1
|
Wang X, Wu T, Liu Z, Wang Y. Correlation of Dry Eye Disease and Laryngopharyngeal Reflux Based on Improved Symptoms With Combined Therapy. J Voice 2024:S0892-1997(24)00140-1. [PMID: 38763849 DOI: 10.1016/j.jvoice.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
OBJECTIVE To investigate the correlation between dry eye disease (DED) and laryngopharyngeal reflux (LPR) from the perspective of treatment response. STUDY DESIGN Cross-sectional studies. SETTING Analysis of data from patients with DED-related symptoms and LPR-related symptoms from May 2022 to January 2023 at AIER Eye Hospital (Hainan). METHODS The Ocular Surface Symptom Index (OSDI) scales and The Reflux Symptom Score (RSS) were investigated in patients attending China Aier Eye Hospital (Hainan) from May 2022 to January 2023, and OSDI scores >12 were categorized as DED, and RSS scores >13 were categorized as suspected laryngopharyngeal reflux (suspected LPR). Patients with DED and suspected LPR were randomly divided into three groups (group A: 0.3% sodium vitreous acid drops and 1% cyclosporine A drops only; group B: 0.3% sodium vitreous acid drops, 1% cyclosporine A drops, and Gastroftal tablets containing magnesium alginate and cimicifuga oil and esomeprazole; and group C: Gastroftal tablets and esomeprazole only orally) and were reviewed after 3 months for the RSS- and DED-related examinations. RESULT Two hundred and nineteen patients were enrolled. One hundred and ninety-one DED-positive and 28 DED-negative patients, 84 suspected LPR-positive and 135 LPR-negative patients, and the OSDI scores of LPR patients were significantly higher than those of LPR-negative patients (P < 0.001). Parameters related to DED and LPR were significantly lower in patients in group B than in groups A and C after treatment (P < 0.001). CONCLUSIONS LPR and DED are closely related. For patients with both LPR and DED, treating LPR and DED at the same time may be a better option.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Otolaryngology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, Beijing 100048, China
| | - Tingting Wu
- AIER Eye Hospital (Hainan) Hospital, Haikou, Hainan Province 570100, China
| | - Zhi Liu
- Department of Otolaryngology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, Beijing 100048, China
| | - Ying Wang
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province 210000, China.
| |
Collapse
|
2
|
Shen J, Liang Y, Bi Z, Yin X, Chen C, Zhao X, Liu S, Li Y. Cyclosporin A improves the hyperosmotic response in an experimental dry eye model by inhibiting the HMGB1/TLR4/NF-κB signaling pathway. Exp Eye Res 2023; 229:109418. [PMID: 36806672 DOI: 10.1016/j.exer.2023.109418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/29/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Hyperosmolarity is closely related to dry eye disease (DED), which induces corneal epithelial cell structure and dysfunction leading to ocular surface inflammation. Cyclosporine A (CSA) is a cyclopeptide consisting of 11 deduced amino acids. It has an immunosuppressive effect and shows a vital function in inhibiting the inflammatory response. The mechanism of CSA in DED is still not entirely clear. This experiment aimed to investigate the possible mechanism of CSA in the hyperosmotic DED model. This study found that CSA can inhibit the transcript levels of DED high mobility group protein 1 (HMGB1), Toll-like receptor 4 (TLR4) and nuclear transcription factor κB (NF-κB) in signaling pathways. In addition, the study also found that 550 mOsm/L can induce the formation of DED models in vivo or in vitro. Furthermore, different concentrations of CSA have different effects on the expression of HMGB1 in human corneal epithelial cells under hyperosmotic stimulation, and high concentrations of CSA may increase the expression of HMGB1. In addition, CSA effectively reduced the corneal fluorescence staining score of the DE group and increased the tear volume of mice. Therefore, this experimental investigation might supply new evidence for the mechanism of CSA in DED, provide a potential new therapy for treating DED, and provide a theoretical basis for CSA treatment of DED.
Collapse
Affiliation(s)
- Jiachao Shen
- Department of Ophthalmology, Binzhou Medical College, Yantai, 264000, China; Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China
| | - Yan Liang
- Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China
| | - Zhaojing Bi
- Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China
| | - Xin Yin
- Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China
| | - Chen Chen
- Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China
| | - Xinmei Zhao
- Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China
| | - Shujun Liu
- Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China.
| | - Yuanbin Li
- Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China.
| |
Collapse
|
3
|
Ahsanuddin S, Rios HA, Otero-Marquez O, Macanian J, Zhou D, Rich C, Rosen RB. Flavoprotein fluorescence elevation is a marker of mitochondrial oxidative stress in patients with retinal disease. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1110501. [PMID: 38983095 PMCID: PMC11182218 DOI: 10.3389/fopht.2023.1110501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/27/2023] [Indexed: 07/11/2024]
Abstract
Purpose Recent studies of glaucoma, age-related macular degeneration, and diabetic retinopathy have demonstrated that flavoprotein fluorescence (FPF) can be utilized non-invasively as an indicator of mitochondrial oxidative stress in the retina. However, a comprehensive assessment of the validity and reliability of FPF in differentiating between healthy and diseased eyes across multiple disease states is lacking. Here, we evaluate the sensitivity and specificity of FPF in discriminating between healthy and diseased eyes in four leading causes of visual impairment worldwide, one of which has not been previously evaluated using FPF. We also evaluate the association between FPF and visual acuity. Methods A total of 88 eyes [21 eyes of 21 unaffected controls, 20 eyes from 20 retinal vein occlusion (RVO) patients, 20 eyes from 20 diabetic retinopathy (DR) patients, 17 eyes from 17 chronic exudative age-related macular degeneration (exudative AMD) patients, and 10 eyes from 10 central serous retinopathy (CSR) patients] were included in the present cross-sectional observational study. Eyes were imaged non-invasively using a specially configured fundus camera OcuMet Beacon® (OcuSciences, Ann Arbor, MI). The macula was illuminated using a narrow bandwidth blue light (455 - 470 nm) and fluorescence was recorded using a narrow notch filter to match the peak emission of flavoproteins from 520 to 540 nm. AUROC analysis was used to determine the sensitivity of FPF in discriminating between diseased eyes and healthy eyes. Nonparametric Kruskal-Wallis Tests with post-hoc Mann Whitney U tests with the Holm-Bonferroni correction were performed to assess differences in FPF intensity, FPF heterogeneity, and best corrected visual acuity (BCVA) between the five groups. Spearman rank correlation coefficients were calculated to assess the relationship between FPF and BCVA. Results AUROC analysis indicated that FPF intensity is highly sensitive for detecting disease, particularly for exudative AMD subjects (0.989; 95% CI = 0.963 - 1.000, p=3.0 x 107). A significant difference was detected between the FPF intensity, FPF heterogeneity, and BCVA in all four disease states compared to unaffected controls (Kruskal-Wallis Tests, p = 1.06 x 10-8, p = 0.002, p = 5.54 x 10-8, respectively). Compared to healthy controls, FPF intensity values were significantly higher in RVO, DR, exudative AMD, and CSR (p < 0.001, p < 0.001, p < 0.001, and p = 0.001, respectively). Spearman rank correlation coefficient between FPF intensity and BCVA was ρ = 0.595 (p = 9.62 x 10-10). Conclusions Despite variations in structural retinal findings, FPF was found to be highly sensitive for detecting retinal disease. Significant FPF elevation were seen in all four disease states, with the exudative AMD patients exhibiting the highest FPF values compared to DR, CSR, and RVO subjects. This is consistent with the hypothesis that there is elevated oxidative stress in all of these conditions as previously demonstrated by blood studies. FPF intensity is moderately correlated with the late-in disease-marker BCVA, which suggests that the degree of FPF elevation can be used as a metabolic indicator of disease severity.
Collapse
Affiliation(s)
- Sofia Ahsanuddin
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, United States
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Hernan A. Rios
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, United States
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Oscar Otero-Marquez
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, United States
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jason Macanian
- Department of Medical Education, New York Medical College, Valhalla, NY, United States
| | - Davis Zhou
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, United States
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Collin Rich
- OcuSciences Inc., Ann Arbor, MI, United States
| | - Richard B. Rosen
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, United States
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
4
|
Wong JHC, Ma JYW, Jobling AI, Brandli A, Greferath U, Fletcher EL, Vessey KA. Exploring the pathogenesis of age-related macular degeneration: A review of the interplay between retinal pigment epithelium dysfunction and the innate immune system. Front Neurosci 2022; 16:1009599. [PMID: 36408381 PMCID: PMC9670140 DOI: 10.3389/fnins.2022.1009599] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/12/2022] [Indexed: 07/30/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss in the older population. Classical hallmarks of early and intermediate AMD are accumulation of drusen, a waste deposit formed under the retina, and pigmentary abnormalities in the retinal pigment epithelium (RPE). When the disease progresses into late AMD, vision is affected due to death of the RPE and the light-sensitive photoreceptors. The RPE is essential to the health of the retina as it forms the outer blood retinal barrier, which establishes ocular immune regulation, and provides support for the photoreceptors. Due to its unique anatomical position, the RPE can communicate with the retinal environment and the systemic immune environment. In AMD, RPE dysfunction and the accumulation of drusen drive the infiltration of retinal and systemic innate immune cells into the outer retina. While recruited endogenous or systemic mononuclear phagocytes (MPs) contribute to the removal of noxious debris, the accumulation of MPs can also result in chronic inflammation and contribute to AMD progression. In addition, direct communication and indirect molecular signaling between MPs and the RPE may promote RPE cell death, choroidal neovascularization and fibrotic scarring that occur in late AMD. In this review, we explore how the RPE and innate immune cells maintain retinal homeostasis, and detail how RPE dysfunction and aberrant immune cell recruitment contribute to AMD pathogenesis. Evidence from AMD patients will be discussed in conjunction with data from preclinical models, to shed light on future therapeutic targets for the treatment of AMD.
