an attenuation of the DNB-induced message for IL-1beta was detected. Western blotting analysis revealed that there was a reproducible DNB-induced activation of p38 MAPK detected in intestinal lysates by using a phosphospecific antibody. This signal was significantly attenuated by curcumin. Furthermore, we show that the immunohistochemical signal is dramatically attenuated at the level of the mucosa by curcumin. We conclude that the widely used food additive curcumin is able to attenuate experimental colitis through a mechanism correlated with the inhibition of the activation of NF-kappaB and effects a reduction in the activity of p38 MAPK. We propose that this agent may have therapeutic implications for human IBD.
Collapse
Affiliation(s)
- B Salh
- Jack Bell Research Centre, Children and Women's Hospital, Vancouver, BC, Canada V5Z 3P1
| | | | | | | | | | | | | |
Collapse
|
42
|
Kang BY, Lee SW, Kim TS. Stimulation of interleukin-12 production in mouse macrophages via activation of p38 mitogen-activated protein kinase by alpha2-adrenoceptor agonists. Eur J Pharmacol 2003; 467:223-31. [PMID: 12706479 DOI: 10.1016/s0014-2999(03)01628-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Interleukin-12 is a cytokine primarily produced by monocytes and macrophages. It plays an essential role in the development of cell-mediated immunity and stimulates T helper type 1 (Th1) immune responses. This study was designed to determine if alpha(2)-adrenoceptor agonists are involved in the induction of interleukin-12 production by macrophages. alpha(2)-adrenoceptor agonists such as clonidine, guanfacine, and oxymetazoline significantly induced interleukin-12 secretion and interleukin-12 mRNA expression by macrophages in a concentration-dependent manner. Moreover, stimulation of alpha(2)-adrenoceptor by their agonists triggered the activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Inhibitors of p38 MAPK prevented the stimulatory effects of alpha(2)-adrenoceptor agonists on IL-12 production. Yohimbine and 2-(2,3-dihydro-2-methoxy-1,4-benzodioxin-2-yl)4,5-dihydro-1H-imidazole (RX821002), alpha(2)-adrenoceptor antagonists, significantly blocked agonist-induced interleukin-12 production and p38 MAPK activation, indicating that the effects of the agonists were mediated through alpha(2)-adrenoceptor. In addition, protein kinase C (PKC) inhibitors, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7) and chelerythrine, significantly inhibited guanfacine-induced interleukin-12 production and p38 MAPK in a concentration-dependent manner. These findings show that alpha(2)-adrenoceptor agonists induce interleukin-12 production in mouse macrophages via a PKC/p38 MAPK signaling pathway and suggest that the effect of alpha(2)-adrenoceptor agonists on interleukin-12 secretion may be a new and novel means of augmenting cell-mediated immune responses.
Collapse
Affiliation(s)
- Bok Yun Kang
- Immunology Laboratory, College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Kwangju 500-757, Republic of Korea
| | | | | |
Collapse
|
43
|
Chainani-Wu N. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med 2003; 9:161-8. [PMID: 12676044 DOI: 10.1089/107555303321223035] [Citation(s) in RCA: 652] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
INTRODUCTION Tumeric is a spice that comes from the root Curcuma longa, a member of the ginger family, Zingaberaceae. In Ayurveda (Indian traditional medicine), tumeric has been used for its medicinal properties for various indications and through different routes of administration, including topically, orally, and by inhalation. Curcuminoids are components of tumeric, which include mainly curcumin (diferuloyl methane), demethoxycurcumin, and bisdemethoxycurcmin. OBJECTIVES The goal of this systematic review of the literature was to summarize the literature on the safety and anti-inflammatory activity of curcumin. METHODS A search of the computerized database MEDLINE (1966 to January 2002), a manual search of bibliographies of papers identified through MEDLINE, and an Internet search using multiple search engines for references on this topic was conducted. The PDR for Herbal Medicines, and four textbooks on herbal medicine and their bibliographies were also searched. RESULTS A large number of studies on curcumin were identified. These included studies on the antioxidant, anti-inflammatory, antiviral, and antifungal properties of curcuminoids. Studies on the toxicity and anti-inflammatory properties of curcumin have included in vitro, animal, and human studies. A phase 1 human trial with 25 subjects using up to 8000 mg of curcumin per day for 3 months found no toxicity from curcumin. Five other human trials using 1125-2500 mg of curcumin per day have also found it to be safe. These human studies have found some evidence of anti-inflammatory activity of curcumin. The laboratory studies have identified a number of different molecules involved in inflammation that are inhibited by curcumin including phospholipase, lipooxygenase, cyclooxygenase 2, leukotrienes, thromboxane, prostaglandins, nitric oxide, collagenase, elastase, hyaluronidase, monocyte chemoattractant protein-1 (MCP-1), interferon-inducible protein, tumor necrosis factor (TNF), and interleukin-12 (IL-12). CONCLUSIONS Curcumin has been demonstrated to be safe in six human trials and has demonstrated anti-inflammatory activity. It may exert its anti-inflammatory activity by inhibition of a number of different molecules that play a role in inflammation.
