1
|
López-Blanch R, Salvador-Palmer R, Oriol-Caballo M, Moreno-Murciano P, Dellinger RW, Estrela JM, Obrador E. Nicotinamide riboside, pterostilbene and ibudilast protect motor neurons and extend survival in ALS mice. Neurotherapeutics 2024; 21:e00301. [PMID: 38241160 PMCID: PMC10903100 DOI: 10.1016/j.neurot.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 01/21/2024] Open
Abstract
Oxidative stress and neuroinflammation are major contributors to the pathophysiology of ALS. Nicotinamide riboside (a NAD+ precursor) and pterostilbene (a natural antioxidant) were efficacious in a human pilot study of ALS patients and in ALS SOD1G93A transgenic mice. Ibudilast targets different phosphodiesterases and the macrophage migration inhibitory factor, reduces neuroinflammation, and in early-phase studies improved survival and slowed progression in ALS patients. Using two ALS murine models (SOD1G93A, FUSR521C) the effects of nicotinamide riboside, pterostilbene, and ibudilast on disease onset, progression and survival were studied. In both models ibudilast enhanced the effects of nicotinamide riboside and pterostilbene on survival and neuromotor functions. The triple combination reduced microgliosis and astrogliosis, and the levels of different proinflammatory cytokines in the CSF. TNFα, IFNγ and IL1β increased H2O2 and NO generation by motor neurons, astrocytes, microglia and endothelial cells isolated from ALS mice. Nicotinamide riboside and pterostilbene decreased H2O2 and NO generation in all these cells. Ibudilast specifically decreased TNFα levels and H2O2 generation by microglia and endothelial cells. Unexpectedly, pathophysiological concentrations of H2O2 or NO caused minimal motor neuron cytotoxicity. H2O2-induced cytotoxicity was increased by NO via a trace metal-dependent formation of potent oxidants (i.e. OH and -OONO radicals). In conclusion, our results show that the combination of nicotinamide riboside, pterostilbene and ibudilast improve neuromotor functions and survival in ALS murine models. Studies on the underlying mechanisms show that motor neuron protection involves the decrease of oxidative and nitrosative stress, the combination of which is highly damaging to motor neurons.
Collapse
Affiliation(s)
- Rafael López-Blanch
- Department of Physiology, Faculty of Medicine & Odontology, University of Valencia, 46010 Valencia, Spain; Scientia BioTech, 46002 Valencia, Spain
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine & Odontology, University of Valencia, 46010 Valencia, Spain
| | - María Oriol-Caballo
- Department of Physiology, Faculty of Medicine & Odontology, University of Valencia, 46010 Valencia, Spain; Scientia BioTech, 46002 Valencia, Spain
| | | | | | - José M Estrela
- Department of Physiology, Faculty of Medicine & Odontology, University of Valencia, 46010 Valencia, Spain; Scientia BioTech, 46002 Valencia, Spain; Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain.
| | - Elena Obrador
- Department of Physiology, Faculty of Medicine & Odontology, University of Valencia, 46010 Valencia, Spain; Scientia BioTech, 46002 Valencia, Spain.
| |
Collapse
|
2
|
Gao Y, Huang W, Jiang N, Fang JKH, Hu M, Shang Y, Wang Y. Combined effects of microfibers and polychlorinated biphenyls on the immune function of hemocytes in the mussel Mytilus coruscus. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106214. [PMID: 37865594 DOI: 10.1016/j.marenvres.2023.106214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/23/2023]
Abstract
Numerous studies have shown that microplastics can interact with other pollutants in the environment to produce synergistic effects, leading to more serious impacts. To date, there is little consensus on the combined effects of microfibers (MFs) and polychlorinated biphenyls (PCBs, Aroclor 1254), two legacy and alarming environmental pollutants. There is an urgent need to assess the impact of combined exposures on bivalve immune defences. In this study, we assessed the immune response of the mussels (Mytilus coruscus) hemocyte to MFs and PCBs alone and in combination by using flow cytometry. M. coruscus were exposed to MFs (1000 pieces/L) and PCBs (PCBs) (100 ng/L and 1000 ng/L) alone or in combination for 14 consecutive days and recovered for 7 days. The hemocyte of M. coruscus was collected on day 7, 14 and 21. MF exposure alone had no effect on the hemocyte. The total hemocyte count (THC), esterase (EA), lysosomal contents (LC), mitochondrial number (MN) and mitochondrial membrane potential (MMP) of mussels showed a decreasing trend with increasing PCB concentrations, both individually and in combination; The decreases in EA, MN and MMP were associated with the induction of reactive oxygen species (ROS). Hemocyte mortality (HM) was associated with a decrease in THC. Combined exposure to MFs and PCBs would exacerbate the effects on hemocyte immunity. These new findings improve our understanding of the toxic effects of MFs and organic chemical pollutants, and demonstrate the potential mechanism of PCBs to bivalves through changes in hemolymph immunity-related indicators.
Collapse
Affiliation(s)
- Yiming Gao
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Huang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Ningjin Jiang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - James K H Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yueyong Shang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
3
|
Yang H, Zhang Y, Zhang D, Qian L, Yang T, Wu X. Crocin exerts anti-tumor effect in colon cancer cells <em>via</em> repressing the JAK pathway. Eur J Histochem 2023; 67:3697. [PMID: 37700733 PMCID: PMC10543190 DOI: 10.4081/ejh.2023.3697] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
Crocin has been reported to have therapeutic effects on multiple cancers including colon cancer, but its specific mechanism is still ambiguous and needs to be further explored. Human colorectal adenocarcinoma cells (HCT-116) and human normal colonic epithelial cells (CCD841) were first treated with increasing concentrations of crocin. Subsequently, with 150 and 200 μM of crocin, the cell vitality was examined by cell counting kit 8. Cell apoptosis and proliferation were tested by TUNEL staining and colony formation assay, respectively. The expression of Ki-67 was assessed by immunofluorescence. Enzyme-linked immunosorbent assay was used to evaluate the level of inflammation- and oxidative-related factors. The reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) were examined by flow cytometer. Janus kinase (JAK), signal transducer and activator of transcription 3 (STAT3), and extracellular regulated protein kinases (ERK) in HCT-116 cells were tested by Western blot. Different concentrations of crocin barely affected the CCD841 cell vitality, while crocin restrained the HCT-116 cells vitality, proliferation and the expression of Ki-67, while inducing apoptosis in a concentration-dependent manner. Moreover, the contents of inflammation- and oxidative-related factors in HCT-116 cells were largely blunted by crocin that enhanced ROS and restrained the MMP and suppressed p-JAK2/JAK2, p-STAT3/STAT3, and p-ERK/ERK expression in HCT-116 cells. Crocin induced apoptosis and restored mitochondrial function in HCT-116 cells via repressing the JAK pathway. If the threptic effect works in patients, it could herald a new, effective treatment for colon cancer, improving the patients' prognosis and quality of life.
Collapse
Affiliation(s)
- Hui Yang
- Department of Gastroenterology, Changxing People's Hospital, Huzhou, Zhejiang.
| | - Yunlong Zhang
- Department of Ultrasound, The First People's Hospital of Linping District, Hangzhou, Zhejiang.
| | - Desheng Zhang
- Department of Radiology, Affiliated Center Hospital of Huzhou University, Huzhou, Zhejiang.
| | - Liping Qian
- Department of Radiology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang.
| | - Tianxing Yang
- Department of Oncology, Sanmen County People's Hospital, Taizhou, Zhejiang.
| | - Xiaocheng Wu
- Pathology Laboratory, Hangzhou Dean Medical Laboratory, Hangzhou, Zhejiang.
| |
Collapse
|
4
|
Obrador E, Jihad-Jebbar A, Salvador-Palmer R, López-Blanch R, Oriol-Caballo M, Moreno-Murciano MP, Navarro EA, Cibrian R, Estrela JM. Externally Applied Electromagnetic Fields and Hyperthermia Irreversibly Damage Cancer Cells. Cancers (Basel) 2023; 15:3413. [PMID: 37444524 DOI: 10.3390/cancers15133413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
At present, the applications and efficacy of non-ionizing radiations (NIR) in oncotherapy are limited. In terms of potential combinations, the use of biocompatible magnetic nanoparticles as heat mediators has been extensively investigated. Nevertheless, developing more efficient heat nanomediators that may exhibit high specific absorption rates is still an unsolved problem. Our aim was to investigate if externally applied magnetic fields and a heat-inducing NIR affect tumor cell viability. To this end, under in vitro conditions, different human cancer cells (A2058 melanoma, AsPC1 pancreas carcinoma, MDA-MB-231 breast carcinoma) were treated with the combination of electromagnetic fields (EMFs, using solenoids) and hyperthermia (HT, using a thermostated bath). The effect of NIR was also studied in combination with standard chemotherapy and targeted therapy. An experimental device combining EMFs and high-intensity focused ultrasounds (HIFU)-induced HT was tested in vivo. EMFs (25 µT, 4 h) or HT (52 °C, 40 min) showed a limited effect on cancer cell viability in vitro. However, their combination decreased viability to approximately 16%, 50%, and 21% of control values in A2058, AsPC1, and MDA-MB-231 cells, respectively. Increased lysosomal permeability, release of cathepsins into the cytosol, and mitochondria-dependent activation of cell death are the underlying mechanisms. Cancer cells could be completely eliminated by combining EMFs, HT, and standard chemotherapy or EMFs, HT, and anti-Hsp70-targeted therapy. As a proof of concept, in vivo experiments performed in AsPC1 xenografts showed that a combination of EMFs, HIFU-induced HT, standard chemotherapy, and a lysosomal permeabilizer induces a complete cancer regression.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech, 46002 Valencia, Spain
| | - Ali Jihad-Jebbar
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Rafael López-Blanch
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech, 46002 Valencia, Spain
| | - María Oriol-Caballo
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech, 46002 Valencia, Spain
| | | | - Enrique A Navarro
- Scientia BioTech, 46002 Valencia, Spain
- Department of Computer Sciences, Higher Technical School of Engineering, 46100 Burjassot, Spain
- IRTIC Institute, University of Valencia, 46980 Paterna, Spain
| | - Rosa Cibrian
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech, 46002 Valencia, Spain
| | - José M Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech, 46002 Valencia, Spain
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| |
Collapse
|
5
|
Sphingosine as a New Antifungal Agent against Candida and Aspergillus spp. Int J Mol Sci 2022; 23:ijms232415510. [PMID: 36555152 PMCID: PMC9779773 DOI: 10.3390/ijms232415510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 12/13/2022] Open
Abstract
This study investigated whether sphingosine is effective as prophylaxis against Aspergillus spp. and Candida spp. In vitro experiments showed that sphingosine is very efficacious against A. fumigatus and Nakeomyces glabrataa (formerly named C. glabrata). A mouse model of invasive aspergillosis showed that sphingosine exerts a prophylactic effect and that sphingosine-treated animals exhibit a strong survival advantage after infection. Furthermore, mechanistic studies showed that treatment with sphingosine leads to the early depolarization of the mitochondrial membrane potential (Δψm) and the generation of mitochondrial reactive oxygen species and to a release of cytochrome C within minutes, thereby presumably initiating apoptosis. Because of its very good tolerability and ease of application, inhaled sphingosine should be further developed as a possible prophylactic agent against pulmonary aspergillosis among severely immunocompromised patients.