Collapse
|
5
|
Bian ZM, Field MG, Elner SG, Elner VM. Expression and regulation of alarmin cytokine IL-1α in human retinal pigment epithelial cells. Exp Eye Res 2018; 172:10-20. [PMID: 29551335 DOI: 10.1016/j.exer.2018.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 02/08/2023]
Abstract
Human retinal pigment epithelial (hRPE) cells play important immune-regulatory roles in a variety of retinal pathologic processes, including the production of inflammatory cytokines that are essential mediators of the innate immune response within the ocular microenvironment. The pro-inflammatory "alarmin" cytokine IL-1α has been implicated in both infectious and non-infectious retinal diseases, but its regulation in the retina is poorly understood. The purpose of this study was to elucidate the expression and regulation of IL-1α within hRPE cells. To do this, IL-1α mRNA and protein in hRPE cells was assessed by RT-PCR, qPCR, ELISA, Western blot, and immunofluorescence following treatment with a variety of stimuli and inhibitors. ER stress, LPS, IL-1β, and TLR2 activation all significantly increased intracellular IL-1α protein. Increasing intracellular calcium synergized both LPS- and Pam3CSK4-induced IL-1α protein production. Accordingly, blocking calcium signaling and calpain activity strongly suppressed IL-1α protein expression. Significant but more moderate inhibition occurred following blockage of TLR4, caspase-4, or caspase-1. Neutralizing antibodies to IL-1β and TLR2 partially eliminated LPS- and TLR2 ligand Pam3CSK4-stimulated IL-1α protein production. IFN-β induced caspase-4 expression and activation, and also potentiated LPS-induced IL-1α expression, but IFN-β alone had no effect on IL-1α protein production. Interestingly, all inhibitors targeting the PI3K/Akt pathway, with the exception of Ly294002, strongly increased IL-1α protein expression. This study improves understanding of the complex mechanisms regulating IL-1α protein expression in hRPE cells by demonstrating that TLR4 and TLR2 stimulation and exposure to IL-1β, ER stress and intracellular calcium all induce hRPE cells to produce intracellular IL-1α, which is negatively regulated by the PI3K/Akt pathway. Additionally, the non-canonical inflammasome pathway was shown to be involved in LPS-induced hRPE IL-1α expression through caspase-4 signaling.
Collapse
Affiliation(s)
- Zong-Mei Bian
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI, 48105, United States
| | - Matthew G Field
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI, 48105, United States.
| | - Susan G Elner
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI, 48105, United States
| | - Victor M Elner
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI, 48105, United States
| |
Collapse
|
6
|
Distinct CD40L receptors mediate inflammasome activation and secretion of IL-1β and MCP-1 in cultured human retinal pigment epithelial cells. Exp Eye Res 2018; 170:29-39. [PMID: 29454857 DOI: 10.1016/j.exer.2018.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 11/22/2022]
Abstract
CD40L signaling occurs in several diseases with inflammatory components, including ocular and retinal diseases. However, it has never been evaluated as a pathogenic mechanism in age-related macular degeneration (AMD) or as an inducer of inflammasome formation in any cell type. mRNA and protein levels of CD40, IL-1β, NALP1, NALP3, caspase-1, and caspase-5 were determined by RT-PCR, qPCR, and Western blot. CD40L receptor (CD40, α5β1, and CD11b) expression was determined by Western and immunofluorescent staining. IL-1β, IL-18, and MCP-1 secretions were determined by ELISA. NALP1 and NALP3 inflammasome formation were determined by Co-IP. Experiments were conducted on primary human retinal pigment epithelial (hRPE) cells from four different donors. Human umbilical vein endothelial (HUVEC) and monocytic leukemia (THP-1) cells demonstrated the general applicability of our findings. In hRPE cells, CD40L-induced NALP1 and NALP3 inflammasome activation, cleavage of caspase-1 and caspase-5, and IL-1β and IL-18 secretion. Interestingly, neutralizing CD11b and α5β1 antibodies, but not CD40, reduced CD40L-induced IL-1β secretion in hRPE cells. Similarly, CD40L treatment also induced HUVEC and THP-1 cells to secret IL-1β through CD11b and α5β1. Additionally, the CD40L-induced IL-1β secretion acted in an autocrine/paracrine manner to feed back and induce hRPE cells to secrete MCP-1. This study is the first to show that CD40L induces inflammasome activation in any cell type, including hRPE cells, and that this induction is through CD11b and α5β1 cell-surface receptors. These mechanisms likely play an important role in many retinal and non-retinal diseases and provide compelling drug targets that may help reduce pro-inflammatory processes.
Collapse
|
7
|
Zhu ZY, Jia CZ, Luo JM, Wang L. Polyriboinosinic-polyribocytidylic acid facilitates interleukin-6, and interleukin-8 secretion in human dermal fibroblasts via the JAK/STAT3 and p38 MAPK signal transduction pathways. Cytokine 2018; 102:1-6. [PMID: 29245047 DOI: 10.1016/j.cyto.2017.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 02/05/2023]
Abstract
Polyriboinosinic-polyribocytidylic acid (polyI:C) is a viral dsRNA analoguethat promotes wounds healing, accelerates re-epithelialization, granulation and neovascularization, and induces pro-inflammatory cytokine release. Little is known about polyI:C mediated induction of inflammatory mediators in human dermal fibroblast (HDFs), which form the primary scaffold for epithelial cells covering the wound. Here, we found that polyI:C enhances IL-6 and IL-8 mRNA expression and induces of IL-6 and IL-8 production in a concentration-dependent and time-dependent manner in HDFs. PolyI:C treatment rapidly increased phosphorylation level of both STAT3 and p38 mitogen-activated protein kinase (MAPK). Moreover, pretreatment with AG490, a Janus kinase (JAK) inhibitor, inhibited polyI:C-induced STAT3 phosphorylation and subsequent IL-6 and IL-8 release. Conversely, pretreatment with SB203580, a selective inhibitor of p38 MAPK, blocked p38 MAPK phosphorylation and IL-6 and IL-8 expression. In conclusion, polyI:C induces IL-6 and IL-8 production in HDFs via the JAK/STAT3 and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Zhang Ying Zhu
- Department of Pathophysiology, Shantou University Medical College, 5150412, People's Republic of China
| | - Cong Zhuo Jia
- Department of Dermatology, First Affiliated Hospital, Shantou University Medical College, 515041, People's Republic of China
| | - Jian Min Luo
- Department of Pathophysiology, Shantou University Medical College, 5150412, People's Republic of China.
| | - Li Wang
- Shenzhen University General Hospital, 518055, People's Republic of China; Department of Dermatology, First Affiliated Hospital, Shantou University Medical College, 515041, People's Republic of China; Huizhou Municipal Hospital, People's Republic of China.
