1
|
Bryson TD, Harding P. Prostaglandin E2 EP receptors in cardiovascular disease: An update. Biochem Pharmacol 2021; 195:114858. [PMID: 34822808 DOI: 10.1016/j.bcp.2021.114858] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022]
Abstract
This review article provides an update for the role of prostaglandin E2 receptors (EP1, EP2, EP3 and EP4) in cardiovascular disease. Where possible we have reported citations from the last decade although this was not possible for all of the topics covered due to the paucity of publications. The authors have attempted to cover the subjects of ischemia-reperfusion injury, arrhythmias, hypertension, novel protein binding partners of the EP receptors and their pathophysiological significance, and cardiac regeneration. These latter two topics bring studies of the EP receptors into new and exciting areas of research that are just beginning to be explored. Where there is peer-reviewed literature, the authors have placed particular emphasis on clinical studies although these are limited in number.
Collapse
Affiliation(s)
- Timothy D Bryson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI, United States; Frankel Cardiovascular Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pamela Harding
- Hypertension & Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States.
| |
Collapse
|
2
|
Tao YX. Molecular chaperones and G protein-coupled receptor maturation and pharmacology. Mol Cell Endocrinol 2020; 511:110862. [PMID: 32389798 DOI: 10.1016/j.mce.2020.110862] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptors (GPCRs) are highly conserved versatile signaling molecules located at the plasma membrane that respond to diverse extracellular signals. They regulate almost all physiological processes in the vertebrates. About 35% of current drugs target these receptors. Mutations in these genes have been identified as causes of numerous diseases. The seven transmembrane domain structure of GPCRs implies that the folding of these transmembrane proteins is extremely complicated and difficult. Indeed, many wild type GPCRs are not folded optimally. The most common defect in genetic diseases caused by GPCR mutations is misfolding and failure to reach the plasma membrane where it functions. General molecular chaperones aid the folding of all proteins, including GPCRs, by preventing aggregation, promoting folding and disaggregating small aggregates. Some GPCRs need additional receptor-specific chaperones to assist their folding. Many of these receptor-specific chaperones interact with additional receptors and alter receptor pharmacology, expanding the understanding of these chaperone proteins.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849-5519, USA.
| |
Collapse
|
3
|
Yang L, Wei Y, Luo Y, Yang Q, Li H, Hu C, Yang Y, Yang J. Effect of PGE 2-EP s pathway on primary cultured rat neuron injury caused by aluminum. Oncotarget 2017; 8:92004-92017. [PMID: 29190893 PMCID: PMC5696159 DOI: 10.18632/oncotarget.21122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/03/2017] [Indexed: 01/01/2023] Open
Abstract
To observe the characteristic changes of PGE2-EPs pathway and divergent functions of PGE2 receptor subtypes on neuronal injury. The primary cultured rat hippocampus neuron injury model was established via aluminum maltolate (100 μM). The aluminum-overload neurons were treated with the agonists of EP1 (17-phenyl trinor Prostaglandin E2 ethyl amide), EP2 (Butaprost), EP3 (Sulprostone) and EP4 (CAY10598) and antagonists of EP1 (SC-19220), EP2 (AH6809) and EP4 (L-161982) at different concentrations, respectively. The neuronal viability, lactate dehydrogenase leakage rate and PGE2 content were detected by MTT assay, lactate dehydrogenase assay kit and enzyme-linked immunosorbent assay, respectively. The mRNA and protein expressions of mPGES-1 and EPs were determined by RT-PCR and western blot, respectively. The pathomorphology was identified by hematoxylin-eosin staining. In the model group, neuronal viability significantly decreased, while lactate dehydrogenase leakage rate and PGE2 content increased. The mPGES-1, EP1, EP2 and EP4 mRNA expression, and the mPGES-1, EP1 and EP2 protein expression increased, while EP3 level decreased. EP3 agonist exerted protective function in neuronal viability and lactate dehydrogenase leakage rate, while EP1 agonist, EP2 and EP4 antagonist exerted an opposite effect. In conclusion, aluminum-overload caused an imbalance of PGE2-EP1-4 pathway and activation of EP receptor may provide a viable therapeutic target in neuronal injury.