Collapse
|
6
|
Combined In Vitro Toxicity and Immunogenicity of Cold Plasma and Pulsed Electric Fields. Biomedicines 2022; 10:biomedicines10123084. [PMID: 36551840 PMCID: PMC9775231 DOI: 10.3390/biomedicines10123084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
In modern oncology, therapies are based on combining monotherapies to overcome treatment resistance and increase therapy precision. The application of microsecond-pulsed electric fields (PEF) is approved to enhance local chemotherapeutic drug uptake within combination electrochemotherapy regimens. Reactive oxygen species (ROS) have been implicated in anticancer effects, and cold physical plasma produces vast amounts of ROS, which have recently been shown to benefit head and neck cancer patients. PEF and cold plasma technology have been linked to immunogenic cell death (ICD) induction, a regulated cell death accompanied by sterile inflammation that promotes antitumor immunity. To this end, we investigated the combined effect of both treatments regarding their intracellular ROS accumulation, toxicity, ICD-related marker expression, and optimal exposure sequence in a leukemia model cell line. The combination treatment substantially increased ROS and intracellular glutathione levels, leading to additive cytotoxic effects accompanied by a significantly increased expression of ICD markers, such as the eat-me signal calreticulin (CRT). Preconditioned treatment with cold plasma followed by PEF exposure was the most potent treatment sequence. The results indicate additive effects of cold plasma and PEF, motivating further studies in skin and breast tumor models for the future improvement of ECT in such patients.
Collapse
|
7
|
Mohanty S, Kumar A, Das P, Sahu SK, Mukherjee R, Ramachandranpillai R, Nair SS, Choudhuri T. Nm23-H1 induces apoptosis in primary effusion lymphoma cells via inhibition of NF-κB signaling through interaction with oncogenic latent protein vFLIP K13 of Kaposi’s sarcoma-associated herpes virus. Cell Oncol (Dordr) 2022; 45:967-989. [DOI: 10.1007/s13402-022-00701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2022] [Indexed: 11/03/2022] Open
|
8
|
Kulbay M, Johnson B, Ricaud G, Séguin-Grignon MN, Bernier J. Energetic metabolic reprogramming in Jurkat DFF40-deficient cancer cells. Mol Cell Biochem 2022; 477:2213-2233. [PMID: 35460011 DOI: 10.1007/s11010-022-04433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
Abstract
DNA fragmentation factor 40 (DFF40), or the caspase-activated DNase (CAD), is an endonuclease specific for double-stranded DNA. Alterations in its function and expression have been linked to apoptosis resistance, a mechanism likely used by cancer cells. However, how the DFF40-related apoptosis resistance pathway occurs remains unclear. Here, we sought to determine if DFF40 expression could be linked to cell metabolism through the regulation of mitochondrial integrity and function. We demonstrated that DFF40-deficient cells are more resistant to staurosporine and tributyltin (TBT)-induced apoptosis, and express higher levels of Mcl-1 at basal state. Treatment with TBT induces higher Bcl-2 and caspase-9 mRNA transcripts in DFF40 KO Jurkat cells, as well as enhanced Bcl-2 phosphorylation. A loss of DFF40 expression induces a higher mitochondrial mass, mtDNA copy number, mitochondrial membrane potential, and glycolysis rates in resting T cells. DFF40-deficient cells exhibit the Warburg effect phenotype, where they rely significantly more on glycolysis than oxidative phosphorylation and have a higher proliferative state, demonstrated by a higher Ki-67 transcription factor expression and AKT phosphorylation. Finally, we demonstrated with cell fractioning that DFF40 can translocate to the mitochondria following apoptosis induction. Our study reveals that DFF40 may act as a regulator of mitochondria during cell death and its loss could compromise mitochondrial integrity and cause an energetic reprogramming in pathologies such as cancer.
Collapse
Affiliation(s)
- Merve Kulbay
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
- Department of Medicine, Université de Montréal, 2900 Blvd. Edouard Montpetit, Montréal, QC, Canada
| | - Bruno Johnson
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Guillaume Ricaud
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | | | - Jacques Bernier
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
9
|
Xu G, Xu X, Liu J, Jia Q, Ke C, Zhang H, Xu C, Ou E, Tan W, Zhao Y. Mitochondria-Targeted Triphenylphosphonium Conjugated C-3 Modified Betulin: Synthesis, Antitumor Properties and Mechanism of Action. ChemMedChem 2021; 17:e202100659. [PMID: 34881517 DOI: 10.1002/cmdc.202100659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/08/2021] [Indexed: 11/05/2022]
Abstract
A series of mitochondria-targeted triphenylphosphonium conjugated C-3 modified betulin were synthesized and evaluated against tumor cells. As a result, a new derivative 13 i, the conjugate of 3-O-(3'-acetylphenylacetate)-betulin with triphenylphosphonium, was identified as the one with the best anti-tumor effect. Conjugate 13 i significantly inhibited HCT116 cells with IC50 at 0.66 μM. While betulin, C-3 modified betulin, and the triphenylphosphonium moiety showed no inhibition of HCT116 cell proliferation at 20 μM. More importantly, 13 i exhibited a more cytotoxic effect against the tumor cell HCT116 than normal cell NCM460. Mode of action studies demonstrated that 13 i induced the G2/M phase cell cycle arrest and apoptosis in HCT116 cells through the mitochondrial pathway. Structure-activity relationship analysis revealed that integration of triphenylphosphonium moiety into the C-28 of betulin can greatly improve cytotoxicity. Appropriate modification on C-3 of the conjugate would improve the selectivity.
Collapse
Affiliation(s)
- Geng Xu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaojia Xu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiansong Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qi Jia
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Changhong Ke
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hanyuan Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chao Xu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - E Ou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wen Tan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yu Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
10
|
Onohuean H, Adisa RA, Alagbonsi AI. Anti-apoptotic effect of Buchholzia coriacea Engl. stem back extracts on AsPC-1 and mechanisms of action. BMC Complement Med Ther 2021; 21:258. [PMID: 34627212 PMCID: PMC8501612 DOI: 10.1186/s12906-021-03433-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Ethnopharmacological relevance Buchholzia coriacea Engl. is popularly called wonderful cola due to its wide ethnomedicinal use for the treatment of various ailments. We investigated the possible cytotoxic effect of its various fractions on human pancreatic cancer cell (AsPC-1) and also determined its mechanisms of action. Materials and methods The AsPC-1 cells were cultivated and separately treated with 5-fluorouracil (5-FU) or Buchholzia coriacea Engl. bark (BC) (ethanol, aqueous, chloroform or ethyl acetate extract) for 72 h. Cell viability, caspase 3 and mitochondrial membrane potential (ΔΨm) were determined in vitro after the treatment. Nitric oxide (NO) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals’ scavenging property, ferric reducing power and lipid peroxidation assays were also done to examine the antioxidant effect of BC in vitro. Results Various extracts of BC, especially at 2500 μg/ml and 5000 μg/ml, increased the AsPC-1 viability while 5-FU decreased it. The activity of caspase 3 was increased by 5-FU but reduced by all concentrations of various extracts of BC. Incubation of AsPC-1 with 5-FU showed the majority of cells having the monomeric form of JC-1 dye (bright green fluorescence), which indicated de-energized mitochondria. However, fluorescence photomicrograph of cells incubated with different concentrations (20, 40 and 100 μg/ml) of BC extracts (aqueous, ethanol, chloroform and ethyl acetate) showed strong JC-1 aggregation (yellow), which indicated mitochondria with intact membrane potentials. BC extracts also scavenged NO and DPPH radicals, inhibited lipid peroxidation and increased ferric reduction, though not as much as ascorbic acid. Conclusion This study suggests that BC elicits anti-apoptotic activity in AsPC-1 by increasing cell viability, decreasing caspase 3 activity, stabilizing the ∆Ψm, and scavenging free radicals. Even though BC is used ethnomedicinally as anti-cancer agent, our findings in the present study suggest that it has pro-cancer potential in-vitro, especially on pancreatic cells. Its anti-apoptotic activity in AsPC-1 could be of clinical significance, especially to counteract the effect of apoptotic agents on pancreatic cells.