| |
Collapse
|
8
|
Otsuka M, Okinaga T, Ariyoshi W, Kitamura C, Nishihara T. Ameloblastin Upregulates Inflammatory Response Through Induction of IL-1β in Human Macrophages. J Cell Biochem 2017; 118:3308-3317. [PMID: 28295583 DOI: 10.1002/jcb.25983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/08/2017] [Indexed: 11/10/2022]
Abstract
Ameloblastin (AMBN) is an enamel matrix protein that has various biological functions such as healing dental pulp and repairing bone fractures. In the present study, we clarified the effect of AMBN on the expression of an inflammatory cytokine, interleukin-1β (IL-1β) in lipopolysaccharide (LPS)-treated human macrophages. Real-time RT-PCR analysis showed that LPS treatment upregulated expression of the IL-1β gene in U937 cells. Interestingly, AMBN significantly enhanced IL-1β gene expression in LPS-treated U937 cells as well as the secretion of mature IL-1β into culture supernatants by these cells. AMBN also activated caspase-1 p10 expression in LPS-treated U937 cells. Pretreatment with a caspase-1 inhibitor, Z-YVAD-FMK, downregulated the mature IL-1β expression enhanced by AMBN treatment in LPS-treated U937 cells. A co-immunoprecipitation assay showed that treatment with LPS and AMBN upregulated toll-like receptor 4 (TLR4) and myeloid differentiation primary response gene 88 (MyD88) interactions, but there was no significant difference compared with LPS treatment alone in U937 cells. In contrast, western blot analysis revealed that AMBN remarkably prolonged the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), a member of the mitogen-activated protein kinase (MAPK) family. An ERK1/2-selective inhibitor, U0126, suppressed expression of the IL-1β gene as well as its protein expression in U937 cells treated with LPS and AMBN. Taken together, these results indicate that AMBN enhances IL-1β production in LPS-treated U937 cells through ERK1/2 phosphorylation and caspase-1 activation, suggesting that AMBN upregulates the inflammatory response in human macrophages and plays an important role in innate immunity. J. Cell. Biochem. 118: 3308-3317, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mai Otsuka
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu 803-8580, Japan.,Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Toshinori Okinaga
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Chiaki Kitamura
- Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Tatsuji Nishihara
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu 803-8580, Japan
| |
Collapse
|
9
|
Histone deacetylase inhibitors suppress immature dendritic cell's migration by regulating CC chemokine receptor 1 expression. Cell Immunol 2017; 316:11-20. [PMID: 28341057 DOI: 10.1016/j.cellimm.2017.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 11/23/2022]
Abstract
The modulation of immature dendritic cells (iDCs), which involves processes such as phagocytosis, migration, and maturation, is considered a beneficial research theme. Once activated by an antigen, iDCs turn to mature DCs (mDCs) and migrate towards secondary lymphoid organs, and initiate the progress of cellular immunity. Histone deacetylase inhibitors (HDACis) are also thought to be a major modulator of cellular immunity. Herein, we demonstrate that HDACis (trichostatin-A (TSA), sodium butylate (SB), scriptaid (ST)) play a central regulatory role in the migratory activity of iDCs. In our results, TSA, SB and ST showed the potent inhibitory effect on the migration of iDCs stimulated by MIP-1α. The inhibitory activities of HDACis were found to be caused by reduction of CCR1 expression on the cell surface, and by the inhibition of phosphorylation of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases 1 and 2 (ERK 1/2), and c-Jun N-terminal kinase (JNK).
Collapse
|
10
|
Li D, Chen J, Ye J, Zhai X, Song J, Jiang C, Wang J, Zhang H, Jia X, Zhu F. Anti-inflammatory effect of the six compounds isolated from Nauclea officinalis Pierrc ex Pitard, and molecular mechanism of strictosamide via suppressing the NF-κB and MAPK signaling pathway in LPS-induced RAW 264.7 macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2017; 196:66-74. [PMID: 27989509 DOI: 10.1016/j.jep.2016.12.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nauclea officinalis Pierrc ex Pitard. is a Chinese medicinal herb that contains high level of alkaloids which is the most abundant and active constituent. Strictosamide isolated from Nauclea officinalis Pierrc ex Pitard. showed significant effects on inflammatory response, compared with pumiloside, 3-epi-pumiloside, vincosamide, 3α,5α-tetrahydrodeoxycordifoline lactam and naucleamide A-10-O-β-D-glucopyranoside of this plant. AIM OF STUDY we investigated the biological activities of the six compounds mentioned-above, and the underlying molecular mechanism exerted by the most potent one, strictosamide. MATERIALS AND METHODS The effects of strictosamide and other five compounds on the inhibitory activity of nitric oxide (NO) were screened by Griess test. The contents of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in media were detected by using Enzyme-linked immunosorbent (ELISA) kits. The effects on the mRNA expression of nitric oxide synthase (iNOS), TNF-α and IL-1β of strictosamide were further investigated by RT-qPCR. Western blot assay was conducted to illustrate the effects of strictosamide on iNOS and phosphorylation of p65, inhibitor of NF-κB (IκB)-α, IκB-kinase (IKK)-α as well as p-extracellular signal-regulated kinase (ERK), p-c-jun N-terminal kinase (JNK) and p-p38 in the protein levels. RESULTS Strictosamide potently suppressed the productions of NO, TNF-α and IL-1β in LPS-induced RAW 264.7 macrophages, and it dose-dependently alleviated the LPS-simulated protein level of iNOS as well as the mRNA expressions of iNOS, TNF-α and IL-1β. In addition, molecular data revealed that strictosamide markedly decreased the expressions of p-p65, p-IκBα and p-IKKα. Furthermore, strictosamide significantly attenuated LPS-induced the phosphorylation of p38, ERK and JNK. CONCLUSIONS At present study, the results indicated that the anti-inflammatory activity of strictosamide was associated with the restraint of NO, TNF-α and IL-1β via negative regulation of both NF-κB and mitogen-activated protein kinases (MAPKs) in LPS-induced RAW 264.7 cells.
Collapse
Affiliation(s)
- DongYu Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China; Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - JiaQuan Chen
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - JiQing Ye
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - XiaoTing Zhai
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China; Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jie Song
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - CuiHua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, PR China
| | - Jing Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Hao Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - XiaoBin Jia
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - FenXia Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China.
| |
Collapse
|
11
|
Kim JH, Oh SY, Han SB, Uddin GM, Kim CY, Lee JK. Anti-inflammatory effects of Dendrobium nobile derived phenanthrenes in LPS-stimulated murine macrophages. Arch Pharm Res 2014; 38:1117-26. [PMID: 25370607 DOI: 10.1007/s12272-014-0511-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 10/24/2014] [Indexed: 01/09/2023]
Abstract
Dendrobium nobile belongs to the Orchidaceae family and is one of the medicinal herbs used in traditional Chinese medicine as a therapeutic agent for gastrointestinal and cardiovascular diseases. In this study, we separated three phenanthrenes (ephemeranthol A (EA), 1,5,7-trimethoxyphenanthren-2-ol (TP), dehydroorchinol (DO)) from D. nobile, and compared their anti-inflammatory activities. TP is a new phenanthrene compound and its structure was determined from (1)H, (13)C NMR and HR-ESI-MS data. To analyze the anti-inflammatory activities of the phenanthrenes, Raw 264.7 cells were used, since they are immature-macrophages and easily matured by LPS stimulation. EA and DO showed anti-inflammatory activities in the activated Raw 264.7 cells. That is, we showed that EA is a potent inhibitor of the production of nitric oxide and pro-inflammatory cytokines. The inhibitory activities of phenanthrenes were found to be caused by blockage of NF-κB activation and the phosphorylation of MAP kinases in the macrophages. These results are expected to serve as a guide for future studies on the ability of phenanthrenes to inhibit acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jeong Hwa Kim
- Department of Biology Education, College of Education, Chungbuk National University, Cheongju, Chungcheongbuk-Do, 361-763, Republic of Korea
| | | | | | | | | | | |
Collapse
|
12
|
The retinal pigment epithelium (RPE) induces FasL and reduces iNOS and Cox2 in primary monocytes. Graefes Arch Clin Exp Ophthalmol 2014; 252:1747-54. [PMID: 25059476 DOI: 10.1007/s00417-014-2742-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/30/2014] [Accepted: 07/08/2014] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Retinal pigment epithelium (RPE) cells may alter the phenotype of monocytes by soluble factors that may be influenced by stimulation of the RPE. Since RPE cells carry the toll-like receptor-3 (TLR3) that detects and reacts to viral infection through binding of dsRNA we investigated the effects of RPE cells with or without TLR3 stimulation on blood-derived monocytes with respect to regulation of pro-/anti-inflammatory cytokines, anti-angiogenic factors and migratory properties. METHODS Primary RPE cells were prepared from porcine eyes; monocytes were prepared from porcine blood. TLR3 activation was induced by polyinosinic:polycytidylic acid (Poly I:C). RPE cells were stimulated with Poly I:C in different concentrations for 24 hours and a cell culture supernatant was applied to the monocytes. Expression of CD14 and Fas ligand (FasL) was determined via flow cytometry. The expression of IL-6, IL-1ß, TNFα, Cox2, iNOS and IL-10 was determined via quantitative RT-PCR. Migration was determined using Boyden chamber experiments. RESULTS The supernatant of RPE cells, irrespective of TLR3 activation, induced FasL expression in the monocytes. Expression of iNOS and Cox2 was reduced by RPE cells and the reduction of Cox2 but not if iNOS was lost under TLR3 activation. No induction of IL-6, IL-1ß, IL-10 or TNFα by the RPE was seen. TLR3-activated RPE cells induced monocyte migration. CONCLUSION RPE cells induce an upregulation of FasL and a downregulation of iNOS and Cox2 without upregulating inflammatory cytokines, possibly inducing an anti-angiogenic phenotype in the monocytes. This phenotype is still upheld after challenging RPE cells with dsRNA, mimicking a viral infection.