Collapse
Affiliation(s)
- Lu Yang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Yuling Wei
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Ying Luo
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Qunfang Yang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Huan Li
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Congli Hu
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Yang Yang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Junqing Yang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| |
Collapse
|
4
|
Lu A, Zuo C, He Y, Chen G, Piao L, Zhang J, Xiao B, Shen Y, Tang J, Kong D, Alberti S, Chen D, Zuo S, Zhang Q, Yan S, Fei X, Yuan F, Zhou B, Duan S, Yu Y, Lazarus M, Su Y, Breyer RM, Funk CD, Yu Y. EP3 receptor deficiency attenuates pulmonary hypertension through suppression of Rho/TGF-β1 signaling. J Clin Invest 2015; 125:1228-42. [PMID: 25664856 DOI: 10.1172/jci77656] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 01/05/2015] [Indexed: 01/27/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is commonly associated with chronic hypoxemia in disorders such as chronic obstructive pulmonary disease (COPD). Prostacyclin analogs are widely used in the management of PAH patients; however, clinical efficacy and long-term tolerability of some prostacyclin analogs may be compromised by concomitant activation of the E-prostanoid 3 (EP3) receptor. Here, we found that EP3 expression is upregulated in pulmonary arterial smooth muscle cells (PASMCs) and human distal pulmonary arteries (PAs) in response to hypoxia. Either pharmacological inhibition of EP3 or Ep3 deletion attenuated both hypoxia and monocrotaline-induced pulmonary hypertension and restrained extracellular matrix accumulation in PAs in rodent models. In a murine PAH model, Ep3 deletion in SMCs, but not endothelial cells, retarded PA medial thickness. Knockdown of EP3α and EP3β, but not EP3γ, isoforms diminished hypoxia-induced TGF-β1 activation. Expression of either EP3α or EP3β in EP3-deficient PASMCs restored TGF-β1 activation in response to hypoxia. EP3α/β activation in PASMCs increased RhoA-dependent membrane type 1 extracellular matrix metalloproteinase (MMP) translocation to the cell surface, subsequently activating pro-MMP-2 and promoting TGF-β1 signaling. Activation or disruption of EP3 did not influence PASMC proliferation. Together, our results indicate that EP3 activation facilitates hypoxia-induced vascular remodeling and pulmonary hypertension in mice and suggest EP3 inhibition as a potential therapeutic strategy for pulmonary hypertension.
Collapse
MESH Headings
- Animals
- Cell Hypoxia
- Cells, Cultured
- Extracellular Matrix/metabolism
- Extracellular Matrix Proteins/metabolism
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Pulmonary Artery/metabolism
- Rats, Sprague-Dawley
- Receptors, Prostaglandin E, EP3 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP3 Subtype/genetics
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
- Signal Transduction
- Sulfonamides/pharmacology
- Transforming Growth Factor beta1/physiology
- Vascular Remodeling
- rho GTP-Binding Proteins/metabolism
- rhoA GTP-Binding Protein
Collapse
|
5
|
Tao YX, Conn PM. Chaperoning G protein-coupled receptors: from cell biology to therapeutics. Endocr Rev 2014; 35:602-47. [PMID: 24661201 PMCID: PMC4105357 DOI: 10.1210/er.2013-1121] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 03/14/2014] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) are membrane proteins that traverse the plasma membrane seven times (hence, are also called 7TM receptors). The polytopic structure of GPCRs makes the folding of GPCRs difficult and complex. Indeed, many wild-type GPCRs are not folded optimally, and defects in folding are the most common cause of genetic diseases due to GPCR mutations. Both general and receptor-specific molecular chaperones aid the folding of GPCRs. Chemical chaperones have been shown to be able to correct the misfolding in mutant GPCRs, proving to be important tools for studying the structure-function relationship of GPCRs. However, their potential therapeutic value is very limited. Pharmacological chaperones (pharmacoperones) are potentially important novel therapeutics for treating genetic diseases caused by mutations in GPCR genes that resulted in misfolded mutant proteins. Pharmacoperones also increase cell surface expression of wild-type GPCRs; therefore, they could be used to treat diseases that do not harbor mutations in GPCRs. Recent studies have shown that indeed pharmacoperones work in both experimental animals and patients. High-throughput assays have been developed to identify new pharmacoperones that could be used as therapeutics for a number of endocrine and other genetic diseases.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology (Y.-X.T.), College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849-5519; and Departments of Internal Medicine and Cell Biology (P.M.C.), Texas Tech University Health Science Center, Lubbock, Texas 79430-6252
| | | |
Collapse
|
6
|
Kim SO, Dozier BL, Kerry JA, Duffy DM. EP3 receptor isoforms are differentially expressed in subpopulations of primate granulosa cells and couple to unique G-proteins. Reproduction 2013; 146:625-35. [PMID: 24062570 DOI: 10.1530/rep-13-0274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Prostaglandin E2 (PGE2) produced within the ovarian follicle is necessary for ovulation. PGE2 is recognized by four distinct G-protein-coupled receptors. Among them, PTGER3 (also known as EP3) is unique in that mRNA splicing generates multiple isoforms. Each isoform has a distinct amino acid composition in the C-terminal region, which is involved in G-protein coupling. To determine whether monkey EP3 isoforms couple to different G-proteins, each EP3 isoform was expressed in Chinese hamster ovary cells, and intracellular signals were examined after stimulation with the EP3 agonist sulprostone. Stimulation of EP3 isoform 5 (EP3-5) reduced cAMP in a pertussis toxin (PTX)-sensitive manner, indicating involvement of Gαi. Stimulation of EP3-9 increased cAMP, which was reduced by the general G-protein inhibitor GDP-β-S, and also increased intracellular calcium, which was reduced by PTX and GDP-β-S. So, EP3-9 likely couples to both Gαs and a PTX-sensitive G-protein to regulate intracellular signals. Stimulation of EP3-14 increased cAMP, which was further increased by PTX, so EP3-14 likely regulates cAMP via multiple G-proteins. Granulosa cell expression of all EP3 isoforms increased in response to an ovulatory dose of human chorionic gonadotropin. Two EP3 isoforms were differentially expressed in functional subpopulations of granulosa cells. EP3-5 was low in granulosa cells at the follicle apex while EP3-9 was high in cumulus granulosa cells. Differential expression of EP3 isoforms may yield different intracellular responses to PGE2 in granulosa cell subpopulations, contributing to the different roles played by granulosa cell subpopulations in the process of ovulation.