Collapse
Affiliation(s)
- Hope Onohuean
- Biopharmaceutics unit, Department of Pharmacology and Toxicology, Kampala International University Western Campus, Ishaka-Bushenyi, Uganda. .,Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Idi-Araba, Lagos State, Nigeria.
| | - Rahmat Adetutu Adisa
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Abdullateef Isiaka Alagbonsi
- Department of Clinical Biology (Physiology Unit), School of Medicine and Pharmacy, University of Rwanda College of Medicine and Health Sciences, Huye, Rwanda
| |
Collapse
|
11
|
Kaminari A, Nikoli E, Athanasopoulos A, Sakellis E, Sideratou Z, Tsiourvas D. Engineering Mitochondriotropic Carbon Dots for Targeting Cancer Cells. Pharmaceuticals (Basel) 2021; 14:ph14090932. [PMID: 34577632 PMCID: PMC8470554 DOI: 10.3390/ph14090932] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Aiming to understand and enhance the capacity of carbon dots (CDs) to transport through cell membranes and target subcellular organelles—in particular, mitochondria—a series of nitrogen-doped CDs were prepared by the one-step microwave-assisted pyrolysis of citric acid and ethylenediamine. Following optimization of the reaction conditions for maximum fluorescence, functionalization at various degrees with alkylated triphenylphosphonium functional groups of two different alkyl chain lengths afforded a series of functionalized CDs that exhibited either lysosome or mitochondria subcellular localization. Further functionalization with rhodamine B enabled enhanced fluorescence imaging capabilities in the visible spectrum and allowed the use of low quantities of CDs in relevant experiments. It was thus possible, by the appropriate selection of the alkyl chain length and degree of functionalization, to attain successful mitochondrial targeting, while preserving non-toxicity and biocompatibility. In vitro cell experiments performed on normal as well as cancer cell lines proved their non-cytotoxic character and imaging potential, even at very low concentrations, by fluorescence microscopy. Precise targeting of mitochondria is feasible with carefully designed CDs that, furthermore, are specifically internalized in cells and cell mitochondria of high transmembrane potential and thus exhibit selective uptake in malignant cells compared to normal cells.
Collapse
Affiliation(s)
- Archontia Kaminari
- National Centre for Scientific Research “Demokritos”, Institute of Nanoscience and Nanotechnology, 15310 Aghia Paraskevi, Greece; (A.K.); (E.N.); (E.S.); (Z.S.)
| | - Eleni Nikoli
- National Centre for Scientific Research “Demokritos”, Institute of Nanoscience and Nanotechnology, 15310 Aghia Paraskevi, Greece; (A.K.); (E.N.); (E.S.); (Z.S.)
| | - Alexandros Athanasopoulos
- National Centre for Scientific Research “Demokritos”, Institute of Biosciences and Applications, 15310 Aghia Paraskevi, Greece;
| | - Elias Sakellis
- National Centre for Scientific Research “Demokritos”, Institute of Nanoscience and Nanotechnology, 15310 Aghia Paraskevi, Greece; (A.K.); (E.N.); (E.S.); (Z.S.)
| | - Zili Sideratou
- National Centre for Scientific Research “Demokritos”, Institute of Nanoscience and Nanotechnology, 15310 Aghia Paraskevi, Greece; (A.K.); (E.N.); (E.S.); (Z.S.)
| | - Dimitris Tsiourvas
- National Centre for Scientific Research “Demokritos”, Institute of Nanoscience and Nanotechnology, 15310 Aghia Paraskevi, Greece; (A.K.); (E.N.); (E.S.); (Z.S.)
- Correspondence: ; Tel.: +30-210-650-3616
| |
Collapse
|
12
|
Yu Y, Li Y, Yang X, Deng Q, Xu B, Cao H, Mao J. A Novel Imidazo[1,2-a]pyridine Compound Reduces Cell Viability and Induces Apoptosis of HeLa Cells by p53/Bax-Mediated Activation of Mitochondrial Pathway. Anticancer Agents Med Chem 2021; 22:1102-1110. [PMID: 34353269 DOI: 10.2174/1871520621666210805130925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/27/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Despite emerging research on new treatment strategies, chemotherapy remains one of the most important therapeutic modalities for cancers. Imidazopyridines are important targets in organic chemistry and are worthy of attention given their numerous applications. OBJECTIVE To design and synthesize a novel series of imidazo[1,2-a]pyridine-derived compounds and investigate their antitumor effects and the underlying mechanisms. METHODS Imidazo[1,2-a]pyridine-derived compounds were synthesized with new strategies and conventional methods. The antitumor activities of the new compounds were evaluated by MTT assay. Flow cytometry and immunofluorescence were performed to examine the effects of the most effective antiproliferative compound on cell apoptosis. Western blot analysis was used to assess the expression of apoptotic proteins. RESULTS Fifty-two new imidazo[1,2-a]pyridine compounds were designed and successfully synthesized. The compound, 1-(imidazo[1,2-a]pyridin-3-yl)-2-(naphthalen-2-yl)ethane-1,2-dione, named La23, showed high potential for suppressing the viability of HeLa cells (IC50 15.32 μM). La23 inhibited cell proliferation by inducing cell apoptosis, and it reduced the mitochondrial membrane potential of HeLa cells. Moreover, treatment with La23 appeared to increase the expression of apoptotic-related protein P53, Bax, cleaved caspase-3, and cytochrome c at a low concentration range. CONCLUSION The novel imidazo[1,2-a]pyridine compound, La23, was synthesized and suppressed cell growth by inducing cell apoptosis via the p53/Bax mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Yang Yu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006. China
| | - Yanwen Li
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006. China
| | - Xinjie Yang
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006. China
| | - Qiuyi Deng
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006. China
| | - Bin Xu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006. China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458. China
| | - Jianwen Mao
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006. China
| |
Collapse
|
13
|
Kar N, Gupta D, Bellare J. Ethanol affects fibroblast behavior differentially at low and high doses: A comprehensive, dose-response evaluation. Toxicol Rep 2021; 8:1054-1066. [PMID: 34307054 PMCID: PMC8296147 DOI: 10.1016/j.toxrep.2021.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 04/19/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Ethanol exhibits hormetic response in terms of cellular activity. 1 % (v/v) ethanol concentration demarcates non-toxic and toxic range. Different types of mitochondrial impairment identified at high dose. Cellular toxicity is accompanied by an increase in cellular stiffness. Dose-dependent cellular stress response to toxicity is observed.
This study aims to develop a comprehensive understanding of effects of low and high doses of ethanol on cellular biochemistry and morphology. Here, fibroblast cells are exposed to ethanol of varied concentrations [0.005−10 % (v/v)] to investigate cellular activity, cytoskeletal organization, cellular stiffness, mitochondrial structure, and real-time behavior. Our results indicate a sharp difference in cellular behavior above and below 1 % ethanol concentration. A two-fold increase in MTT activity at low doses is observed, whereas at high doses it decreases. This increased activity at low doses does not involve cell proliferation changes or mitochondrial impairment, as seen at higher doses. Moreover, the study identifies different types of mitochondrial structure impairment at high doses. Morphologically, cells demonstrate a gradual change in cytoskeletal organization and an increase in cell stiffness with increase in doses. Cells exhibit adaptation to sub-toxic doses of ethanol, wherein recovery from ethanol-induced stress is a dose-dependent phenomenon. Cell survival at low doses and toxicity at higher doses are attributed to mild and strong oxidative stress, respectively. Overall, the study provides a comprehensive understanding of dose-dependent effects of ethanol, manifesting its biphasic or hormetic response, biochemically, at low doses and illustrating its toxicological effects at higher doses.
Collapse
Affiliation(s)
- Neelakshi Kar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| | - Deepak Gupta
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| | - Jayesh Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India.,Wadhwani Research Centre for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| |
Collapse
|
14
|
Obrador E, Salvador R, Marchio P, López-Blanch R, Jihad-Jebbar A, Rivera P, Vallés SL, Banacloche S, Alcácer J, Colomer N, Coronado JA, Alandes S, Drehmer E, Benlloch M, Estrela JM. Nicotinamide Riboside and Pterostilbene Cooperatively Delay Motor Neuron Failure in ALS SOD1 G93A Mice. Mol Neurobiol 2021; 58:1345-1371. [PMID: 33174130 DOI: 10.1007/s12035-020-02188-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022]
Abstract
Oxidative stress-induced damage is a major mechanism in the pathophysiology of amyotrophic lateral sclerosis (ALS). A recent human clinical trial showed that the combination of nicotinamide riboside (NR) and pterostilbene (PT), molecules with potential to interfere in that mechanism, was efficacious in ALS patients. We examined the effect of these molecules in SOD1G93A transgenic mice, a well-stablished model of ALS. Assessment of neuromotor activity and coordination was correlated with histopathology, and measurement of proinflammatory cytokines in the cerebrospinal fluid. Cell death, Nrf2- and redox-dependent enzymes and metabolites, and sirtuin activities were studied in isolated motor neurons. NR and PT increased survival and ameliorated ALS-associated loss of neuromotor functions in SOD1G93A transgenic mice. NR and PT also decreased the microgliosis and astrogliosis associated with ALS progression. Increased levels of proinflammatory cytokines were observed in the cerebrospinal fluid of mice and humans with ALS. NR and PT ameliorated TNFα-induced oxidative stress and motor neuron death in vitro. Our results support the involvement of oxidative stress, specific Nrf2-dependent antioxidant defenses, and sirtuins in the pathophysiology of ALS. NR and PT interfere with the mechanisms leading to the release of proapoptotic molecular signals by mitochondria, and also promote mitophagy.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - Rosario Salvador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - Patricia Marchio
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - Rafael López-Blanch
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - Ali Jihad-Jebbar
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - Pilar Rivera
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - Soraya L Vallés
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - Salvador Banacloche
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - Javier Alcácer
- Pathology Laboratory, Quirón Hospital, 46010, Valencia, Spain
| | - Nuria Colomer
- Pathology Laboratory, Quirón Hospital, 46010, Valencia, Spain
| | | | - Sandra Alandes
- Pathology Laboratory, Quirón Hospital, 46010, Valencia, Spain
| | - Eraci Drehmer
- Department of Health and Functional Valorization, Catholic University of San Vicente Martir, 46001, Valencia, Spain
| | - María Benlloch
- Department of Health and Functional Valorization, Catholic University of San Vicente Martir, 46001, Valencia, Spain
| | - José M Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain.
| |
Collapse
|
15
|
Nerlich A, von Wunsch Teruel I, Mieth M, Hönzke K, Rückert JC, Mitchell TJ, Suttorp N, Hippenstiel S, Hocke AC. Reversion of Pneumolysin-Induced Executioner Caspase Activation Redirects Cells to Survival. J Infect Dis 2020; 223:1973-1983. [PMID: 33045080 DOI: 10.1093/infdis/jiaa639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/06/2020] [Indexed: 01/23/2023] Open
Abstract
Apoptosis is an indispensable mechanism for eliminating infected cells and activation of executioner caspases is considered to be a point of no return. Streptococcus pneumoniae, the most common bacterial pathogen causing community-acquired pneumonia, induces apoptosis via its pore-forming toxin pneumolysin, leading to rapid influxes of mitochondrial calcium [Ca2+]m as well as fragmentation, and loss of motility and membrane potential, which is accompanied by caspase-3/7 activation. Using machine-learning and quantitative live-cell microscopy, we identified a significant number of alveolar epithelial cells surviving such executioner caspase activation after pneumolysin attack. Precise single-cell analysis revealed the [Ca2+]m amplitude and efflux rate as decisive parameters for survival and death, which was verified by pharmacological inhibition of [Ca2+]m efflux shifting the surviving cells towards the dying fraction. Taken together, we identified the regulation of [Ca2+]m as critical for controlling the cellular fate under pneumolysin attack, which might be useful for therapeutic intervention during pneumococcal infection.