Collapse
|
13
|
Liu RT, Wang A, To E, Gao J, Cao S, Cui JZ, Matsubara JA. Vinpocetine inhibits amyloid-beta induced activation of NF-κB, NLRP3 inflammasome and cytokine production in retinal pigment epithelial cells. Exp Eye Res 2014; 127:49-58. [PMID: 25041941 DOI: 10.1016/j.exer.2014.07.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/13/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
Abstract
Chronic inflammation is a key pathogenic process in age-related macular degeneration (AMD). Amyloid-beta (Aβ) is a constituent of AMD drusen and promotes the activation of NLRP3 inflammasome which facilitates the production of cytokines. We investigated the role of transcription factor NF-κB in the activation of inflammasome in the RPE and the effect of vinpocetine, a dietary supplement with inhibitory effect on NF-κΒ. ARPE19/NF-κB-luciferase reporter cells treated with Aβ demonstrated enhanced NF-κB activation that was significantly suppressed by vinpocetine. Intraperitoneal injection of vinpocetine (15 mg/kg) inhibited NF-κB nuclear translocation and reduced the expression and activation of NLRP3, caspase-1, IL-1β, IL-18, and TNF-α in the RPE of adult rats that received intraocular Αβ, as measured by retinal immunohistochemistry and Western blot. Cytokine level in the vitreous was assayed using multiplex suspension arrays and revealed significantly lower concentration of MIP-3α, IL-6, IL-1α, IL-1β, IL-18, and TNF-α in vinpocetine treated animals. These results suggest that the NF-κB pathway is activated by Aβ in the RPE and signals the priming of NLRP3 inflammasome and the expression of pro-inflammatory cytokines including the inflammasome substrates IL-1β and IL-18. NF-κB inhibition may be an effective approach to stem the chronic inflammatory milieu that underlies the development of AMD. Vinpocetine is a potentially useful anti-inflammatory agent that is well-tolerated in long term use.
Collapse
Affiliation(s)
- Ruozhou Tom Liu
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Aikun Wang
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Eleanor To
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jiangyuan Gao
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sijia Cao
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jing Z Cui
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Joanne A Matsubara
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
14
|
Anti-Inflammatory Effects of Gomisin N, Gomisin J, and Schisandrin C Isolated from the Fruit ofSchisandra chinensis. Biosci Biotechnol Biochem 2014; 74:285-91. [DOI: 10.1271/bbb.90597] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Liu L, Wang Z. Estrogen attenuates lipopolysaccharide-induced nitric oxide production in macrophages partially via the nongenomic pathway. Cell Immunol 2013; 286:53-8. [PMID: 24321566 DOI: 10.1016/j.cellimm.2013.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/29/2013] [Accepted: 11/13/2013] [Indexed: 01/13/2023]
Abstract
Steroid hormones exert genotropic effects through members of the nuclear hormone receptor family. In the present study, we examined the effects of 17β-estradiol (E2) on nitric oxide (NO) production following lipopolysaccharide (LPS) stimulation and investigated the mechanisms in mouse bone marrow-derived macrophages (BMMs). E2 alone did not affect NO production. In contrast, E2 inhibited LPS-induced production of NO in BMMs. Using a cell-impermeable E2 conjugated to BSA (E2-BSA), which has been used to investigate the nongenomic effects of estrogen, we found that the increase in NO production induced by LPS was also attenuated. In addition, the intracellular estrogen receptor blocker, ICI 182780, only partially antagonized the total effects of E2 on LPS-stimulated NO production capacity. E2 also attenuated the LPS activation of p38 mitogen-activated protein kinase (MAPK) but not that of extracellular-regulated protein kinase 1/2 (ERK1/2) and c-Jun NH2-terminal kinase (JNK). This attenuation was not abrogated by ICI 182780. Moreover, the p38 inhibitor, SB 203580, greatly reduced the LPS-induced NO production, and the remaining NO levels were no longer regulated by E2. Additionally, E2-BSA inhibited LPS-mediated changes in p38 MAPK activation to the same extent as E2. Moreover, E2 and E2-BSA inhibited LPS-induced activation of nuclear factor-kappa B (NF-κB) and activator protein 1 (AP-1). This inhibitory effect of E2 was only partially antagonized by ICI 182780. Taken together, these results suggest that E2 has an inhibitory effect on LPS-induced NO production in BMMs through inhibition of p38 MAPK phosphorylation, and blockade of NF-κB and AP-1 activation. These effects are mediated at least in part via a nongenomic pathway.
Collapse
Affiliation(s)
- Limin Liu
- Departments of Pathology and Pathophysiology, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Zufeng Wang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
16
|
Kim YH, Han SB, Lee JK. Histone deacetylase inhibitors suppress CXCR4-mediated dendritic cell migration by regulation of maturation process. Cell Immunol 2013; 284:139-45. [DOI: 10.1016/j.cellimm.2013.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/05/2013] [Accepted: 07/28/2013] [Indexed: 10/26/2022]
|
17
|
Xie C, Ma L, Liu J, Li X, Pei H, Xiang M, Chen L. SKLB023 blocks joint inflammation and cartilage destruction in arthritis models via suppression of nuclear factor-kappa B activation in macrophage. PLoS One 2013; 8:e56349. [PMID: 23431370 PMCID: PMC3576337 DOI: 10.1371/journal.pone.0056349] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/08/2013] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is the most common arthritis and is mainly characterized by symmetric polyarticular joint disorders. Our previous study demonstrated a novel small molecule compound (Z)-N-(3-Chlorophenyl)-2-(4-((2,4-dioxothiazolidin-5-ylidene) methyl) phenoxy) acet-amide (SKLB023) showed potently anti-arthritic effects in a rat arthritis model, however, the underlying mechanisms for this are largely unknown. Both NF-κB and macrophages were reported to play important roles in the pathologic processes of RA. The purposes of this study were to indicate whether NF-κB and macrophages contributed to anti-arthritic effects of SKLB023 in two experimental arthritis models. Our results showed that SKLB023 could significantly improve joint inflammation and cartilage destruction both in adjuvant induced arthritis (AIA) and collagen-induced arthritis (CIA) models. We further found that the binding activation of NF-κB to DNA in joint tissues and RAW264.7 macrophages were suppressed by SKLB023. SKLB023 also inhibited the NF-κB activity in peritoneal macrophages by luciferase assay. Furthermore, the number of macrophages in synovial tissues was decreased after the treatment of different doses of SKLB023. The levels of TNF-α, IL-1β, and IL-6 in plasma, and the levels of TNF-α, NO, and IL-1β in peritoneal macrophages were down-regulated by SKLB023. Finally, SKLB023 attenuated the expression of iNOS and COX-2 in vivo and suppressed the phosphorylations of components of the mitogen-activated protein kinases (MAPKs). These observations identify a novel function for SKLB023 as an inhibitor of NF-κB in macrophages of RA, highlighting that SKLB023 was a potential therapeutic strategy for RA.
Collapse
MESH Headings
- Acetanilides/pharmacology
- Acetanilides/therapeutic use
- Animals
- Ankle Joint/drug effects
- Ankle Joint/immunology
- Ankle Joint/pathology
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Cartilage, Articular/drug effects
- Cartilage, Articular/immunology
- Cartilage, Articular/pathology
- Cell Line
- Cyclooxygenase 2/metabolism
- Cytokines/blood
- Disease Models, Animal
- Female
- Inflammation Mediators/blood
- Lipopolysaccharides/pharmacology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Mice
- Mice, Inbred DBA
- Mitogen-Activated Protein Kinases/metabolism
- NF-kappa B/metabolism
- Nitric Oxide Synthase Type II/metabolism
- Phosphorylation
- Protein Processing, Post-Translational
- Rats
- Rats, Inbred Lew
- Signal Transduction/drug effects
- Thiazolidinediones/pharmacology
- Thiazolidinediones/therapeutic use
Collapse
Affiliation(s)
- Caifeng Xie
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, China
| | - Liang Ma
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, China
| | - Juan Liu
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, China
| | - Xiuxia Li
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, China
| | - Heying Pei
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, China
| | - Mingli Xiang
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, China
- * E-mail: (MX); (LC)
| | - Lijuan Chen
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, China
- * E-mail: (MX); (LC)
| |
Collapse
|
18
|
Yang H, Li T, Wei J, Zhang H, He S. Induction of tumor necrosis factor (TNF) release from subtypes of T cells by agonists of proteinase activated receptors. Mediators Inflamm 2013; 2013:165453. [PMID: 24453410 PMCID: PMC3876890 DOI: 10.1155/2013/165453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/22/2013] [Accepted: 11/22/2013] [Indexed: 02/05/2023] Open
Abstract
Serine proteinases have been recognized as playing an important role in inflammation via proteinase activated receptors (PARs). However, little is known about the influence of serine proteinases and PARs on TNF secretion from highly purified T cells. We challenged T cells from human peripheral blood with serine proteinases and agonist peptides of PARs and measured the levels of TNF in culture supernatants by ELISA. The results showed that thrombin and trypsin, but not tryptase, stimulated approximately up to 2.5-fold increase in TNF release from T cells following 16 h incubation. Proteinase inhibitors and PAR-1 antagonist SCH 79797 almost completely abolished thrombin- and trypsin-induced TNF release from T cells. Agonist peptides of PAR-1, but not PAR-2 induced TNF release from T cells. Moreover, trypsin- and thrombin-induced upregulated expression of TNF was observed in CD4+, IL-4+, or CD25+ T cells, but not in IFN+ or IL-17+ T cells. The signaling pathways MAPK/ERK and PI3K/Akt are involved in the thrombin- and trypsin-induced TNF release from T cells. In conclusion, thrombin and trypsin can induce TNF release from IL-4+ and CD25+ T cells through activation of PAR-1 and therefore contribute to regulation of immune response and inflammation of the body.