Collapse
|
7
|
Popp L, Häussler A, Olliges A, Nüsing R, Narumiya S, Geisslinger G, Tegeder I. Comparison of nociceptive behavior in prostaglandin E, F, D, prostacyclin and thromboxane receptor knockout mice. Eur J Pain 2012; 13:691-703. [DOI: 10.1016/j.ejpain.2008.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 08/08/2008] [Accepted: 09/07/2008] [Indexed: 11/30/2022]
|
8
|
Woodward DF, Jones RL, Narumiya S. International Union of Basic and Clinical Pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress. Pharmacol Rev 2011; 63:471-538. [PMID: 21752876 DOI: 10.1124/pr.110.003517] [Citation(s) in RCA: 321] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It is now more than 15 years since the molecular structures of the major prostanoid receptors were elucidated. Since then, substantial progress has been achieved with respect to distribution and function, signal transduction mechanisms, and the design of agonists and antagonists (http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=58). This review systematically details these advances. More recent developments in prostanoid receptor research are included. The DP(2) receptor, also termed CRTH2, has little structural resemblance to DP(1) and other receptors described in the original prostanoid receptor classification. DP(2) receptors are more closely related to chemoattractant receptors. Prostanoid receptors have also been found to heterodimerize with other prostanoid receptor subtypes and nonprostanoids. This may extend signal transduction pathways and create new ligand recognition sites: prostacyclin/thromboxane A(2) heterodimeric receptors for 8-epi-prostaglandin E(2), wild-type/alternative (alt4) heterodimers for the prostaglandin FP receptor for bimatoprost and the prostamides. It is anticipated that the 15 years of research progress described herein will lead to novel therapeutic entities.
Collapse
Affiliation(s)
- D F Woodward
- Dept. of Biological Sciences RD3-2B, Allergan, Inc., 2525 Dupont Dr., Irvine, CA 92612, USA.
| | | | | |
Collapse
|
9
|
Nakagawa T. Roles of prostaglandin E2 in the cochlea. Hear Res 2011; 276:27-33. [PMID: 21295127 DOI: 10.1016/j.heares.2011.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/15/2011] [Accepted: 01/19/2011] [Indexed: 12/20/2022]
Abstract
Prostaglandins are one of the major groups of chemical mediators in the mammalian body. Among prostaglandins, prostaglandin E2 (PGE2) is the most abundant prostanoid in humans and involved in regulating many different fundamental biological functions. PGE2 signaling is mediated by four distinct E-prostanoid receptors (EPs) namely EP1-4. Recently, accumulating evidence indicates critical, but complex roles of EP signaling in the pathogenesis of neuronal diseases depending on the context of neuronal injury. Four distinct EPs are expressed in the stria vascularis, spiral ligament, spiral ganglion and organ of Corti, indicating an involvement of EP signaling in the cochlear function. Activation of EP4 in cochleae significantly attenuates noise-induced damage in cochleae, and activation of EP2 or EP4 induces the formation of vascular endothelial growth factor in cochleae. These findings strongly suggest that individual EP signaling may be involved in the maintenance of the cochlear sensory system similarly to the central nervous system. This review highlights recent findings on EP signaling in the central nervous system, and presents its possible roles in regulation of blood flow, protection of sensory cells and immune responses in cochleae.
Collapse
Affiliation(s)
- Takayuki Nakagawa
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kawaharacho 54, Shogoin, Sakyoku, Kyoto 606-8507, Japan.
| |
Collapse
|
10
|
Iida T, Kawato T, Tanaka H, Tanabe N, Nakai K, Zhao N, Suzuki N, Ochiai K, Maeno M. Sodium butyrate induces the production of cyclooxygenases and prostaglandin E₂ in ROS 17/2.8 osteoblastic cells. Arch Oral Biol 2011; 56:678-86. [PMID: 21281931 DOI: 10.1016/j.archoralbio.2010.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 11/22/2010] [Accepted: 12/30/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Sodium butyrate (butyric acid; BA) is a major metabolic by-product of the anaerobic periodontopathic bacteria present in subgingival plaque. We examined the effects of BA and/or indomethacin on cell proliferation, the expression of cyclooxygenases (COXs), prostaglandin (PG) receptors (EP1-4), extracellular matrix proteins, such as type I collagen and osteopontin, and PGE(2) production, using ROS17/2.8 cells as osteoblasts. METHODS The rat clonal cell line ROS 17/2.8 was cultured with 0, 10(-5), 10(-4), and 10(-3)M BA in the presence or absence of 0.5 μM indomethacin, for up to 7 days. The expression of COX-1, COX-2, EP1, EP2, EP3, EP4, type I collagen, and osteopontin was examined at the mRNA and protein levels using real-time PCR and Western blotting, respectively. The amount of PGE(2) in the culture medium was measured by ELISA. RESULTS Proliferation of ROS 17/2.8 cells was not affected by the addition of BA. However, PGE(2) production and the expression of COX-1 and COX-2 increased with the addition of BA. In contrast, indomethacin, an inhibitor of COX, blocked the stimulatory effect of BA. Furthermore, EP2 expression increased with BA treatment, whereas EP1 expression was not affected and the expression of EP3 and EP4 was not detected. The addition of BA also increased the expression of type I collagen and osteopontin. Indomethacin blocked about 50% of the stimulatory effect of BA on type I collagen, whereas it did not block the effect on osteopontin. CONCLUSIONS These results suggest that BA induces PGE(2) production by increasing the expression of COX-1 and COX-2 in osteoblasts, and that an autocrine action of the produced PGE(2), via EP1 or BA-induced EP2, is related to an increase in type I collagen expression by BA.