Collapse
Affiliation(s)
- Andreas Nerlich
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Iris von Wunsch Teruel
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Maren Mieth
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katja Hönzke
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jens C Rückert
- Department of General, Visceral, Vascular and Thoracic Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Timothy J Mitchell
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Norbert Suttorp
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Hippenstiel
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas C Hocke
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
16
|
Han SY, Lee EM, Kim S, Kwon AM, Baek EJ. Role of Plasma Gelsolin Protein in the Final Stage of Erythropoiesis and in Correction of Erythroid Dysplasia In Vitro. Int J Mol Sci 2020; 21:ijms21197132. [PMID: 32992584 PMCID: PMC7583768 DOI: 10.3390/ijms21197132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022] Open
Abstract
Gelsolin, an actin-remodeling protein, is involved in cell motility, cytoskeletal remodeling, and cytokinesis and is abnormally expressed in many cancers. Recently, human recombinant plasma gelsolin protein (pGSN) was reported to have important roles in cell cycle and maturation of primary erythroblasts. However, the role of human plasma gelsolin in late stage erythroblasts prior to enucleation and putative clinical relevance in patients with myelodysplastic syndrome (MDS) and hemato-oncologic diseases have not been reported. Polychromatic and orthochromatic erythroblasts differentiated from human cord blood CD34+ cells, and human bone marrow (BM) cells derived from patients with MDS, were cultured in serum-free medium containing pGSN. Effects of pGSN on mitochondria, erythroid dysplasia, and enucleation were assessed in cellular and transcriptional levels. With pGSN treatment, terminal maturation at the stage of poly- and ortho-chromatic erythroblasts was enhanced, with higher numbers of orthochromatic erythroblasts and enucleated red blood cells (RBCs). pGSN also significantly decreased dysplastic features of cell morphology. Moreover, we found that patients with MDS with multi-lineage dysplasia or with excess blasts-1 showed significantly decreased expression of gelsolin mRNA (GSN) in their peripheral blood. When BM erythroblasts of MDS patients were cultured with pGSN, levels of mRNA transcripts related to terminal erythropoiesis and enucleation were markedly increased, with significantly decreased erythroid dysplasia. Moreover, pGSN treatment enhanced mitochondrial transmembrane potential that is unregulated in MDS and cultured cells. Our findings demonstrate a key role for plasma gelsolin in erythropoiesis and in gelsolin-depleted MDS patients, and raises the possibility that pGSN administration may promote erythropoiesis in erythroid dysplasia.
Collapse
Affiliation(s)
- So Yeon Han
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea; (S.Y.H.); (S.K.)
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea;
| | - Eun Mi Lee
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea;
| | - Suyeon Kim
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea; (S.Y.H.); (S.K.)
| | - Amy M. Kwon
- Biostatistical Consulting and Research Laboratory, Medical Research Collaborating Center, Industry-University Cooperation Foundation, Hanyang University, Seoul 04763, Korea;
| | - Eun Jung Baek
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea; (S.Y.H.); (S.K.)
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea;
- Correspondence: ; Tel.: +82-31-560-2485; Fax: +82-31-560-2489
| |
Collapse
|
17
|
Ruvinov I, Nguyen C, Scaria B, Vegh C, Zaitoon O, Baskaran K, Mehaidli A, Nunes M, Pandey S. Lemongrass Extract Possesses Potent Anticancer Activity Against Human Colon Cancers, Inhibits Tumorigenesis, Enhances Efficacy of FOLFOX, and Reduces Its Adverse Effects. Integr Cancer Ther 2020; 18:1534735419889150. [PMID: 31845598 PMCID: PMC6918039 DOI: 10.1177/1534735419889150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Current chemotherapeutics for metastatic colorectal cancers have limited success
and are extremely toxic due to nonselective targeting. Some natural extracts
have been traditionally taken and have shown anticancer activity. These extracts
have multiple phytochemicals that can target different pathways selectively in
cancer cells. We have shown previously that lemongrass (Cymbopogon
citratus) extract is effective at inducing cell death in human
lymphomas. However, the efficacy of lemongrass extract on human colorectal
cancer has not been investigated. Furthermore, its interactions with current
chemotherapies for colon cancer is unknown. In this article, we report the
anticancer effects of ethanolic lemongrass extract in colorectal cancer models,
and importantly, its interactions with FOLFOX and Taxol. Lemongrass extract
induced apoptosis in colon cancer cells in a time and dose-dependent manner
without harming healthy cells in vitro. Oral administration of lemongrass
extract was well tolerated and effective at inhibiting colon cancer xenograft
growth in mice. It enhanced the anticancer efficacy of FOLFOX and,
interestingly, inhibited FOLFOX-related weight loss in animals given the
combination treatment. Furthermore, feeding lemongrass extract to
APCmin/+ transgenic mice led to the reduction of intestinal
tumors, indicating its preventative potential. Therefore, this natural extract
has potential to be developed as a supplemental treatment for colorectal
cancer.
Collapse
Affiliation(s)
| | | | | | - Caleb Vegh
- University of Windsor, Windsor, Ontario, Canada
| | - Ola Zaitoon
- University of Windsor, Windsor, Ontario, Canada
| | | | | | | | | |
Collapse
|
18
|
Sousa ML, Ribeiro T, Vasconcelos V, Linder S, Urbatzka R. Portoamides A and B are mitochondrial toxins and induce cytotoxicity on the proliferative cell layer of in vitro microtumours. Toxicon 2019; 175:49-56. [PMID: 31887317 DOI: 10.1016/j.toxicon.2019.12.159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022]
Abstract
Cyanobacteria are known to produce many toxins and other secondary metabolites. The study of their specific mode of action may reveal the biotechnological potential of such compounds. Portoamides A and B (PAB) are cyclic peptides isolated from the cyanobacteria Phormidium sp. due to their growth repression effect on microalgae and were shown to be cytotoxic against certain cancer cell lines. In the present work, viability was assessed on HCT116 colon cancer cells grown as monolayer culture and as multicellular spheroids (MTS), non-carcinogenic cells and on zebrafish larvae. HCT116 cells and epithelial RPE-1hTERT cells showed very similar degrees of sensitivities to PAB. PAB were able to penetrate the MTS, showing a four-fold high IC50 compared to monolayer cultures. The toxicity of PAB was similar at 4 °C and 37 °C suggesting energy-independent uptake. PAB exposure decreased ATP production, mitochondrial maximal respiration rates and induced mitochondrial membrane hyperpolarization. PAB induced general organelle stress response, indicated by an increase of the mitochondrial damage sensor PINK-1, and of phosphorylation of eIF2α, characteristic for endoplasmic reticulum stress. In summary, these findings show general toxicity of PAB on immortalized cells, cancer cells and zebrafish embryos, likely due to mitochondrial toxicity.
Collapse
Affiliation(s)
- Maria Lígia Sousa
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal; FCUP - Faculty of Sciences of University of Porto, Porto, Portugal
| | - Tiago Ribeiro
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal; FCUP - Faculty of Sciences of University of Porto, Porto, Portugal
| | - Vítor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal; FCUP - Faculty of Sciences of University of Porto, Porto, Portugal
| | - Stig Linder
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institute, Stockholm, Sweden; Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Ralph Urbatzka
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal.
| |
Collapse
|
19
|
Alper P, Erkisa M, Genckal HM, Sahin S, Ulukaya E, Ari F. Synthesis, characterization, anticancer and antioxidant activity of new nickel(II) and copper(II) flavonoid complexes. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Sharma V, Pathak K. Liquisolid system of paclitaxel using modified polysaccharides: In vitro cytotoxicity, apoptosis study, cell cycle analysis, in vitro mitochondrial membrane potential assessment, and pharmacokinetics. Int J Biol Macromol 2019; 137:20-31. [DOI: 10.1016/j.ijbiomac.2019.06.188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/30/2019] [Accepted: 06/24/2019] [Indexed: 01/27/2023]
|
21
|
The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci Rep 2019; 39:BSR20191601. [PMID: 31371631 PMCID: PMC6712439 DOI: 10.1042/bsr20191601] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/16/2022] Open
Abstract
Cryopreservation has facilitated advancement of biological research by allowing the storage of cells over prolonged periods of time. While cryopreservation at extremely low temperatures would render cells metabolically inactive, cells suffer insults during the freezing and thawing process. Among such insults, the generation of supra-physiological levels of reactive oxygen species (ROS) could impair cellular functions and survival. Antioxidants are potential additives that were reported to partially or completely reverse freeze-thaw stress-associated impairments. This review aims to discuss the potential sources of cryopreservation-induced ROS and the effectiveness of antioxidant administration when used individually or in combination.