Collapse
Affiliation(s)
- Haiwei Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 300 Guangzhou Road, Jiangsu 210029, China
| | - Tao Li
- Department of Infectious Diseases, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jifu Wei
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 300 Guangzhou Road, Jiangsu 210029, China
| | - Huiyun Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Shaoheng He
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 300 Guangzhou Road, Jiangsu 210029, China
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, China
- *Shaoheng He:
| |
Collapse
|
19
|
Anti-inflammatory effects of dehydrogeijerin in LPS-stimulated murine macrophages. Int Immunopharmacol 2012; 14:734-9. [DOI: 10.1016/j.intimp.2012.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 10/05/2012] [Accepted: 10/10/2012] [Indexed: 01/13/2023]
|
20
|
Kim IT, Ryu S, Shin JS, Choi JH, Park HJ, Lee KT. Euscaphic acid isolated from roots of Rosa rugosa inhibits LPS-induced inflammatory responses via TLR4-mediated NF-κB inactivation in RAW 264.7 macrophages. J Cell Biochem 2012; 113:1936-46. [DOI: 10.1002/jcb.24062] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Soromou LW, Zhang Z, Li R, Chen N, Guo W, Huo M, Guan S, Lu J, Deng X. Regulation of inflammatory cytokines in lipopolysaccharide-stimulated RAW 264.7 murine macrophage by 7-O-methyl-naringenin. Molecules 2012; 17:3574-85. [PMID: 22441335 PMCID: PMC6269002 DOI: 10.3390/molecules17033574] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/27/2012] [Accepted: 03/15/2012] [Indexed: 11/16/2022] Open
Abstract
7-O-Methylnaringenin, extracted from Rhododendron speciferum, belongs to the flavanone class of polyphenols. In the present study, we investigated the anti-inflammatory effects of 7-O-methylnaringenin on cytokine production by lipopoly-saccharide (LPS)-stimulated RAW 264.7 macrophages in vitro. The results showed that pretreatment with 10, 20 or 40 μg/mL of 7-O-methylnaringenin could downregulate tumour necrosis factor (TNF-α), interleukin (IL-6) and interleukin (IL-1β) in a dose-dependent manner. Furthermore, we investigated the signal transduction mechanisms to determine how 7-O-methylnaringenin affects RAW 264.7 macrophages. The activation of mitogen-activated protein kinases (MAPK) and IκBα were measured by Western blotting. The data showed that 7-O-methylnaringenin could downregulate LPS-induced levels of phosphorylation of ERK1/2, JNK and IκBα. These observations indicated that 7-O-methylnaringenin modulated inflammatory cytokine responses by blocking NF-қB, ERK1/2 and JNK/MAPKs activation.
Collapse
Affiliation(s)
- Lanan Wassy Soromou
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China
| | - Zhichao Zhang
- ChangChun Central Hospital, Changchun 130051, Jilin, China
| | - Rongtao Li
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650224, China
| | - Na Chen
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China
| | - Weixiao Guo
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China
| | - Meixia Huo
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China
| | - Shuang Guan
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China
- Laboratory of Nutrition and Function Food, Jilin University, Changchun 130062, Jilin, China
- Authors to whom correspondence should be addressed; (S.G.); (J.L.); (X.D.); Tel.: +86-431-8783-6161; Fax: +86-431-8783-6160
| | - Jing Lu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China
- Laboratory of Nutrition and Function Food, Jilin University, Changchun 130062, Jilin, China
- Authors to whom correspondence should be addressed; (S.G.); (J.L.); (X.D.); Tel.: +86-431-8783-6161; Fax: +86-431-8783-6160
| | - Xuming Deng
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China
- Authors to whom correspondence should be addressed; (S.G.); (J.L.); (X.D.); Tel.: +86-431-8783-6161; Fax: +86-431-8783-6160
| |
Collapse
|
22
|
Bae DS, Kim YH, Pan CH, Nho CW, Samdan J, Yansan J, Lee JK. Protopine reduces the inflammatory activity of lipopolysaccharide-stimulated murine macrophages. BMB Rep 2012; 45:108-13. [DOI: 10.5483/bmbrep.2012.45.2.108] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Bian ZM, Elner SG, Khanna H, Murga-Zamalloa CA, Patil S, Elner VM. Expression and functional roles of caspase-5 in inflammatory responses of human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 2011; 52:8646-56. [PMID: 21969293 DOI: 10.1167/iovs.11-7570] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE To investigate the expression, activation, and functional involvement of caspase-5 in human retinal pigment epithelial (hRPE) cells. METHODS Expression and activation of caspase-5 in primary cultured hRPE cells, telomerase-immortalized hTERT-RPE1 cells (hTERT-RPE1), or both, were measured after stimulation with proinflammatory agents IL-1β, TNF-α, lipopolysaccharide (LPS), interferon-γ, monocyte coculture, adenosine triphosphate (ATP), or endoplasmic reticulum (ER) stress inducers. Immunomodulating agents dexamethasone (Dex), IL-10, and triamcinolone acetonide (TA) were used to antagonize proinflammatory stimulation. Cell death ELISA and TUNEL staining assays were used to assess apoptosis. RESULTS Caspase-5 mRNA expression and protein activation were induced by LPS and monocyte-hRPE coculture. Caspase-5 activation appeared as early as 2 hours after challenge by LPS and consistently increased to 24 hours. Meanwhile, caspase-1 expression and protein activation were induced by LPS. Activation of caspase-5 was blocked or reduced by Dex, IL-10, and TA. Activation of caspase-5 and -1 was also enhanced by ATP and ER stress inducers. Expression and activation of caspase-5 were inhibited by a caspase-1-specific inhibitor. Caspase-5 knockdown reduced caspase-1 protein expression and activation and inhibited TNF-α-induced IL-8 and MCP-1. In contrast to caspase-4, the contribution of caspase-5 to stress-induced apoptosis was moderate. CONCLUSIONS Caspase-5 mRNA synthesis, protein expression, and catalytic activation were highly regulated in response to various proinflammatory stimuli, ATP, and ER stress inducers. Mutual activation between caspase-5 and -1 suggests caspase-5 may work predominantly in concert with caspase-1 in modulating hRPE inflammatory responses.
Collapse
Affiliation(s)
- Zong-Mei Bian
- Department of Ophthalmology, University of Michigan, Ann Arbor, Michigan 48105, USA
| | | | | | | | | | | |
Collapse
|
24
|
Field MG, Yang D, Bian ZM, Petty HR, Elner VM. Retinal flavoprotein fluorescence correlates with mitochondrial stress, apoptosis, and chemokine expression. Exp Eye Res 2011; 93:548-55. [PMID: 21767533 PMCID: PMC3206137 DOI: 10.1016/j.exer.2011.06.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 06/16/2011] [Accepted: 06/28/2011] [Indexed: 12/31/2022]
Abstract
Oxidative stress and mitochondrial dysfunction occur before apoptosis in many retinal diseases. Under these conditions, a larger fraction of flavoproteins become oxidized and, when excited by blue-light, emit green flavoprotein fluorescence (FPF). In this study, we evaluated the utility of FPF as an early indicator of mitochondrial stress, pre-apoptotic cellular instability, and apoptosis of human retinal pigment epithelial (HRPE) cells subjected to hydrogen peroxide (H(2)O(2)) or monocytes (unstimulated or interferon-γ-stimulated) in vitro and of freshly-isolated pieces of human and rat neural retina subjected to H(2)O(2)ex vivo. Increased FPF of HRPE cells exposed to H(2)O(2) correlated with reduced mitochondrial membrane potential (ΔΨm) and increased apoptosis in a time- and dose-dependent manner. HRPE cells co-cultured with monocytes had increased FPF that correlated in a time-dependent manner with reduced ΔΨm, increased apoptosis, and early expression of pro-inflammatory chemokines, interleukin-8 (IL8) and monocyte chemotactic factor-1 (MCP1), which are known to be induced by oxidative stress. Increased FPF, reduced ΔΨm, and upregulation of IL8 and MCP1 occurred as early as 1-2 h after exposure to stressors, while apoptosis did not occur in HRPE cells until later time points. The antioxidant, N-acetyl-cysteine (NAC), inhibited increased FPF and apoptosis of HRPE cells subjected to H(2)O(2). Increased FPF of human and rat neural retina also correlated with increased apoptosis. This study suggests that FPF is a useful measure of mitochondrial function in retinal cells and tissues and can detect early mitochondrial dysfunction that may precede apoptosis.