Collapse
Affiliation(s)
- Takafumi Iida
- Division of Oral Health Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Prostaglandin EP3 receptor superactivates adenylyl cyclase via the Gq/PLC/Ca2+ pathway in a lipid raft-dependent manner. Biochem Biophys Res Commun 2009; 389:678-82. [PMID: 19769944 DOI: 10.1016/j.bbrc.2009.09.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 09/16/2009] [Indexed: 01/07/2023]
Abstract
We previously demonstrated that prostaglandin EP3 receptor augments EP2-elicited cAMP formation in COS-7 cells in a G(i/o)-insensitive manner. The purpose of our current study was to identify the signaling pathways involved in EP3-induced augmentation of receptor-stimulated cAMP formation. The enhancing effect of EP3 receptor was irrespective of the C-terminal structure of the EP3 isoform. This EP3 action was abolished by treatment with inhibitors for phospholipase C and intracellular Ca(2+)-related signaling molecules such as U73122, staurosporine, 2-APB and SK&F 96365. Indeed, an EP3 agonist stimulated IP(3) formation and intracellular Ca(2+) mobilization, which was blocked by U73122, but not by pertussis toxin. The enhancing effect by EP3 on cAMP formation was mimicked by both a Ca(2+) ionophore and the activation of a typical G(q)-coupled receptor. Moreover, EP3 was exclusively localized to the raft fraction in COS-7 cells and EP3-elicited augmentation of cAMP formation was abolished by cholesterol depletion and introduction of a dominant negative caveolin-1 mutant. These results suggest that EP3 elicits adenylyl cyclase superactivation via G(q)/phospholipase C activation and intracellular Ca(2+) mobilization in a lipid raft microdomain-dependent manner.
Collapse
|
12
|
Andreasson K. Emerging roles of PGE2 receptors in models of neurological disease. Prostaglandins Other Lipid Mediat 2009; 91:104-12. [PMID: 19808012 DOI: 10.1016/j.prostaglandins.2009.04.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/25/2009] [Accepted: 04/02/2009] [Indexed: 01/08/2023]
Abstract
This review presents an overview of the emerging field of prostaglandin signaling in neurological diseases, focusing on PGE(2) signaling through its four E-prostanoid (EP) receptors. A large number of studies have demonstrated a neurotoxic function of the inducible cyclooxygenase COX-2 in a broad spectrum of neurological disease models in the central nervous system (CNS), from models of cerebral ischemia to models of neurodegeneration and inflammation. Since COX-1 and COX-2 catalyze the first committed step in prostaglandin synthesis, an effort is underway to identify the downstream prostaglandin signaling pathways that mediate the toxic effect of COX-2. Recent epidemiologic studies demonstrate that chronic COX-2 inhibition can produce adverse cerebrovascular and cardiovascular effects, indicating that some prostaglandin signaling pathways are beneficial. Consistent with this concept, recent studies demonstrate that in the CNS, specific prostaglandin receptor signaling pathways mediate toxic effects in brain but a larger number appear to mediate paradoxically protective effects. Further complexity is emerging, as exemplified by the PGE(2) EP2 receptor, where cerebroprotective or toxic effects of a particular prostaglandin signaling pathway can differ depending on the context of cerebral injury, for example, in excitotoxicity/hypoxia paradigms versus inflammatory-mediated secondary neurotoxicity. The divergent effects of prostaglandin receptor signaling will likely depend on distinct patterns and dynamics of receptor expression in neurons, endothelial cells, and glia and the specific ways in which these cell types participate in particular models of neurological injury.
Collapse
Affiliation(s)
- Katrin Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
13
|
Li J, Liang X, Wang Q, Breyer RM, McCullough L, Andreasson K. Misoprostol, an anti-ulcer agent and PGE2 receptor agonist, protects against cerebral ischemia. Neurosci Lett 2008; 438:210-5. [PMID: 18472336 DOI: 10.1016/j.neulet.2008.04.054] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 04/06/2008] [Accepted: 04/09/2008] [Indexed: 11/29/2022]
Abstract
Induction of COX-2 activity in cerebral ischemia results in increased neuronal injury and infarct size. Recent studies investigating neurotoxic mechanisms of COX-2 demonstrate both toxic and paradoxically protective effects of downstream prostaglandin receptor signaling pathways. We tested whether misoprostol, a PGE(2) receptor agonist that is utilized clinically as an anti-ulcer agent and signals through the protective PGE(2) EP2, EP3, and EP4 receptors, would reduce brain injury in the murine middle cerebral artery occlusion-reperfusion (MCAO-RP) model. Administration of misoprostol, at the time of MCAO or 2h after MCAO, resulted in significant rescue of infarct volume at 24 and 72h. Immunocytochemistry demonstrated dynamic regulation of the EP2 and EP4 receptors during reperfusion in neurons and endothelial cells of cerebral cortex and striatum, with limited expression of EP3 receptor. EP3-/- mice had no significant changes in infarct volume compared to control littermates. Moreover, administration of misoprostol to EP3+/+ and EP3-/- mice showed similar levels of infarct rescue, indicating that misoprostol protection was not mediated through the EP3 receptor. Taken together, these findings suggest a novel function for misoprostol as a protective agent in cerebral ischemia acting via the PGE(2) EP2 and/or EP4 receptors.