Collapse
|
22
|
Tsoy A, Saliev T, Abzhanova E, Turgambayeva A, Kaiyrlykyzy A, Akishev M, Saparbayev S, Umbayev B, Askarova S. The Effects of Mobile Phone Radiofrequency Electromagnetic Fields on β-Amyloid-Induced Oxidative Stress in Human and Rat Primary Astrocytes. Neuroscience 2019; 408:46-57. [PMID: 30953670 DOI: 10.1016/j.neuroscience.2019.03.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/25/2022]
Abstract
Amyloid beta peptide (Aβ) is implicated in the development of pathological reactions associated with Alzheimer's disease (AD), such as oxidative stress, neuro-inflammation and death of brain cells. Current pharmacological approaches to treat AD are not able to control the deposition of Aβ and suppression of Aβ-induced cellular response. There is a growing body of evidence that exposure to radiofrequency electromagnetic field (RF-EMF) causes a decrease of beta-amyloid deposition in the brains and provides cognitive benefits to Alzheimer's Tg mice. Herein, we investigated the effects of mobile phone radiofrequency EMF of 918 MHz on reactive oxygen species (ROS) formation, mitochondrial membrane potential (MMP), activity of NADPH-oxidase, and phosphorylation of p38MAPK and ERK1/2 kinases in human and rat primary astrocytes in the presence of Aβ42 and H2O2. Our data demonstrate that EMF is able to reduce Aβ42- and H2O2-induced cellular ROS, abrogate Aβ₄₂-induced production of mitochondrial ROS and the co-localization between the cytosolic (p47-phox) and membrane (gp91-phox) subunits of NADPH oxidase, while increasing MMP, and inhibiting H2O2-induced phosphorylation of p38MAPK and ERK1/2 in primary astrocytes. Yet, EMF was not able to modulate alterations in the phosphorylation state of the MAPKs triggered by Aβ42. Our findings provide an insight into the mechanisms of cellular and molecular responses of astrocytes on RF-EMF exposure and indicate the therapeutic potential of RF-EMF for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Andrey Tsoy
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Timur Saliev
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan; S.D. Asfendiyarov Kazakh National Medical University, Tole Bi Street 94, Almaty, 050000, Kazakhstan
| | - Elvira Abzhanova
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Anel Turgambayeva
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Aiym Kaiyrlykyzy
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Mars Akishev
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Samat Saparbayev
- National Scientific Medical Center, 42 Abylai Khan Ave, Astana, 010000, Kazakhstan, 010009
| | - Bauyrzhan Umbayev
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Sholpan Askarova
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan.
| |
Collapse
|
23
|
Oh HN, Seo JH, Lee MH, Kim C, Kim E, Yoon G, Cho SS, Cho YS, Choi HW, Shim JH, Chae JI. Licochalcone C induced apoptosis in human oral squamous cell carcinoma cells by regulation of the JAK2/STAT3 signaling pathway. J Cell Biochem 2018; 119:10118-10130. [PMID: 30129052 DOI: 10.1002/jcb.27349] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/26/2018] [Indexed: 01/09/2023]
Abstract
Oral cancer is of an aggressive malignancy that arises on oral cavity and lip, 90% of cancers histologically originated in the squamous cells. Licochalcone (LC)C has been known as natural phenolic chalconoid substances, and its origin is the root of Glycyrrhiza glabra or Glycyrrhiza inflata. LCC inhibited oral squamous cell carcinoma (OSCC) cell viability, mitochondrial function, and anchorage-independent growth in a dose-dependent manner. To investigate the ability of LCC to target Janus kinase 2 (JAK2), we performed pull-down binding assay, kinase assay, and docking simulation. The molecular docking studies were performed between JAK2 and the potent inhibitor LCC. It was shown that LCC tightly interacted with ATP-binding site of JAK2. In addition, LCC inhibited the JAK2/signal transducer and activator of transcription 3 pathway, upregulated p21, and downregulated Bcl-2, Mcl-1, and Survivin, while it disrupted mitochondrial membrane potential and subsequently caused cytochrome c release with activation of multi-caspase, eventually leading to apoptosis in HN22 and HSC4 cells. LCC elevated the protein levels of Bax, cleaved Bid and PARP, and increased Apaf-1, and this effect was reversed by LCC treatment. Our results demonstrated that treatment of OSCC cells with LCC induced the death receptor (DR)4 and DR5 expression level with the generation of reactive oxygen species and the upregulation of CHOP protein expression. Taken together, these results could provide the basis for clinical application as a new therapeutic strategy in the treatment of oral cancer.
Collapse
Affiliation(s)
- Ha-Na Oh
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-Gun, Jeonnam, Republic of Korea
| | - Ji-Hye Seo
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, Republic of Korea
| | - Mee-Hyun Lee
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Cheolhee Kim
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Eunae Kim
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-Gun, Jeonnam, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-Gun, Jeonnam, Republic of Korea
| | - Young Sik Cho
- Department of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Hyun Woo Choi
- Department of Animal Science, Chonbuk National University, Jeonju, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-Gun, Jeonnam, Republic of Korea.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
24
|
Woolbright BL, Ayres M, Taylor JA. Metabolic changes in bladder cancer. Urol Oncol 2018; 36:327-337. [DOI: 10.1016/j.urolonc.2018.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/05/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022]
|
25
|
Chen YJ, Schoeler U, Huang CHB, Vollmer F. Combining Whispering-Gallery Mode Optical Biosensors with Microfluidics for Real-Time Detection of Protein Secretion from Living Cells in Complex Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703705. [PMID: 29718550 DOI: 10.1002/smll.201703705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/10/2018] [Indexed: 06/08/2023]
Abstract
The noninvasive monitoring of protein secretion of cells responding to drug treatment is an effective and essential tool in latest drug development and for cytotoxicity assays. In this work, a surface functionalization method is demonstrated for specific detection of protein released from cells and a platform that integrates highly sensitive optical devices, called whispering-gallery mode biosensors, with precise microfluidics control to achieve label-free and real-time detection. Cell biomarker release is measured in real time and with nanomolar sensitivity. The surface functionalization method allows for antibodies to be immobilized on the surface for specific detection, while the microfluidics system enables detection in a continuous flow with a negligible compromise between sensitivity and flow control over stabilization and mixing. Cytochrome c detection is used to illustrate the merits of the system. Jurkat cells are treated with the toxin staurosporine to trigger cell apoptosis and cytochrome c released into the cell culture medium is monitored via the newly invented optical microfluidic platform.
Collapse
Affiliation(s)
- Ying-Jen Chen
- Max Planck Institute for the Science of Light, 91054, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technology (SAOT), Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Paul-Gordan-Str. 6, D-91052, Erlangen, Germany
| | - Ulrike Schoeler
- Max Planck Institute for the Science of Light, 91054, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technology (SAOT), Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Paul-Gordan-Str. 6, D-91052, Erlangen, Germany
| | | | - Frank Vollmer
- Max Planck Institute for the Science of Light, 91054, Erlangen, Germany
- Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
26
|
Sun S, Zhang C, Gao J, Qin Q, Zhang Y, Zhu H, Yang X, Yang D, Yan H. Benzoquinone induces ROS-dependent mitochondria-mediated apoptosis in HL-60 cells. Toxicol Ind Health 2018; 34:270-281. [PMID: 29506454 DOI: 10.1177/0748233717750983] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Benzene exposure affects the hematopoietic system and leads to the occurrence of various types of leukemia and hematotoxicity. It has been confirmed that active metabolites of benzene, including 1,4-benzoquinone (1,4-BQ), can induce reactive oxygen species (ROS) and apoptosis in the bone marrow, and recent studies have also suggested that benzene exposure can affect mitochondrial function in both experimental animals and cell lines. However, the potential relationship among ROS production, mitochondrial damages, and subsequent apoptosis following benzene exposure has not been well studied in detail. In the present study, we utilized HL-60 cells, a well-characterized human myeloid cell line, as an in vitro model and examined the effects of 1,4-BQ on intracellular ROS formation, mitochondria damage, and the occurrence of apoptotic events with or without using the ROS scavenger N-acetyl-l-cysteine (NAC). The results demonstrated that 1,4-BQ could dose-dependently induce production of ROS and mitochondrial damage as characterized by mitochondrial membrane potential disruption, mitochondrial ultrastructure alteration, and induced apoptosis and activated caspase-3 and caspase-9. Preincubation of HL-60 cells with NAC prior to 1,4-BQ treatment could block 1,4-BQ-induced production of ROS and the occurrence of apoptosis. These results demonstrated that 1,4-BQ induced apoptosis in HL-60 cells through a ROS-dependent mitochondrial-mediated pathway.
Collapse
Affiliation(s)
- Shuqiang Sun
- 1 Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chunxiao Zhang
- 1 Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jiahao Gao
- 1 Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Qiongyu Qin
- 1 Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yaya Zhang
- 1 Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Hua Zhu
- 2 School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xinjun Yang
- 1 Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Dongren Yang
- 1 Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Hongtao Yan
- 1 Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
27
|
The Role of Meningococcal Porin B in Protein-Protein Interactions with Host Cells. FOLIA VETERINARIA 2018. [DOI: 10.2478/fv-2018-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Neisseria meningitidis is a Gram-negative diplococcus responsible for bacterial meningitis and fatal sepsis. Ligand-receptor interactions are one of the main steps in the development of neuroinvasion. Porin B (PorB), neisserial outer membrane protein (ligand), binds to host receptors and triggers many cell signalling cascades allowing the meningococcus to damage the host cells or induce immune cells responses via the TLR2-dependent mechanisms. In this paper, we present a brief review of the structure and function of PorB.
Collapse
|
28
|
Bathula C, Roma-Rodrigues C, Chauhan J, Fernandes AR, Sen S. Synthesis of tetrahydro-1H-indolo[2,3-b]pyrrolo[3,2-c]quinolones via intramolecular oxidative ring rearrangement of tetrahydro-β-carbolines and their biological evaluation. NEW J CHEM 2018. [DOI: 10.1039/c7nj04616b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tetrahydro-1H-indolo[2,3-b]pyrrolo[3,2-c]quinolones are synthesized via a unique intramolecular oxidative ring rearrangement.