Collapse
Affiliation(s)
- Matthew G. Field
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Dongli Yang
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Zong-Mei Bian
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Howard R. Petty
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| | - Victor M. Elner
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
25
|
Monocyte/macrophages promote vasculogenesis in choroidal neovascularization in mice by stimulating SDF-1 expression in RPE cells. Graefes Arch Clin Exp Ophthalmol 2011; 249:1667-79. [DOI: 10.1007/s00417-011-1699-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 03/27/2011] [Accepted: 04/10/2011] [Indexed: 10/18/2022] Open
|
26
|
Anti-inflammatory effects of eriodictyol in lipopolysaccharidestimulated raw 264.7 murine macrophages. Arch Pharm Res 2011; 34:671-9. [DOI: 10.1007/s12272-011-0418-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 12/09/2010] [Accepted: 01/31/2011] [Indexed: 10/18/2022]
|
27
|
Emmerson E, Campbell L, Ashcroft GS, Hardman MJ. The phytoestrogen genistein promotes wound healing by multiple independent mechanisms. Mol Cell Endocrinol 2010; 321:184-93. [PMID: 20193736 DOI: 10.1016/j.mce.2010.02.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/14/2010] [Accepted: 02/22/2010] [Indexed: 12/20/2022]
Abstract
Genistein has been implicated in the beneficial effects of soy on human health, particularly in the context of ageing. In post-menopausal women reduced systemic estrogen leads to a range of age-associated pathologies, including delayed cutaneous wound healing. We have previously shown that this can be reversed by estrogen replacement. However, the effect of genistein on the skin is poorly understood and crucially the influence of genistein on wound healing has not been assessed. 10-week-old ovariectomised mice were systemically treated with 17beta-estradiol or genistein. Genistein substantially accelerated wound repair, associated with a dampened inflammatory response. Unexpectedly, co-treatment with the ER antagonist ICI had little impact on the anti-inflammatory, healing promoting effects of genistein. Thus genistein's actions are only partially mediated via classical estrogen receptor-dependent signalling pathways. Indeed, we report that alternative (cell-type specific) signalling mechanisms are activated in the skin in response to genistein treatment.
Collapse
Affiliation(s)
- Elaine Emmerson
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | | | | |
Collapse
|
28
|
Bian ZM, Elner SG, Elner VM. Dual involvement of caspase-4 in inflammatory and ER stress-induced apoptotic responses in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 2009; 50:6006-14. [PMID: 19643964 PMCID: PMC3208232 DOI: 10.1167/iovs.09-3628] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the functional involvement of caspase-4 in human retinal pigment epithelial (hRPE) cells. METHODS Expression and activation of caspase-4 in hRPE cells were measured after stimulation with proinflammatory agents IL-1beta (2 ng/mL), TNF-alpha (20 ng/mL), lipopolysaccharide (1000 ng/mL), interferon-gamma (500 U/mL), or monocyte coculture in the absence or presence of immunomodulating agent cyclosporine (3 or 30 ng/mL), dexamethasone (10 microM), or IL-10 (100 U/mL) and endoplasmic reticulum (ER) stress inducer thapsigargin (25 nM) or tunicamycin (3 or 10 microM). The onset of ER stress was determined by expression of GRP78. The involvement of caspase-4 in inflammation and apoptosis was further examined by treating the cells with caspase-4 inhibitor Z-LEVD-fmk, caspase-1 and -4 inhibitor Z-YVAD-fmk, and pan-caspase inhibitor Z-VAD-fmk. RESULTS Caspase-4 mRNA expression and protein activation were induced by all the proinflammatory agents and ER stress inducers tested in this study. Caspase-4 activation was blocked or reduced by dexamethasone and IL-10. Elevated ER stress by proinflammatory agents and ER stress inducers was shown by increased expression of the ER stress marker GRP78. The induced caspase-4 and caspase-3 activities by tunicamycin and the stimulated IL-8 protein expression by IL-1beta were markedly reduced by caspase-4 inhibitor Z-LEVD-fmk. Although caspase-4 inhibitor Z-LEVD-fmk and caspase-1 and -4 inhibitor Z-YVAD-fmk reduced tunicamycin-induced hRPE apoptotic cell death by 59% and 86%, respectively, pan-caspase inhibitor Z-VAD-fmk completely abolished the induced apoptosis. CONCLUSIONS Caspase-4 is dually involved in hRPE proinflammatory and proapoptotic responses. Various proinflammatory stimuli and ER stress induce hRPE caspase-4 mRNA synthesis and protein activation. ER stress-induced hRPE cell death is caspase and, in part, caspase-4 dependent.
Collapse
Affiliation(s)
- Zong-Mei Bian
- Department of Ophthalmology, University of Michigan, Ann Arbor, Michigan 48105, USA
| | | | | |
Collapse
|
29
|
The role of endogenous and exogenous ligands for the peroxisome proliferator-activated receptor alpha (PPAR-alpha) in the regulation of inflammation in macrophages. Shock 2009; 32:62-73. [PMID: 19533851 DOI: 10.1097/shk.0b013e31818bbad6] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of the present study was to evaluate the role of endogenous and exogenous peroxisome proliferator-activated receptor alpha (PPAR-alpha), a nuclear receptor, on the regulation of inflammation in macrophages. To address this question, we have stimulated peritoneal macrophages from PPAR-alpha wild-type mice and PPAR-alpha knockout mice (PPAR-alpha) with 10 microg/mL LPS and 100 U/mL IFN-gamma. We report here that the absence of a functional PPAR-alpha gene in PPAR-alpha knockout mice resulted in a significant augmentation of various inflammatory parameters in peritoneal macrophages. In particular, we have clearly demonstrated that PPAR-alpha gene deletion increases (1) the mitogen-activated protein kinase phosphorylation (extracellular signal-regulated kinase, c-Jun NH2-terminal kinase, and p38), (2) nuclear factor-kappaB activation, (3) IkappaB-alpha degradation, (4) iNOS expression and NO formation, and (5) cyclooxygenase 2 expression and prostaglandin E2 formation caused by LPS/IFN-gamma stimulation. On the contrary, the incubation of peritoneal macrophages from PPAR-alpha wild type with clofibrate (2 mM) at 2 h before the LPS and IFN-gamma stimulation significantly reduced the expression and the release of the proinflammatory mediators. To elucidate whether the protective effects of clofibrate is related to activation of the PPAR-alpha receptor, we also investigated the effect of clofibrate treatment on PPAR-alpha-deficient mice. The absence of the PPAR-alpha receptor significantly abolished the protective effect of the PPAR-alpha agonist against LPS/IFN-gamma-induced macrophage inflammation. In conclusion, our study demonstrates that the endogenous and exogenous PPAR-alpha ligands reduce the degree of macrophage inflammation caused by LPS/IFN-gamma stimulation.
Collapse
|
30
|
Reddy DB, Reddanna P. Chebulagic acid (CA) attenuates LPS-induced inflammation by suppressing NF-kappaB and MAPK activation in RAW 264.7 macrophages. Biochem Biophys Res Commun 2009; 381:112-7. [PMID: 19351605 DOI: 10.1016/j.bbrc.2009.02.022] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 02/09/2009] [Indexed: 01/09/2023]
Abstract
Chebulagic acid (CA), a natural anti-oxidant, showed potent anti-inflammatory effects in LPS-stimulated RAW 264.7, a mouse macrophage cell line. These effects were exerted via inhibition of NO and PGE2 production and down-regulation of iNOS, COX-2, 5-LOX, TNF-alpha and IL-6. CA inhibited NF-kappaB activation by LPS, and this was associated with the abrogation of IkappaB-alpha phosphorylation and subsequent decreases in nuclear p50 and p65 protein levels. Further, the phosphorylation of p38, ERK 1/2 and JNK in LPS-stimulated RAW 264.7 cells was suppressed by CA in a concentration-dependent manner. LPS-induced generation of reactive oxygen species (ROS) was also effectively inhibited by CA. These results suggest that CA exerts anti-inflammatory effects in LPS-stimulated RAW 264.7 macrophages by inhibition of NF-kappaB activation and MAP kinase phosphorylation.
Collapse
Affiliation(s)
- D Bharat Reddy
- Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | | |
Collapse
|
31
|
Połeć A, Tanbo T, Fedorcsák P. ORIGINAL ARTICLE: Cellular Interaction Regulates Interleukin-8 Secretion by Granulosa-Lutein Cells and Monocytes/Macrophages. Am J Reprod Immunol 2008; 61:85-94. [DOI: 10.1111/j.1600-0897.2008.00668.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
32
|
Ku KT, Huang YL, Huang YJ, Chiou WF. Miyabenol A inhibits LPS-induced NO production via IKK/IkappaB inactivation in RAW 264.7 macrophages: possible involvement of the p38 and PI3K pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:8911-8918. [PMID: 18783239 DOI: 10.1021/jf8019369] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The anti-inflammatory effect of miyabenol A, a stilbene isolated from Vitis thunbergii, on lipopolysaccaride (LPS)-induced nitric oxide (NO) production in RAW264.7 macrophages was studied. Miyabenol A inhibited NO production (EC 50: 2.7 muM) and iNOS protein and mRNA expression in a parallel concentration-dependent manner. LPS-evoked NF-kappaB nuclear translocation and associated IkappaB degradation were abrogated by miyabenol A treatment. Phosphorylations of IKKalpha/beta, ERK1/2, JNK p38 MAPK, and Akt were observed in LPS-stimulated cells; nevertheless, miyabenol A selectively blocked IKKalpha/beta, p38, and Akt phosphorylation. Furthermore, LPS-stimulated IKKalpha/beta and Akt phosphorylation was abolished by p38 inhibitor SB203580. Wortmannin (a PI3K inhibitor) also attenuated LPS-induced IKKalpha/beta phosphorylation, although to a less extent than SB203580, but failed to affect p38 phosphorylation. These observations suggested that PI3K/Akt might lie downstream of p38 MAPK to coregulate LPS-induced IKKalpha/beta phosphorylation. Taken together, miyabenol A acted via interfering with p38 MAPK-related signal pathways to down-regulate IKK/IkappaB activation and NO production.