Collapse
Affiliation(s)
- Jun Li
- Department of Neurology and Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, United States
| | | | | | | | | | | |
Collapse
|
14
|
Macias-Perez IM, Zent R, Carmosino M, Breyer MD, Breyer RM, Pozzi A. Mouse EP3 alpha, beta, and gamma receptor variants reduce tumor cell proliferation and tumorigenesis in vivo. J Biol Chem 2008; 283:12538-45. [PMID: 18230618 DOI: 10.1074/jbc.m800105200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Prostaglandin E(2), which exerts its functions by binding to four G protein-coupled receptors (EP1-4), is implicated in tumorigenesis. Among the four E-prostanoid (EP) receptors, EP3 is unique in that it exists as alternatively spliced variants, characterized by differences in the cytoplasmic C-terminal tail. Although three EP3 variants, alpha, beta, and gamma, have been described in mice, their functional significance in regulating tumorigenesis is unknown. In this study we provide evidence that expressing murine EP3 alpha, beta, and gamma receptor variants in tumor cells reduces to the same degree their tumorigenic potential in vivo. In addition, activation of each of the three mEP3 variants induces enhanced cell-cell contact and reduces cell proliferation in vitro in a Rho-dependent manner. Finally, we demonstrate that EP3-mediated RhoA activation requires the engagement of the heterotrimeric G protein G(12). Thus, our study provides strong evidence that selective activation of each of the three variants of the EP3 receptor suppresses tumor cell function by activating a G(12)-RhoA pathway.
Collapse
Affiliation(s)
- Ines M Macias-Perez
- Department of Medicine (Division of Nephrology), Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
15
|
Weller CL, Collington SJ, Hartnell A, Conroy DM, Kaise T, Barker JE, Wilson MS, Taylor GW, Jose PJ, Williams TJ. Chemotactic action of prostaglandin E2 on mouse mast cells acting via the PGE2 receptor 3. Proc Natl Acad Sci U S A 2007; 104:11712-7. [PMID: 17606905 PMCID: PMC1913869 DOI: 10.1073/pnas.0701700104] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mast cells are long-lived cells that are principally recognized for their effector function in helminth infections and allergic reactions. These cells are derived from pluripotential hematopoietic stem cells in the bone marrow that give rise to committed mast cell progenitors in the blood and are recruited to tissues, where they mature. Little is known about the chemotactic signals responsible for recruitment of progenitors and localization of mature mast cells. A mouse model was set up to identify possible mast cell progenitor chemoattractants produced during repeated allergen challenge in vivo. After the final challenge, the nasal mucosa was removed to produce conditioned medium, which was tested in chemotaxis assays against 2-wk murine bone marrow-derived c-kit+ mast cells (BMMC). A single peak of chemotactic activity was seen on reverse-phase HPLC with a retention time and electrospray mass spectrum consistent with prostaglandin E2 (PGE2). This lipid was found to be a highly potent chemoattractant for immature (2-wk) and also mature (10-wk) BMMC in vitro. Fluorescently labeled 2-wk c-kit+ BMMC, when injected intravenously, accumulated in response to intradermally injected PGE2. Analysis using TaqMan showed mRNA expression of the PGE2 receptors 3 (EP3) and 4 (EP4) on 2- and 10-wk BMMC. Chemotaxis induced by PGE2 was mimicked by EP3 agonists, blocked by an EP3 receptor antagonist, and partially inhibited by a MAPKK inhibitor. These results show an unexpected function for PGE2 in the chemotaxis of mast cells.
Collapse
Affiliation(s)
- Charlotte L. Weller
- Leukocyte Biology Section, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Sarah J. Collington
- Leukocyte Biology Section, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Adele Hartnell
- Leukocyte Biology Section, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Dolores M. Conroy
- Leukocyte Biology Section, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Toshihiko Kaise
- Leukocyte Biology Section, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Jane E. Barker
- Leukocyte Biology Section, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Mark S. Wilson
- Leukocyte Biology Section, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Graham W. Taylor
- Leukocyte Biology Section, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Peter J. Jose
- Leukocyte Biology Section, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Timothy J. Williams
- Leukocyte Biology Section, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
- To whom correspondence may be addressed. E-mail:
| |
Collapse
|
16
|
Shoji M, Tanabe N, Mitsui N, Suzuki N, Takeichi O, Katono T, Morozumi A, Maeno M. Lipopolysaccharide enhances the production of nicotine-induced prostaglandin E2 by an increase in cyclooxygenase-2 expression in osteoblasts. Acta Biochim Biophys Sin (Shanghai) 2007; 39:163-72. [PMID: 17342254 DOI: 10.1111/j.1745-7270.2007.00271.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Previous studies have indicated that lipopolysaccharide (LPS) from Gram-negative bacteria in plaque induces the release of prostaglandin E(2) (PGE(2)), which promotes alveolar bone resorption in periodontitis, and that tobacco smoking might be an important risk factor for the development and severity of periodontitis. We determined the effect of nicotine and LPS on alkaline phosphatase (ALPase) activity, PGE(2) production, and the expression of cyclooxygenase (COX-1, COX-2), PGE(2) receptors Ep1>4, and macrophage colony stimulating factor (M-CSF) in human osteoblastic Saos-2 cells. The cells were cultured with 10(-3) M nicotine in the presence of 0, 1, or 10 mug/ml LPS, or with LPS alone. ALPase activity decreased in cells cultured with nicotine or LPS alone, and decreased further in those cultured with both nicotine and LPS, whereas PGE(2) production significantly increased in the former and increased further in the latter. By itself, nicotine did not affect expression of COX-1, COX-2, any of the PGE(2) receptors, or M-CSF, but when both nicotine and LPS were present, expression of COX-2, Ep3, Ep4, and M-CSF increased significantly. Simultaneous addition of 10(-4) M indomethacin eliminated the effects of nicotine and LPS on ALPase activity, PGE(2) production, and M-CSF expression. Phosphorylation of protein kinase A was high in cells cultured with nicotine and LPS. These results suggest that LPS enhances the production of nicotine-induced PGE(2) by an increase in COX-2 expression in osteoblasts, that nicotine-LPS-induced PGE2 interacts with the osteoblast Ep4 receptor primarily in autocrine or paracrine mode, and that the nicotine-LPS-induced PGE(2) then decreases ALPase activity and increases M-CSF expression.