Collapse
Affiliation(s)
- Chandramohan Bathula
- Department of Chemistry
- School of Natural Sciences
- Shiv Nadar University
- GautamBudh Nagar
- India
| | - Catarina Roma-Rodrigues
- UCIBIO
- Departamento de Ciências da Vida
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- Caparica
| | - Jyoti Chauhan
- Department of Chemistry
- School of Natural Sciences
- Shiv Nadar University
- GautamBudh Nagar
- India
| | - Alexandra R. Fernandes
- UCIBIO
- Departamento de Ciências da Vida
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- Caparica
| | - Subhabrata Sen
- Department of Chemistry
- School of Natural Sciences
- Shiv Nadar University
- GautamBudh Nagar
- India
| |
Collapse
|
29
|
Mohammadi-Bardbori A, Bastan F, Akbarizadeh AR. The highly bioactive molecule and signal substance 6-formylindolo[3,2-b]carbazole (FICZ) plays bi-functional roles in cell growth and apoptosis in vitro. Arch Toxicol 2017; 91:3365-3372. [DOI: 10.1007/s00204-017-1950-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/23/2017] [Indexed: 01/12/2023]
|
30
|
Zhang H, Wu H, Yang J, Ye J. Sodium perbarate and benzalkonium chloride induce DNA damage in Chang conjunctival epithelial cells. Cutan Ocul Toxicol 2017; 36:336-342. [PMID: 28166658 DOI: 10.1080/15569527.2017.1291664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Content and objective: To investigate and compare the toxic effects of benzalkonium chloride (BAC) and new type oxidative preservative sodium perborate (NaBO3) on DNA damage, reactive oxygen species (ROS), and cell survival in immortalized human Chang conjunctival cells. MATERIALS AND METHODS Cells were exposed to BAC and NaBO3 in concentrations of 0.00001-0.001% for 30 min. Cell viability was measured by the MTT test. Alkaline comet assay was used to detect DNA damage. Mitochondrial membrane potential (MMP), cell apoptosis, and ROS production were detected by flow cytometry analysis. RESULTS Significant changes in the relative cell survival rate in cells were observed after exposure to 0.0005-0.001% BAC for 30 min (p < 0.001). DNA damage and intracellular ROS were observed in a dose-dependent manner with BAC exposure (p < 0.001). However, 0.001% BAC induced less ROS than 0.0005% BAC. A decrease in MMP was also recorded. NaBO3 did not induce the decrease in cell survival and MMP in low concentration but could induce DNA damage and ROS generation in a 0.001% concentration (p < 0.001). DISCUSSION AND CONCLUSIONS BAC can induce DNA damage in human conjunctival epithelial cells; this effect may be related to oxidative stress. Although NaBO3 did not induce a significant decrease in cell survival and MMP, DNA damage and ROS generation were still detected in high concentration. New type oxidative preservative has less toxicity than the old type, but it still has the tendency of producing genotoxic changes in an in vitro test system.
Collapse
Affiliation(s)
- Huina Zhang
- a Department of Ophthalmology , The second Affiliated Hospital of Zhejiang University, College of Medicine , Hangzhou , China and
| | - Han Wu
- a Department of Ophthalmology , The second Affiliated Hospital of Zhejiang University, College of Medicine , Hangzhou , China and
| | - Jun Yang
- b Department of Toxicology , Hangzhou Normal University School of Public Health , Hangzhou , China
| | - Juan Ye
- a Department of Ophthalmology , The second Affiliated Hospital of Zhejiang University, College of Medicine , Hangzhou , China and
| |
Collapse
|
31
|
Sheng K, Lu J. Typical airborne quinones modulate oxidative stress and cytokine expression in lung epithelial A549 cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:127-134. [PMID: 27768525 DOI: 10.1080/10934529.2016.1237127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Quinones that exist in ambient particulate matter (PM) are hypothesized to be associated with adverse health effects through the generation of reactive oxygen species (ROS). However, the impacts of the quinones on the inflammatory processes have yet to be clearly understood. In this study, we examined the oxidative potentials and biological effects of typical airborne quinones in the human lung epithelial A549 cells. Significant change of redox status, loss of mitochondrial membrane potentials (△Ψ) and increase of superoxide dismutase (SOD) activity were induced by exposure to quinones. Some pro-inflammatory genes including interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor (TNF-α) and monocyte chemoattractant protein-1 (MCP-1); two aromatic hydrocarbon receptor-regulated genes, cytochromes P450 1A1 (Cyp1a1) and cytochromes P450 1B1 (Cyp1b1); and oxidative stress-related gene heme oxygenase-1 (HO-1) were up-regulated after quinones treatment. Among these quinones, 1,2-naphthoquinone (1,2-NQ) up-regulated expressions of IL-6, IL-8, TNF-α, Cyp1a1, and HO-1; 2-methoxy-1,4-naphthoquinone (MNQ) up-regulated MCP-1, Cyp1b1, Cyp1a1, and HO-1; 2-methylanthraquinone (MAQ) up-regulated IL-6, IL-8, TNF-α, MCP-1, Cyp1b1, and Cyp1a1; acenaphthenequinone (ACQ) up-regulated IL-8, TNF-α, MCP-1, Cyp1b1, and Cyp1a1. These results suggested that all these five quinones had a considerable pro-inflammatory potential by inducing oxidative stress and releasing different types of cytokines/chemokines.
Collapse
Affiliation(s)
- Kai Sheng
- a Department of Gerontology , Tongren Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jiahuan Lu
- a Department of Gerontology , Tongren Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
32
|
Plasmodium falciparum exhibits markers of regulated cell death at high population density in vitro. Parasitol Int 2016; 65:715-727. [DOI: 10.1016/j.parint.2016.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 11/22/2022]
|
33
|
Articulatin-D induces apoptosis via activation of caspase-8 in acute T-cell leukemia cell line. Mol Cell Biochem 2016; 426:87-99. [DOI: 10.1007/s11010-016-2883-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022]
|
34
|
Tu LY, Bai HH, Cai JY, Deng SP. The mechanism of kaempferol induced apoptosis and inhibited proliferation in human cervical cancer SiHa cell: From macro to nano. SCANNING 2016; 38:644-653. [PMID: 26890985 DOI: 10.1002/sca.21312] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/05/2016] [Indexed: 05/10/2023]
Abstract
Kaempferol has been identified as a potential cancer therapeutic agent by an increasing amount of evidences. However, the changes in the topography of cell membrane induced by kaempferol at subcellular- or nanometer-level were still unclear. In this work, the topographical changes of cytomembrane in human cervical cancer cell (SiHa) induced by kaempferol, as well as the role of kaempferol in apoptosis induction and its possible mechanisms, were investigated. At the macro level, MTT assays showed that kaempferol inhibited the proliferation of SiHa cells in a time- and dose-dependent manner. Flow cytometry analysis demonstrated that kaempferol could induce SiHa cell apoptosis, mitochondrial membrane potential disruption, and intracellular free calcium elevation. At the micro level, fluorescence imaging by laser scanning confocal microscopy (LSCM) indicated that kaempferol could also destroy the networks of microtubules. Using high resolution atomic force microscopy (AFM), we determined the precise changes of cellular membrane induced by kaempferol at subcellular or nanometer level. The spindle-shaped SiHa cells shrank after kaempferol treatment, with significantly increased cell surface roughness. These data showed structural characterizations of cellular topography in kaempferol-induced SiHa cell apoptosis and might provide novel integrated information from macro to nano level to assess the impact of kaempferol on cancer cells, which might be important for the understanding of the anti-cancer mechanisms of drugs. SCANNING 38:644-653, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lv-Ying Tu
- Department of Chemistry, Jinan University, Guangzhou, P. R. China
| | - Hai-Hua Bai
- Department of Chemistry, Jinan University, Guangzhou, P. R. China
| | - Ji-Ye Cai
- Department of Chemistry, Jinan University, Guangzhou, P. R. China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, P. R. China
| | - Sui-Ping Deng
- Department of Chemistry, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
35
|
Polyhydric Corrole and Its Gallium Complex: Synthesis, DNA-binding Properties and Photodynamic Activities. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201600482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
36
|
He J, Pan Z, Tian G, Liu X, Liu Y, Guo X, An Y, Song L, Wu H, Cao H, Yu D, Che R, Xu P, Rasoul LM, Li D, Yin J. Newcastle disease virus chimeras expressing the Hemagglutinin- Neuraminidase protein of mesogenic strain exhibits an enhanced anti-hepatoma efficacy. Virus Res 2016; 221:23-9. [DOI: 10.1016/j.virusres.2016.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/05/2016] [Accepted: 04/27/2016] [Indexed: 01/31/2023]
|
37
|
Lim W, Jeong M, Bazer FW, Song G. Coumestrol Inhibits Proliferation and Migration of Prostate Cancer Cells by Regulating AKT, ERK1/2, and JNK MAPK Cell Signaling Cascades. J Cell Physiol 2016; 232:862-871. [PMID: 27431052 DOI: 10.1002/jcp.25494] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/18/2016] [Indexed: 01/08/2023]
Abstract
Coumestrol is the one of the major phytoestrogens which is abundant in soybeans, legumes, brussel sprouts, and spinach. The beneficial effects of coumestrol are well known in various biological processes including; neuroprotective effects on the nervous system, function of the female reproductive system, anti-bacterial properties, and anti-cancer effects. Although the anti-tumor activity of coumestrol has been demonstrated for ovarian, breast, lung, and cervical cancers, little is known of its effects on prostate cancer. Therefore, in the present study, we investigated the chemotherapeutic effects of coumestrol on two prostate cancer cell lines, PC3 and LNCaP. Our results showed that coumestrol decreased proliferation and migration and induced apoptosis in both PC3 and LNCaP cells. Moreover, effects of coumestrol on cell signaling pathways were investigated and it increased phosphorylation of ERK1/2, JNK, P90RSK, and P53 proteins in a dose- and time-dependent manner whereas phosphorylation of AKT was reduced by coumestrol under the same conditions for culture of PC3 and LNCaP cells. In addition, mitochondrial dysfunction was induced by coumestrol as evidenced by a significant loss of mitochondrial membrane potential. Furthermore, cleavage of caspase-3 and caspase-9, the apoptotic proteins associated with mitochondria, also changed in response to coumestrol. Coumestrol also caused mitochondrial dysfunction resulting in an increase in ROS production in PC3 and LNCaP cells. These results suggest that coumestrol can inhibit progression of prostate cancer and may be a novel chemotherapeutic agent for treatment of prostate cancer via effects mediated via the PI3K/AKT and ERK1/2 and JNK MAPK cell signaling pathways. J. Cell. Physiol. 232: 862-871, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Whasun Lim
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Muhah Jeong
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, Texas
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
38
|
Hu K, Yang M, Xu YY, Wei K, Ren J. Cell Cycle Arrest, Apoptosis, and Autophagy Induced by Chabamide in Human Leukemia Cells. CHINESE HERBAL MEDICINES 2016. [DOI: 10.1016/s1674-6384(16)60005-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
39
|
Discovering Molecules That Regulate Efferocytosis Using Primary Human Macrophages and High Content Imaging. PLoS One 2015; 10:e0145078. [PMID: 26674639 PMCID: PMC4686065 DOI: 10.1371/journal.pone.0145078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/28/2015] [Indexed: 12/20/2022] Open
Abstract
Defective clearance of apoptotic cells can result in sustained inflammation and subsequent autoimmunity. Macrophages, the “professional phagocyte” of the body, are responsible for efficient, non-phlogistic, apoptotic cell clearance. Controlling phagocytosis of apoptotic cells by macrophages is an attractive therapeutic opportunity to ameliorate inflammation. Using high content imaging, we have developed a system for evaluating the effects of antibody treatment on apoptotic cell uptake in primary human macrophages by comparing the Phagocytic Index (PI) for each antibody. Herein we demonstrate the feasibility of evaluating a panel of antibodies of unknown specificities obtained by immunization of mice with primary human macrophages and show that they can be distinguished based on individual PI measurements. In this study ~50% of antibodies obtained enhance phagocytosis of apoptotic cells while approximately 5% of the antibodies in the panel exhibit some inhibition. Though the specificities of the majority of antibodies are unknown, two of the antibodies that improved apoptotic cell uptake recognize recombinant MerTK; a receptor known to function in this capacity in vivo. The agonistic impact of these antibodies on efferocytosis could be demonstrated without addition of either of the MerTK ligands, Gas6 or ProS. These results validate applying the mechanism of this fundamental biological process as a means for identification of modulators that could potentially serve as therapeutics. This strategy for interrogating macrophages to discover molecules regulating apoptotic cell uptake is not limited by access to purified protein thereby increasing the possibility of finding novel apoptotic cell uptake pathways.