Collapse
Affiliation(s)
- Kuei-Ting Ku
- Institute of Life Science, College of Science and Engineering, National Taitung University, Taitung
| | | | | | | |
Collapse
|
33
|
Bian ZM, Elner SG, Elner VM. Regulated expression of caspase-12 gene in human retinal pigment epithelial cells suggests its immunomodulating role. Invest Ophthalmol Vis Sci 2008; 49:5593-601. [PMID: 18791174 DOI: 10.1167/iovs.08-2116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
PURPOSE To investigate the expression and regulation of the short form of caspase-12, caspase-12S, in human retinal pigment epithelial (hRPE) cells. METHODS hRPE cells were stimulated by the proinflammatory agents IL-1beta (2 ng/mL) and TNF-alpha (20 ng/mL); LPS (1000 ng/mL); coculture with monocytes; the immunomodulating agent cyclosporine (Cys; 30 ng/mL); the anti-inflammatory cytokine IL-10 (100 U/mL); and the endoplasmic reticulum (ER) stress inducers tunicamycin (3 or 10 muM) and thapsigargin (25 or 100 nM) for 6 hours or longer. The total RNAs were isolated and subjected to semiquantitative and quantitative real-time RT-PCR analysis. Effects of tunicamycin and thapsigargin on IL-1beta- and TNF-alpha-stimulated MCP-1 mRNA expression and protein production were further examined by RT-PCR and ELISA, respectively. RESULTS RT-PCR results showed that caspase-12S is the predominant form of caspase-12 in the examined hRPE cells of this study, with expression at levels as high as those in many other human tissues such as pancreas, prostate, small intestine, lung, spleen, and kidney. Treatment with IL-1beta and TNF-alpha, as well as LPS and coculture with monocytes reduced hRPE caspase-12S mRNA expression within 6 hours. In contrast, hRPE exposure to cyclosporine (Cys) and the cytokine IL-10 for 6 hours increased caspase-12S mRNA expression. Compared to Cys and IL-10, the ER stress activators tunicamycin and thapsigargin were even more potent enhancers of hRPE caspase-12S gene expression. They also caused corresponding reductions in IL-1beta- and TNF-alpha-induced MCP-1 mRNA expression and protein production. CONCLUSIONS hRPE cells express a high level of caspase-12S. The regulated expression of caspase-12S suggests that this caspase recruitment domain (CARD)-only protein may be an endogenous dominant negative regulator that modulates inflammatory responses in hRPE cells.
Collapse
Affiliation(s)
- Zong-Mei Bian
- Department of Ophthalmology, University of Michigan, Ann Arbor, Michigan 48105, USA
| | | | | |
Collapse
|
34
|
Yun KJ, Kim JY, Kim JB, Lee KW, Jeong SY, Park HJ, Jung HJ, Cho YW, Yun K, Lee KT. Inhibition of LPS-induced NO and PGE2 production by asiatic acid via NF-kappa B inactivation in RAW 264.7 macrophages: possible involvement of the IKK and MAPK pathways. Int Immunopharmacol 2007; 8:431-41. [PMID: 18279797 DOI: 10.1016/j.intimp.2007.11.003] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 11/06/2007] [Accepted: 11/06/2007] [Indexed: 11/27/2022]
Abstract
In the present study, we investigated the effect of asiatic acid (the aglycon of asiaticoside) and asiaticoside isolated from the leaves of Centella asiatica (Umbelliferae) on LPS-induced NO and PGE(2) production in RAW 264.7 macrophage cells. Asiatic acid more potently inhibited LPS-induced NO and PGE(2) production than asiaticoside. Consistent with these observations, the protein and mRNA expression levels of inducible iNOS and COX-2 enzymes were inhibited by asiatic acid in a concentration-dependent manner. In addition, asiatic acid dose-dependently reduced the production of IL-6, IL-1 beta and TNF-alpha in LPS-stimulated RAW 264.7 macrophage cells. Furthermore, asiatic acid inhibited the NF-kappaB activation induced by LPS, and this was associated with the abrogation of I kappa B-alpha degradation and with subsequent decreases in nuclear p65 and p50 protein levels. Moreover, the phosphorylations of IKK, p38, ERK1/2, and JNK in LPS-stimulated RAW 264.7 cells were suppressed by asiatic acid in a dose-dependent manner. These results suggest that the anti-inflammatory properties of asiatic acid might be the results from the inhibition of iNOS, COX-2, IL-6, IL-1 beta, and TNF-alpha expressions through the down-regulation of NF-kappaB activation via suppression of IKK and MAP kinase (p38, ERK1/2, and JNK) phosphorylation in RAW 264.7 cells.
Collapse
Affiliation(s)
- Kyung-Jin Yun
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung-Hee University, Dongdaemun-ku, Hoegi-Dong, Seoul 130-701, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bian ZM, Elner SG, Elner VM. Thrombin-induced VEGF expression in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 2007; 48:2738-46. [PMID: 17525207 PMCID: PMC2128055 DOI: 10.1167/iovs.06-1023] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
PURPOSE The purpose of the present study was to investigate the effects of thrombin and thrombin in combination with other proangiogenic factors on VEGF expression in hRPE cells. METHODS hRPE cells were stimulated with thrombin TNF-alpha, monocytes, and TGF-beta2. After stimulation, conditioned medium and lysed cells were subjected to ELISA, Western blot analysis, immunocytochemistry, and RT-PCR analyses. Inhibitors specific for various signal transduction pathways were used to determine the signaling pathways involved. RESULTS Treatment of RPE cells with thrombin resulted in dose- and time-dependent increases in VEGF mRNA levels and protein production. hRPE VEGF expression is predominantly protease-activated receptor (PAR)-1 dependent. Approximately 80% of thrombin-induced VEGF secretion was abrogated by inhibitors of MAPK/ERK kinase (MEK), p38, c-Jun NH2-terminal kinase (JNK), protein tyrosine kinase (PTK), phosphatidylinositol 3-kinase (PI3K), protein kinase C (PKC), nuclear factor-kappaB (NF-kappaB), and reactive oxygen species (ROS). Analyses of VEGF protein production and mRNA synthesis revealed that VEGF induction by thrombin plus TNF-alpha or coculture with monocytes was additive, whereas that by co-incubation with TGF-beta2 was synergistic. The costimulated VEGF production by TGF-beta2 plus thrombin was an average of three times higher than the sum of that induced by each agent alone. Furthermore, BAPTA [bis-(o-aminophenoxy)ethane-N,N',N'-tetraacetic acid], a calcium chelator, blocked the VEGF secretion induced by thrombin and thrombin plus TGF-beta2 by 65% and 20%, respectively, but had no effect on that induced by TGF-beta2 alone. CONCLUSIONS Thrombin alone and in combination with TNF-alpha, monocytes, and TGF-beta2 potently stimulated VEGF expression in hRPE cells via multiple signaling pathways. The thrombin-induced calcium mobilization may play an important permissive role in maximizing TGF-beta2-induced VEGF expression in RPE cells.
Collapse
Affiliation(s)
- Zong-Mei Bian
- Department of Ophthalmology, University of Michigan, Ann Arbor, Michigan 48105, USA
| | | | | |
Collapse
|
36
|
Bian ZM, Elner SG, Elner VM. Regulation of VEGF mRNA expression and protein secretion by TGF-beta2 in human retinal pigment epithelial cells. Exp Eye Res 2007; 84:812-22. [PMID: 17331500 PMCID: PMC2094015 DOI: 10.1016/j.exer.2006.12.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 12/12/2006] [Accepted: 12/14/2006] [Indexed: 12/20/2022]
Abstract
VEGF secretion by the human retinal pigment epithelium (hRPE) plays an important role in retinal and choroidal neovascularization. In this study, transforming growth factor-beta2 (TGF-beta2)-induced vascular endothelial growth factor (VEGF) gene expression was investigated in hRPE cells. Treatment of hRPE cells with TGF-beta2 for 24 and 48h as compared to 8h resulted in markedly increased VEGF secretion by fivefold and nine-fold, respectively. Induced VEGF mRNA peaked within 3h of stimulation and remained above the basal at 36h. Stimulation of VEGF expression by TGF-beta2 was blocked by cycloheximide, suggesting that de novo protein synthesis is required. Induced VEGF production was strongly inhibited by anti-inflammatory agents, dexamethasone and cyclosporin A. Despite of the weak stimulation of VEGF expression by TNF-alpha or bFGF alone, co-administration of either of these two cytokines synergized the effect of TGF-beta2 on VEGF mRNA expression and protein production. Quantitative RT-PCR revealed that the synergy was predominantly at the level of VEGF transcription. Moreover, TGF-beta2-induced RPE VEGF secretion was significantly reduced by inhibitors of mitogen-activated protein (MAP) kinase (MEK) (U0126), p38 (SB202190), c-Jun NH2-terminal kinase (JNK), Sp600125, protein tyrosine kinase (PTK) (Genistein), and phosphatidylinositol 3-kinase (PI3K) (Ly294002). Induced VEGF expression was completely abrogated by inhibitors of protein kinase C (PKC) (Ro318220), nuclear factor-kappaB (NF-kappaB) [caffeic acid phenethyl ester (CAPE)], and reactive oxygen species (ROS) [N-acetyl-cysteine (Nac) and diphenyleneiodonium (DPI)]. These results suggest that MEK, p38, JNK, PI3K, and NF-kappaB as well as multiple essential signaling intermediates, including PKC, PTK and ROS, are involved in hRPE VEGF up regulation by TGF-beta2.