Collapse
Affiliation(s)
- Maiko Shoji
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Prostaglandin (PG) E(2) exerts its actions by acting on a group of G-protein-coupled receptors (GPCRs). There are four GPCRs responding to PGE(2) designated subtypes EP1, EP2, EP3, and EP4 and multiple splicing isoforms of the subtype EP3. The EP subtypes exhibit differences in signal transduction, tissue localization, and regulation of expression. This molecular and biochemical heterogeneity of PGE receptors leads to PGE(2) being the most versatile prostanoid. Studies on knock-out mice deficient in each EP subtype have defined PGE(2) actions mediated by each subtype and identified the role each EP subtype plays in various physiological and pathophysiological responses. Here we review recent advances in PGE receptor research.
Collapse
Affiliation(s)
- Yukihiko Sugimoto
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Faculty of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | |
Collapse
|
18
|
Shoji M, Tanabe N, Mitsui N, Tanaka H, Suzuki N, Takeichi O, Sugaya A, Maeno M. Lipopolysaccharide stimulates the production of prostaglandin E2 and the receptor Ep4 in osteoblasts. Life Sci 2006; 78:2012-8. [PMID: 16289620 DOI: 10.1016/j.lfs.2005.09.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 09/02/2005] [Indexed: 11/18/2022]
Abstract
Previous studies have indicated that one of the causes of alveolar bone destruction with periodontitis is lipopolysaccharide (LPS) from the cell wall of gram-negative bacteria in plaque, and that prostaglandin E(2) (PGE(2)) is one of the bone resorption factors that stimulate osteoclast formation through an intercellular interaction between osteoblasts and osteoclast precursors. The present study was undertaken to determine the effect of LPS on cell growth, alkaline phosphatase (ALPase) activity, the production of PGE(2), and the expression of receptors by PGE(2), cyclooxygenase (COX)-1, and COX-2, using human osteosarcoma cell line Saos-2 as osteoblasts. The cells were cultured with 0, 1, or 10 microg mL(-1) of LPS for up to 14 days. The production of PGE(2) and the gene expression of COX-1, COX-2, and PGE(2) receptors, including Ep1, Ep2, Ep3, and Ep4, were determined using enzyme-linked immunosorbent assay (ELISA) and real-time reverse transcription-polymerase chain reaction (real-time RT-PCR), respectively. With the addition of LPS, cell growth and ALPase activity decreased by day 5 of the culture, while PGE(2) production increased in a dose-dependent manner throughout the entire 14-day culture period. LPS-reduced ALP activity and LPS-induced PGE(2) production returned to the control level by the addition simultaneously with indomethacin. The expression of COX-1, Ep1, Ep2, and Ep3 receptors decreased on day 14 of the culture, whereas the expression of COX-2 and Ep4 receptors increased significantly with the addition of LPS. These results suggest that LPS promotes PGE(2) production by increasing the expression of COX-2, and that LPS promotes the production of Ep4 receptors in osteoblasts. These results also indicate that LPS-induced PGE(2) may combine with osteoblast Ep4 receptors in autocrine or paracrine modes, and may promote the formation of osteoclasts.