Collapse
|
40
|
Engelbrecht D, Coetzer TL. Sunlight inhibits growth and induces markers of programmed cell death in Plasmodium falciparum in vitro. Malar J 2015; 14:378. [PMID: 26419629 PMCID: PMC4588498 DOI: 10.1186/s12936-015-0867-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 08/22/2015] [Indexed: 12/20/2022] Open
Abstract
Background Plasmodium falciparum is responsible for the majority of global malaria deaths. During the pathogenic blood stages of infection, a rapid increase in parasitaemia threatens the survival of the host before transmission of slow-maturing sexual parasites to the mosquito vector to continue the life cycle. Programmed cell death (PCD) may provide the parasite with the means to control its burden on the host and thereby ensure its own survival. Various environmental stress factors encountered during malaria may induce PCD in P. falciparum. This study is the first to characterize parasite cell death in response to natural sunlight. Methods The 3D7 strain of P. falciparum was cultured in vitro in donor erythrocytes. Synchronized and mixed-stage parasitized cultures were exposed to sunlight for 1 h and compared to cultures maintained in the dark, 24 h later. Mixed-stage parasites were also subjected to a second one-hour exposure at 24 h and assessed at 48 h. Parasitaemia was measured daily by flow cytometry. Biochemical markers of cell death were assessed, including DNA fragmentation, mitochondrial membrane polarization and phosphatidylserine externalization. Results Sunlight inhibited P. falciparum growth in vitro. Late-stage parasites were more severely affected than early stages. However, some late-stage parasites survived exposure to sunlight to form new rings 24 h later, as would be expected during PCD whereby only a portion of the population dies. DNA fragmentation was observed at 24 and 48 h and preceded mitochondrial hyperpolarization in mixed-stage parasites at 48 h. Mitochondrial hyperpolarization likely resulted from increased oxidative stress. Although data suggested increased phosphatidylserine externalization in mixed-stage parasites, results were not statistically significant. Conclusion The combination of biochemical markers and the survival of some parasites, despite exposure to a lethal stimulus, support the occurrence of PCD in P. falciparum.
Collapse
Affiliation(s)
- Dewaldt Engelbrecht
- Department of Molecular Medicine and Haematology, Faculty of Health Sciences, School of Pathology, Wits Medical School, Wits Research Institute for Malaria, University of the Witwatersrand, 7th floor, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| | - Thérèsa Louise Coetzer
- Department of Molecular Medicine and Haematology, Faculty of Health Sciences, School of Pathology, Wits Medical School, Wits Research Institute for Malaria, University of the Witwatersrand, 7th floor, 7 York Road, Parktown, Johannesburg, 2193, South Africa. .,National Health Laboratory Service, Johannesburg, South Africa.
| |
Collapse
|
41
|
Lara-Rodríguez C, Alvarado-Vásquez N, Bernal D, Gorocica P, Zenteno E, Lascuraín R. CD3+ICOS+ T cells show differences in the synthesis of nitric oxide, IFN-γ, and IL-10 in patients with pulmonary tuberculosis or in healthy household contacts. Clin Exp Med 2015; 16:481-491. [DOI: 10.1007/s10238-015-0380-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/28/2015] [Indexed: 11/28/2022]
|
42
|
Mitochondrial Apoptotic Pathway Is Activated by H2O2-Mediated Oxidative Stress in BmN-SWU1 Cells from Bombyx mori Ovary. PLoS One 2015. [PMID: 26225758 PMCID: PMC4520666 DOI: 10.1371/journal.pone.0134694] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Apoptosis is a known regulator of morphogenetic events. In mammals, the critical role of oxidative stress-induced apoptosis has been well-studied; however, in insects the role of oxidative stress in apoptosis is not clear. In a previous study, we showed that apoptosis-related genes are present in the silkworm Bombyx mori, an important lepidopteran insect model. In this study, we evaluated the effect of H2O2-induced oxidative stress on apoptosis, reactive oxygen species (ROS) levels, mitochondrial response, cytochrome c release and apoptosis-related gene expression in the BmN-SWU1 cell line from B. mori ovaries. Our results showed that BmN-SWU1 cells exposed to H2O2 showed cell protuberances, cytoplasmic condensation, apoptotic bodies, DNA ladder formation and caspase activities indicating apoptosis. H2O2-induced apoptosis also increased intracellular ROS level, changed mitochondrial distribution, reduced mitochondrial membrane potential and increased the release of cytochrome c from mitochondria. Furthermore, western blot analysis revealed a significant increase in p53 and cytochrome c expression, and a decrease in Bcl-2 expression compared to the controls. Moreover, quantitative real-time PCR (qRT-PCR) showed an increase in the transcript levels of BmICE, Bmapaf-1 and BmEndoG by 439.5%, 423.9% and 42.2%, respectively, after treatment with 1 μM H2O2 for 24 h. However, the transcript levels of Bmbuffy declined by 41.4% after 24 h of exposure to 1 μM H2O2. These results show that H2O2 treatment induced apoptosis in BmN-SWU1 cells via the mitochondrial apoptotic pathway. Further, it appears that oxidative stress induced by H2O2 activates both caspase-dependent and caspase-independent mitochondrial apoptotic pathways in silkworm cells. Taken together, these findings improve our knowledge of apoptosis in silkworm and the apoptotic pathways in insects.
Collapse
|
43
|
Ren YH, Jin H, Tao K, Hou TP. Apoptotic effects of 1,5-bis-(5-nitro-2-furanyl)-1, K]4-pentadien-3-one on Drosophila SL2 cells. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-015-0017-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Cai Y, Sun Z, Fang X, Fang X, Xiao F, Wang Y, Chen M. Synthesis, characterization and anti-cancer activity of Pluronic F68-curcumin conjugate micelles. Drug Deliv 2015; 23:2587-2595. [PMID: 26066393 DOI: 10.3109/10717544.2015.1037970] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Curcumin (CUR), a nontoxic polyphenol derived from the rhizome of turmeric (Curcuma longa), has been recognized as an anti-cancer and chemo-preventative agent. However, its clinical application for cancer treatment has been greatly limited due to its poor water-solubility and low bioavailability. To tackle this problem, Pluronic F68-CUR (F68-CUR) conjugate micelles, which are amphiphilic copolymers, were designed and synthesized in this study. These highly stable micelles with CUR concentrated in the core were formulated using the solvent evaporation method and were confirmed by Fourier transform infrared spectroscopy and nuclear magnetic resonance. Physicochemical characterization of F68-CUR conjugate micelles revealed that high drug loading content (DL%; 0.248 mg CUR/1 mg F68) was achieved, and the average particle size of micelles was 115.2 ± 3.0 nm. Compared with free CUR, a significantly higher cytotoxicity against human breast cancer cell line MDA-MB-231 was observed in F68-CUR conjugate micelles. The IC50 value of F68-CUR conjugate micelles was 1.95-fold lower than that of free CUR, indicating that the anti-cancer activity of CUR was significantly improved in the micelles. Furthermore, apoptotic studies demonstrated that F68-CUR conjugate micelles induced more cell apoptosis than that of free CUR. Taken together, these results demonstrate that F68-CUR conjugate micelles are promising to improve the clinical effectiveness of CUR in cancer treatment.