Collapse
Affiliation(s)
- Zong-Mei Bian
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105
| | - Susan G. Elner
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105
| | - Victor M. Elner
- Department of pathology, University of Michigan, Ann Arbor, MI 48105
| |
Collapse
|
37
|
Jang SI, Kim HJ, Kim YJ, Jeong SI, You YO. Tanshinone IIA inhibits LPS-induced NF-kappaB activation in RAW 264.7 cells: possible involvement of the NIK-IKK, ERK1/2, p38 and JNK pathways. Eur J Pharmacol 2006; 542:1-7. [PMID: 16797002 DOI: 10.1016/j.ejphar.2006.04.044] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 04/12/2006] [Accepted: 04/28/2006] [Indexed: 11/24/2022]
Abstract
Nuclear factor kappaB (NF-kappaB) activation by NF-kappaB-inducing kinase (NIK)-IkappaB alpha kinase (IKK) pathway and mitogen-activated protein kinases (MAPKs) pathway are important in inflammation. We recently found that the tanshinone IIA, a diterpene isolated from Salvia miltiorrhiza (S. miltiorrhiza), reduced the production of pro-inflammatory mediators in RAW 264.7 cells stimulated with lipopolysaccharide (LPS). However, little is known about the inhibitory mechanisms of tanshinone IIA on the production of pro-inflammatory mediators. To investigate the inhibitory mechanism, we determined the inhibitory effects of tanshinone IIA on the activation of NF-kappaB and IkappaB alpha phosphorylation, and also examined phosphorylation of NIK and IKK as well as the activation of MAPKs such as p38 MAPK (p38), extracellular signal-regulated kinases 1/2 (ERK1/2), and c-Jun N-terminal kinase (JNK) in RAW 264.7 cells stimulated with LPS. Tanshinone IIA inhibited NF-kappaB-DNA complex, NF-kappaB binding activity, and the phosphorylation of IkappaB alpha in a dose dependent manner. Tanshinone IIA also inhibited the translocation of NF-kappaB from cytosol to nucleus. Moreover, the phosphorylation of NIK and IKK as well as the phosphorylation of p38, ERK1/2, and JNK in the LPS-stimulated RAW 264.7 cells were suppressed by the tanshinone IIA in a dose dependent manner. These results suggest that tanshinone IIA may inhibit LPS-induced IkappaB alpha degradation and NF-kappaB activation via suppression of the NIK-IKK pathway as well as the MAPKs (p38, ERK1/2, and JNK) pathway in RAW 264.7 cells and these properties may provide a potential mechanism that explains the anti-inflammatory activity of tanshinone IIA.
Collapse
Affiliation(s)
- Seon Il Jang
- Department of Skin and Beauty, Seojeong College, Yangju city, Gyeonggi 482-860, South Korea
| | | | | | | | | |
Collapse
|
38
|
|
39
|
Prunet C, Montange T, Véjux A, Laubriet A, Rohmer JF, Riedinger JM, Athias A, Lemaire-Ewing S, Néel D, Petit JM, Steinmetz E, Brenot R, Gambert P, Lizard G. Multiplexed flow cytometric analyses of pro- and anti-inflammatory cytokines in the culture media of oxysterol-treated human monocytic cells and in the sera of atherosclerotic patients. Cytometry A 2006; 69:359-73. [PMID: 16604541 DOI: 10.1002/cyto.a.20272] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Some oxysterols are identified in atheromatous plaques and in plasma of atherosclerotic patients. We asked whether they might modulate cytokine secretion on human monocytic cells. In healthy and atherosclerotic subjects, we also investigated the relationships between circulating levels of C-reactive protein (CRP), conventional markers of hyperlipidemia, some oxysterols (7beta-hydroxycholesterol, 7-ketocholesterol, and 25-hydroxycholesterol), and various cytokines. METHODS Different flow cytometric bead-based assays were used to quantify some cytokines (IL-1beta, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-17, G-CSF, GM-CSF, IFN-gamma, MCP-1, MIP-1beta, or TNF-alpha) in the culture media of oxysterol-treated U937 and THP-1 cells, and in the sera of healthy and atherosclerotic subjects. CRP and markers of hyperlipidemia were determined with routine analytical methods. Oxysterols were quantified by gas chromatography/mass spectrometry. Flow cytometric and biochemical methods were used to measure IL-8 mRNA levels, intracellular IL-8 content, and protein phosphorylation in the mitogenic extracellular kinase/extracellular signal-regulated kinase1/2 (MEK/ERK1/2) signaling pathway. RESULTS All oxysterols investigated are potent in vitro inducers of MCP-1, MIP-1beta, TNF-alpha, and/or IL-8 secretion, the latter involving the MEK/ERK1/2 cell signaling pathway. In healthy and atherosclerotic subjects, no relationships were found between cytokines (IL-8, IL-1beta, IL-6, IL-10, TNF-alpha, IL-12, and MCP-1), CRP, conventional markers of hyperlipidemia, and oxysterols. However, in patients with arterial disorders of the lower limbs, small but statistically significant differences in the circulating levels of CRP, TNF-alpha, and IL-10 were observed comparatively to healthy subjects and according to the atherosclerotic stage considered. CONCLUSIONS Flow cytometric bead-based assays are well adapted to measure variations of cytokine secretion in the culture media of oxysterol-treated cells and in the sera of healthy and atherosclerotic subjects. They underline the in vitro proinflammatory properties of oxysterols and may permit to distinguish healthy and atherosclerotic subjects, as well as various atherosclerotic stages.
Collapse
Affiliation(s)
- Céline Prunet
- Inserm U498/IFR 100, CHU/Hôpital du Bocage, Laboratoire de Biochimie Médicale, Dijon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wang L, Luo J, Fu Y, He S. Induction of interleukin-8 secretion and activation of ERK1/2, p38 MAPK signaling pathways by thrombin in dermal fibroblasts. Int J Biochem Cell Biol 2006; 38:1571-83. [PMID: 16697690 DOI: 10.1016/j.biocel.2006.03.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2005] [Revised: 03/12/2006] [Accepted: 03/25/2006] [Indexed: 02/05/2023]
Abstract
It was reported that thrombin could induce IL-8 secretion from human dermal fibroblasts (HDFs) through activation of proteinase activated receptor (PAR)-1. However, little is known of intracellular signaling pathways involved in the event. In the present study, expression of PARs in primarily cultured HDFs was determined by flow cytometry analysis and reverse transcription polymerase chain reaction (RT-PCR), levels of IL-8 were determined by using ELISA and signaling pathways were examined by using Western blot. It was found that HDFs express PAR-1 and PAR-3, and thrombin induces approximately 7.4-fold increase in IL-8 secretion from HDFs. Hirudin and a PAR-1 blocking antibody completely abolish the action of thrombin. It was also found that PD98059, a mitogen-activated protein kinase (MAPK) pathway inhibitor and U0126, an inhibitor of extracellular signal-regulated kinase (ERK) blocks thrombin-induced phosphorylation of ERK1/2 and IL-8 secretion, indicating the involvement of MAPK/ERK signaling pathway in thrombin-induced IL-8 secretion. p38 MAPK pathway appears also being involved as SB203580, a selective inhibitor of p38 MAPK inhibit phosphorylation of p38 MAPK and thrombin-induced IL-8 secretion. Furthermore, Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway, but not phosphotidylinositol 3-kinase (PI3K)/Akt signaling pathway may also be activated by thrombin. In conclusion, thrombin potently induce IL-8 release via PAR-1 from HDFs. Thrombin elicited IL-8 release is predominantly conducted through MAPK/ERK and p38 MAPK signaling pathways. Discovery of the signaling pathways of thrombin in HDFs may help to understand the role of thrombin in inflammation and tissue remodeling.
Collapse
Affiliation(s)
- Li Wang
- Allergy and Inflammation Research Institute, The Key Immunopathology Laboratory of Guangdong Province, The Shantou University Medical College, Shantou 515031, China
| | | | | | | |
Collapse
|
41
|
de Wit D, Lightman S. Emerging approaches to the treatment of uveitis: patents of 2000 – 2004. Expert Opin Ther Pat 2005; 15:861-74. [DOI: 10.1517/13543776.15.7.861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|