Collapse
Affiliation(s)
- Maiko Shoji
- Department of Oral Health Sciences, Nihon University School of Dentistry, 1-8-13, Kanda Surugadai, Tokyo 101-8310, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Lee JL, Kim A, Kopelovich L, Bickers DR, Athar M. Differential expression of E prostanoid receptors in murine and human non-melanoma skin cancer. J Invest Dermatol 2005; 125:818-25. [PMID: 16185283 DOI: 10.1111/j.0022-202x.2005.23829.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enhanced prostaglandin production via upregulated cyclooxygenase-2 (COX-2) expression is a likely contributing factor in ultraviolet B (UVB)-induced non-melanoma skin cancer (NMSC), which consists primarily of squamous cell carcinoma (SCC) and basal cell carcinoma (BCC). The four E prostanoid (EP) receptors, designated EP1 through EP4, are known to bind prostaglandin E2 (PGE2), the major prostaglandin present in the skin. We used murine models of UVB-induced SCC and BCC, as well as human NMSC from sun-exposed sites, to investigate the expression of EP receptors during UVB-induced tumorigenesis. We observed that UVB-induced murine SCC are associated with markedly altered expression patterns of the EP receptors when compared with non-irradiated skin. In contrast, expression of all EP receptors was largely absent in UVB-induced murine BCC. We also observed expression of all four EP receptors in human SCC, with altered expression of their mRNA levels as compared with adjacent tumor-free skin. Consistent with our murine studies, no EP receptor expression was detected in human BCC, and their mRNA expression levels showed no change from the adjacent non-tumor-bearing skin. These data suggest that altered EP receptor expression may play a differential role in the development of UVB-induced SCC and BCC in murine and human skin.
Collapse
MESH Headings
- Animals
- Carcinoma, Basal Cell/chemistry
- Carcinoma, Squamous Cell/chemistry
- Cyclic AMP/analysis
- Cyclooxygenase 2
- Cyclooxygenase 2 Inhibitors
- Cyclooxygenase Inhibitors/therapeutic use
- Female
- Humans
- Immunohistochemistry
- Membrane Proteins
- Mice
- Mice, Hairless
- Papilloma/chemistry
- Prostaglandin-Endoperoxide Synthases/analysis
- RNA, Messenger/analysis
- Receptors, Prostaglandin E/analysis
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E, EP1 Subtype
- Receptors, Prostaglandin E, EP2 Subtype
- Receptors, Prostaglandin E, EP3 Subtype
- Receptors, Prostaglandin E, EP4 Subtype
- Skin Neoplasms/chemistry
Collapse
Affiliation(s)
- Juliette Lois Lee
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
20
|
Zhu P, Genc A, Zhang X, Zhang J, Bazan NG, Chen C. Heterogeneous expression and regulation of hippocampal prostaglandin E2 receptors. J Neurosci Res 2005; 81:817-26. [PMID: 16041798 DOI: 10.1002/jnr.20597] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Although prostaglandin E2 (PGE2) has been shown to be critical to hippocampal synaptic signaling and neuronal survival, it is still not clear which subtypes of PGE2 receptors (EPs) are expressed and how these EPs are regulated in the hippocampus. To address these questions, the expression of the EPs was profiled in the hippocampus. Messenger RNAs and proteins of the four receptors, EP 1-4, were detected both in the hippocampus and in the neocortex. EP 2 and EP 3 appeared in greater abundance, whereas EP 1 and EP 4 were barely detectable. EP 1, EP 2 and EP 4 were mainly colocalized with synaptophysin, suggesting the presence of EP 1, EP 2, and EP 4 in presynaptic terminals. It appeared that interleukin-1 beta increased the expression of EP 2 and EP 4 mRNAs. A blockade of synaptic transmission with either tetrodotoxin or MK-801 plus 6,7-dinitroquinoxaline-2,3-dione (DNQX) for 6 hr increased EP 3 and EP 4 mRNA, whereas high K(+) (90 mM) or 4-aminopyridine enhanced EP 2 and EP 4. The EP 1 level did not change significantly under these conditions. The expressions of EP 2, EP 4, and EP 3 were further elevated or reduced in neurons treated with high K(+) for 24 hr. However, mRNA of EP 3 was down-regulated in neurons treated with tetrodotoxin or MK-801 plus DNQX for 24 hr. In addition, both EP 2 and EP 4 mRNAs were up-regulated within 4 hr after high-frequency stimulation associated with long-term potentiation induction in hippocampal slices. Our results indicate that the four EPs are heterogeneously expressed in the hippocampus, and their expression is differentially regulated by neuronal activities, suggesting that EPs may actively participate in hippocampal synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Peimin Zhu
- Neuroscience Center, School of Medicine, LSU Health Sciences Center, New Orleans, Louisiana
| | | | | | | | | | | |
Collapse
|
21
|
Bilson HA, Mitchell DL, Ashby B. Human prostaglandin EP3 receptor isoforms show different agonist-induced internalization patterns. FEBS Lett 2004; 572:271-5. [PMID: 15304361 DOI: 10.1016/j.febslet.2004.06.089] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 06/22/2004] [Indexed: 11/20/2022]
Abstract
The human prostaglandin EP3 receptor comprises eight isoforms that differ in carboxyl-tail. We show here that the isoforms are trafficked differently. When expressed in HEK293 cells, the isoforms located to the cell surface, although a fraction of some remained in the cell. Upon prostaglandin E(2) stimulation, EP3.I internalized almost completely, EP3.II, EP3.V, EP3.VI and EP3.f internalized to a lesser extent and EP3.III and EP3.IV did not internalize. Both EP3.I and EP3.f internalized with beta-arrestin and internalization were blocked by a dominant negative form of Eps15, a clathrin-associated protein. Although EP3.II internalized, beta-arrestin did not translocate with the receptor and internalization was not blocked by mutant Eps15. EP3.V and EP3.VI internalized to discrete areas of the cell with beta-arrestin.