Collapse
Affiliation(s)
- Nita Chainani-Wu
- Department of Stomatology, University of California, San Francisco, CA 94143-0658, USA.
| |
Collapse
|
44
|
Sugimoto K, Hanai H, Tozawa K, Aoshi T, Uchijima M, Nagata T, Koide Y. Curcumin prevents and ameliorates trinitrobenzene sulfonic acid-induced colitis in mice. Gastroenterology 2002; 123:1912-22. [PMID: 12454848 DOI: 10.1053/gast.2002.37050] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Curcumin is known to have a variety of pharmacologic effects, including antitumor, anti-inflammatory, and anti-infectious activities. The pleiotropic effects of curcumin are attributable at least in part to inhibition of transcriptional factor nuclear factor kappaB (NF-kappaB). However, the effect of curcumin on intestinal inflammation has hitherto not been evaluated. The aim of this study was to determine whether treatment with curcumin prevents and ameliorates colonic inflammation in a mouse model of inflammatory bowel disease. METHODS Mice with trinitrobenzene sulfonic acid (TNBS)-induced colitis were treated with 0.5%, 2.0%, or 5.0% curcumin in the diet, and changes in body weight together with histologic scores were evaluated. Colonic T-cell subsets were characterized, and NF-kappaB in colonic mucosa was detected by immunohistochemistry. NF-kappaB activity in the colonic mucosa was evaluated using electrophoretic mobility shift assay. Cytokine messenger RNA expression in colonic tissue was assessed by semiquantitative reverse-transcription polymerase chain reaction. RESULTS Treatment of mice with curcumin prevented and improved both wasting and histopathologic signs of TNBS-induced colonic inflammation. Consistent with these findings, CD4(+) T-cell infiltration and NF-kappaB activation in colonic mucosa were suppressed in the curcumin-treated group. Suppression of proinflammatory cytokine messenger RNA expression in colonic mucosa was also observed. CONCLUSIONS This study has shown for the first time that treatment with curcumin can prevent and improve murine experimental colitis. This finding suggests that curcumin could be a potential therapeutic agent for the treatment of patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Ken Sugimoto
- First Department of Internal Medicine, Hamamatsu University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Hidaka H, Ishiko T, Furuhashi T, Kamohara H, Suzuki S, Miyazaki M, Ikeda O, Mita S, Setoguchi T, Ogawa M. Curcumin inhibits interleukin 8 production and enhances interleukin 8 receptor expression on the cell surface:impact on human pancreatic carcinoma cell growth by autocrine regulation. Cancer 2002; 95:1206-14. [PMID: 12216086 DOI: 10.1002/cncr.10812] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Curcumin, the yellow pigment in turmeric, has been shown to prevent tumor progression in a variety of tissues in rodents. The authors investigated the effect of curcumin on human carcinoma cell lines to determine whether constitutive interleukin-8 (IL-8) production of tumor cells was correlated with nuclear factor kappaB (NF-kappaB) activation and cell growth activity. METHODS A human pancreatic carcinoma cell line, SUIT-2, was incubated with various concentrations of curcumin for 2 hours. Biologic features, including IL-8 production, DNA binding activity, transactivation of NF-kappaB, cell growth activity, cell viability, and the expression of IL-8 receptors (CXCR1 and CXCR2) were analyzed. RESULTS The constitutive production of IL-8 was inhibited by curcumin at concentrations of 10-100 microM in a dose dependent manner. NF-kappaB activity was reduced significantly by curcumin treatment. Pretreatment with curcumin inhibited the growth rate of carcinoma cells significantly. Such cell growth inhibition by curcumin was not recovered by exogenous recombinant IL-8. The investigation of expression in IL-8 receptors, CXCR1 and CXCR2, revealed that the expression of both receptors was enhanced remarkably by curcumin. Exogenous IL-8 could not recover this enhancement of IL-8 receptors. These results suggest that curcumin inhibits IL-8-induced receptor internalization. CONCLUSIONS The authors concluded that curcumin contributed not only to the inhibition of IL-8 production but also to signal transduction through IL-8 receptors. These data suggest that curcumin reduces numerous IL-8 bioactivities that contribute to tumor growth and carcinoma cell viability. From this point of view, curcumin is a potent anticancer agent that inhibits the production of proinflammatory cytokines, including IL-8, by tumor cells.
Collapse
Affiliation(s)
- Hideki Hidaka
- Department of Surgery I, Miyazaki Medical College, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Xiong Q, Tezuka Y, Kaneko T, Li H, Tran LQ, Hase K, Namba T, Kadota S. Inhibition of nitric oxide by phenylethanoids in activated macrophages. Eur J Pharmacol 2000; 400:137-44. [PMID: 10913595 DOI: 10.1016/s0014-2999(00)00354-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nitric oxide (NO) is one of the pro-inflammatory molecules. Some phenylethanoids have been previously shown to possess anti-inflammatory effects. Seven phenylethanoids from the stems of Cistanche deserticola, viz. isoacteoside, tubuloside B, acteoside, 2'-O-acetylacteoside, echinacoside, cistanoside A and tubuloside A, were tested for their effect on NO radical generation by activated murine macrophages. At the concentration of 100-200 microM, all the phenylethanoids reduced (6.3-62.3%) nitrite accumulation in lipopolysaccharide (0.1 microgram/ml)-stimulated J774.1 cells. At 200 microM, they inhibited by 32.2-72.4% nitrite accumulation induced by lipopolysaccharide (0.1 microgram/ml)/interferon-gamma (100 U/ml) in mouse peritoneal exudate macrophages. However, these compounds did not affect the expression of inducible nitric oxide (iNOS) mRNA, the iNOS protein level, or the iNOS activity in lipopolysaccharide-stimulated J774.1 cells. Instead, they showed a clear scavenging effect (6.9-43.9%) at the low concentrations of 2-10 microM of about 12 microM nitrite generated from an NO donor, 1-propanamine-3-hydroxy-2-nitroso-1-propylhydrazino (PAPA NONOate). These results indicate that the phenylethanoids have NO radical-scavenging activity, which possibly contributes to their anti-inflammatory effects.
Collapse
Affiliation(s)
- Q Xiong
- Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, 2630-Sugitani, 930-0194, Toyama, Japan
| | | | | | | | | | | | | | | |
Collapse
|