Collapse
Affiliation(s)
- Yuee Cai
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macao , P.R. China
| | - Zhongqing Sun
- b Department of Pharmacology , School of Medicine, Jinan University , Guangzhou , P.R. China , and
| | - Xiaobin Fang
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macao , P.R. China
| | - Xiefan Fang
- c Department of Pediatrics , College of Medicine, University of Florida , Gainesville , FL , USA
| | - Fei Xiao
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macao , P.R. China.,b Department of Pharmacology , School of Medicine, Jinan University , Guangzhou , P.R. China , and
| | - Yitao Wang
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macao , P.R. China
| | - Meiwan Chen
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macao , P.R. China
| |
Collapse
|
45
|
Chernyavsky AI, Shchepotin IB, Grando SA. Mechanisms of growth-promoting and tumor-protecting effects of epithelial nicotinic acetylcholine receptors. Int Immunopharmacol 2015; 29:36-44. [PMID: 26071223 DOI: 10.1016/j.intimp.2015.05.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 05/19/2015] [Accepted: 05/19/2015] [Indexed: 01/14/2023]
Abstract
Although the role of nicotine as a carcinogen is debatable, it is widely accepted that it contributes to cancer by promoting growth and survival of mutated cell clones and protecting them from the chemo- and radiotherapy-induced apoptosis. On the cell membrane (cm), the nicotinic acetylcholine (ACh) receptors (nAChRs) implement upregulation of proliferative and survival genes. Nicotine also can permeate cells and activate mitochondrial (mt)-nAChRs coupled to inhibition of the mitochondrial permeability transition pore (mPTP) opening, thus preventing apoptosis. In this study, we sought to pin down principal mechanisms mediating the tumor-promoting activities of nicotine resulting from activation of cm- and mt-nAChRs in oral and lung cancer cells, SCC25 and SW900, respectively. Activated cm-nAChRs were found to form complexes with receptors for EGF and VEGEF via the α7 and β2 nAChR subunits, respectively, whereas activated mt-nAChRs physically associated with the intramitochondrial protein kinases PI3K and Src via the α7 and β4 subunits. This was associated with upregulated expression of cyclin D1/activation of ERK1/2 and inhibition of mPTP opening, respectively, as well as upregulated proliferation and resistance to H(2)O(2)-induced apoptosis. The molecular synergy between cm-nAChRs and growth factor receptors helps explain how one biological mediator, such as ACh, can modulate activity of the other, such as a growth factor, and vice versa. Establishment of functional coupling of mt-nAChRs to regulation of mPTP opening provides a novel mechanism of nicotine-dependent protection from cell death. Further elucidation of this novel mechanism of tumor-promoting activities of nicotine should have a strong translational impact, because extraneuronal nAChRs may provide a novel molecular target to prevent, reverse, or retard progression of both nicotine-related and unrelated cancers.
Collapse
Affiliation(s)
| | | | - Sergei A Grando
- Department of Dermatology, University of California, Irvine, CA, USA; Department of Biological Chemistry, University of California, Irvine, CA, USA; Cancer Center and Research Institute, University of California, Irvine, CA, USA.
| |
Collapse
|
46
|
Chernyavsky AI, Shchepotin IB, Galitovkiy V, Grando SA. Mechanisms of tumor-promoting activities of nicotine in lung cancer: synergistic effects of cell membrane and mitochondrial nicotinic acetylcholine receptors. BMC Cancer 2015; 15:152. [PMID: 25885699 PMCID: PMC4369089 DOI: 10.1186/s12885-015-1158-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/04/2015] [Indexed: 12/20/2022] Open
Abstract
Background One of the major controversies of contemporary medicine is created by an increased consumption of nicotine and growing evidence of its connection to cancer, which urges elucidation of the molecular mechanisms of oncogenic effects of inhaled nicotine. Current research indicates that nicotinergic regulation of cell survival and death is more complex than originally thought, because it involves signals emanating from both cell membrane (cm)- and mitochondrial (mt)-nicotinic acetylcholine receptors (nAChRs). In this study, we elaborated on the novel concept linking cm-nAChRs to growth promotion of lung cancer cells through cooperation with the growth factor signaling, and mt-nAChRs — to inhibition of intrinsic apoptosis through prevention of opening of mitochondrial permeability transition pore (mPTP). Methods Experiments were performed with normal human lobar bronchial epithelial cells, the lung squamous cell carcinoma line SW900, and intact and NNK-transformed immortalized human bronchial cell line BEP2D. Results We demonstrated that the growth-promoting effect of nicotine mediated by activation of α7 cm-nAChR synergizes mainly with that of epidermal growth factor (EGF), α3 — vascular endothelial growth factor (VEGF), α4 — insulin-like growth factor I (IGF-I) and VEGF, whereas α9 with EGF, IGF-I and VEGF. We also established the ligand-binding abilities of mt-nAChRs and demonstrated that quantity of the mt-nAChRs coupled to inhibition of mPTP opening increases upon malignant transformation. Conclusions These results indicated that the biological sum of simultaneous activation of cm- and mt-nAChRs produces a combination of growth-promoting and anti-apoptotic signals that implement the tumor-promoting action of nicotine on lung cells. Therefore, nAChRs may be a promising molecular target to arrest lung cancer progression and re-open mitochondrial apoptotic pathways.
Collapse
Affiliation(s)
- Alex I Chernyavsky
- Department of Dermatology, University of California, 134 Sprague Hall, Irvine, CA, 92697, USA.
| | | | - Valentin Galitovkiy
- Department of Dermatology, University of California, 134 Sprague Hall, Irvine, CA, 92697, USA.
| | - Sergei A Grando
- Department of Dermatology, University of California, 134 Sprague Hall, Irvine, CA, 92697, USA. .,Department of Biological Chemistry, University of California, 134 Sprague Hall, Irvine, CA, 92697, USA. .,Cancer Center and Research Institute, University of California, 134 Sprague Hall, Irvine, CA, 92697, USA.
| |
Collapse
|
47
|
Chen TT, Tian X, Liu CL, Ge J, Chu X, Li Y. Fluorescence activation imaging of cytochrome c released from mitochondria using aptameric nanosensor. J Am Chem Soc 2015; 137:982-9. [PMID: 25548948 DOI: 10.1021/ja511988w] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have developed an aptameric nanosensor for fluorescence activation imaging of cytochrome c (Cyt c). Fluorescence imaging tools that enable visualization of key molecular players in apoptotic signaling are essential for cell biology and clinical theranostics. Cyt c is a major mediator in cell apoptosis. However, fluorescence imaging tools allowing direct visualization of Cyt c translocation in living cells have currently not been realized. We report for the first time the realization of a nanosensor tool that enables direct fluorescence activation imaging of Cyt c released from mitochondria in cell apoptosis. This strategy relies on spatially selective cytosolic delivery of a nanosensor constructed by assembly of a fluorophore-tagged DNA aptamer on PEGylated graphene nanosheets. The cytosolic release of Cyt c is able to dissociate the aptamer from graphene and trigger an activated fluorescence signal. The nanosensor is shown to exhibit high sensitivity and selectivity, rapid response, large signal-to-background ratio for in vitro, and intracellular detection of Cyt c. It also enables real-time visualization of the Cyt c release kinetics and direct identification of the regulators for apoptosis. The developed nanosensor may provide a very valuable tool for apoptotic studies and catalyze the fundamental interrogations of Cyt c-mediated biology.
Collapse
Affiliation(s)
- Ting-Ting Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, P. R. China
| | | | | | | | | | | |
Collapse
|
48
|
Behera B, Mishra D, Roy B, Devi KSP, Narayan R, Das J, Ghosh SK, Maiti TK. Abrus precatorius agglutinin-derived peptides induce ROS-dependent mitochondrial apoptosis through JNK and Akt/P38/P53 pathways in HeLa cells. Chem Biol Interact 2014; 222:97-105. [DOI: 10.1016/j.cbi.2014.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 07/17/2014] [Accepted: 08/28/2014] [Indexed: 01/14/2023]
|
49
|
Chimaphilin induces apoptosis in human breast cancer MCF-7 cells through a ROS-mediated mitochondrial pathway. Food Chem Toxicol 2014; 70:1-8. [DOI: 10.1016/j.fct.2014.04.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 03/21/2014] [Accepted: 04/08/2014] [Indexed: 12/18/2022]
|
50
|
Kaushik NK, Kaushik N, Park D, Choi EH. Altered antioxidant system stimulates dielectric barrier discharge plasma-induced cell death for solid tumor cell treatment. PLoS One 2014; 9:e103349. [PMID: 25068311 PMCID: PMC4113384 DOI: 10.1371/journal.pone.0103349] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/30/2014] [Indexed: 11/19/2022] Open
Abstract
This study reports the experimental findings and plasma delivery approach developed at the Plasma Bioscience Research Center, Korea for the assessment of antitumor activity of dielectric barrier discharge (DBD) for cancer treatment. Detailed investigation of biological effects occurring after atmospheric pressure non-thermal (APNT) plasma application during in vitro experiments revealed the role of reactive oxygen species (ROS) in modulation of the antioxidant defense system, cellular metabolic activity, and apoptosis induction in cancer cells. To understand basic cellular mechanisms, we investigated the effects of APNT DBD plasma on antioxidant defense against oxidative stress in various malignant cells as well as normal cells. T98G glioblastoma, SNU80 thyroid carcinoma, KB oral carcinoma and a non-malignant HEK293 embryonic human cell lines were treated with APNT DBD plasma and cellular effects due to reactive oxygen species were observed. Plasma significantly decreased the metabolic viability and clonogenicity of T98G, SNU80, KB and HEK293 cell lines. Enhanced ROS in the cells led to death via alteration of total antioxidant activity, and NADP+/NADPH and GSH/GSSG ratios 24 hours (h) post plasma treatment. This effect was confirmed by annexin V-FITC and propidium iodide staining. These consequences suggested that the failure of antioxidant defense machinery, with compromised redox status, might have led to sensitization of the malignant cells. These findings suggest a promising approach for solid tumor therapy by delivering a lethal dose of APNT plasma to tumor cells while sparing normal healthy tissues.
Collapse
Affiliation(s)
| | - Neha Kaushik
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, Korea
| | - Daehoon Park
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, Korea
| | - Eun H. Choi
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, Korea
| |
Collapse
|