Collapse
Affiliation(s)
- Heather A Bilson
- Department of Pharmacology, Temple University, School of Medicine, 3400 North Broad Street, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
22
|
Fujita D, Yamashita N, Iita S, Amano H, Yamada S, Sakamoto K. Prostaglandin E2 induced the differentiation of osteoclasts in mouse osteoblast-depleted bone marrow cells. Prostaglandins Leukot Essent Fatty Acids 2003; 68:351-8. [PMID: 12711253 DOI: 10.1016/s0952-3278(03)00027-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Prostaglandin (PG) E(2) is a known bone absorbing agent that acts on osteoblasts to facilitate osteoclastogenesis by increasing the secretion of RANKL. In the present study, we investigated the direct action of PGE(2) on osteoclastic progenitors that differentiate into TRAP-positive multinucleated cells. The hematopoietic stem cell obtained from murine bone marrow was purified by a Sephadex G-10 column, and cultured in the presence of CSF-1 and RANKL to facilitate cell differentiation. The introduction of low-density PGE(2) into the culture resulted in a drastic increase of TRAP-positive multinucleated cells, whereas the addition of high-density PGE(2) had the opposite effect. PCR analysis revealed increased level of EP3 mRNA in undifferentiated cells and reduced level after the development of osteoclast; EP1, EP2 and EP4 were constitutively expressed throughout the differentiation. Investigation of intracellular signaling verified that low-density PGE(2) suppressed PKA activity in undifferentiated cells, suggesting that PGE(2) acts on the osteoclastic cell lineage to facilitate cell differentiation by suppressing PKA in the presence of RANKL.
Collapse
Affiliation(s)
- D Fujita
- Institute of Biological Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Ishii Y, Sakamoto K. Suppression of protein kinase C signaling by the novel isoform for bovine PGF(2alpha) receptor. Biochem Biophys Res Commun 2001; 285:1-8. [PMID: 11437363 DOI: 10.1006/bbrc.2001.5106] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A cDNA clone for a novel isoform of prostaglandin (PG) F(2alpha) receptor (FP) was isolated from the cDNA pool of the bovine corpus luteum. The sequence analysis revealed that the new FP isoform (FP(a)) encodes a 295-amino acid protein carrying a specific 28-amino acid sequence from the middle of transmembrane segment VI to the carboxyl terminus. Because only one copy gene has been identified for FP, FP(a) was generated by alternative mRNA splicing at the middle of the VI transmembrane region, resulting in the lack of a VII transmembrane segment and an intracellular carboxyl tail. The RT-PCR analysis for FP and FP(a) indicated that both mRNAs are expressed similarly during the estrous cycle and pregnancy. The PGF(2alpha) stimulation drastically enhanced protein kinase C (PKC) activity in the COS-7 cell transfected with FP, whereas no PKC activation was detected in FP(a)-transfected cells. Cotransfection of an excess amount of FP(a) markedly reduced FP-mediated PKC activity, suggesting that the novel FP isoform might play a role as a negative regulator to attenuate normal FP function.
Collapse
Affiliation(s)
- Y Ishii
- Institute of Biological Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan
| | | |
Collapse
|
24
|
Abstract
Cyclooxygenases metabolize arachidonate to five primary prostanoids: PGE(2), PGF(2 alpha), PGI(2), TxA(2), and PGD(2). These autacrine lipid mediators interact with specific members of a family of distinct G-protein-coupled prostanoid receptors, designated EP, FP, IP, TP, and DP, respectively. Each of these receptors has been cloned, expressed, and characterized. This family of eight prostanoid receptor complementary DNAs encodes seven transmembrane proteins which are typical of G-protein-coupled receptors and these receptors are distinguished by their ligand-binding profiles and the signal transduction pathways activated on ligand binding. Ligand-binding selectivity of these receptors is determined by both the transmembrane sequences and amino acid residues in the putative extracellular-loop regions. The selectivity of interaction between the receptors and G proteins appears to be mediated at least in part by the C-terminal tail region. Each of the EP(1), EP(3), FP, and TP receptors has alternative splice variants described that alter the coding sequence in the C-terminal intracellular tail region. The C-terminal variants modulate signal transduction, phosphorylation, and desensitization of these receptors, as well as altering agonist-independent constitutive activity.
Collapse
Affiliation(s)
- R M Breyer
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA.
| | | | | | | |
Collapse
|
25
|
Hasegawa H, Katoh H, Fujita H, Mori K, Negishi M. Receptor isoform-specific interaction of prostaglandin EP3 receptor with muskelin. Biochem Biophys Res Commun 2000; 276:350-4. [PMID: 11006128 DOI: 10.1006/bbrc.2000.3467] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
By using the yeast two-hybrid system, muskelin was found to bind with the carboxy-terminal tail of the prostaglandin EP3 receptor alpha isoform but not with either the beta or gamma isoform. A direct interaction between the carboxy-terminal tail of the alpha isoform and muskelin was confirmed in vitro using recombinant fusion proteins. Analysis by confocal microscopy indicated that the isoform and muskelin were distributed at the plasma membrane in transfected cells. When the isoform was stimulated by agonist, the receptor was internalized in the cells expressing the receptor alone, but this internalization was partially inhibited by the cotransfection with muskelin. Furthermore, muskelin enhanced the Gi activity of the isoform. Thus, muskelin appears to be an isoform-specific anchoring protein for the EP3 receptor.
Collapse
Affiliation(s)
- H Hasegawa
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | | | | | |
Collapse
|