1
|
Betancor M, Moreno-Martínez L, López-Pérez Ó, Otero A, Hernaiz A, Barrio T, Badiola JJ, Osta R, Bolea R, Martín-Burriel I. Therapeutic Assay with the Non-toxic C-Terminal Fragment of Tetanus Toxin (TTC) in Transgenic Murine Models of Prion Disease. Mol Neurobiol 2021; 58:5312-5326. [PMID: 34283400 PMCID: PMC8497292 DOI: 10.1007/s12035-021-02489-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/08/2021] [Indexed: 11/28/2022]
Abstract
The non-toxic C-terminal fragment of the tetanus toxin (TTC) has been described as a neuroprotective molecule since it binds to Trk receptors and activates Trk-dependent signaling, activating neuronal survival pathways and inhibiting apoptosis. Previous in vivo studies have demonstrated the ability of this molecule to increase mice survival, inhibit apoptosis and regulate autophagy in murine models of neurodegenerative diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. Prion diseases are fatal neurodegenerative disorders in which the main pathogenic event is the conversion of the cellular prion protein (PrPC) into an abnormal and misfolded isoform known as PrPSc. These diseases share different pathological features with other neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson's disease or Alzheimer's disease. Hitherto, there are no effective therapies to treat prion diseases. Here, we present a pilot study to test the therapeutic potential of TTC to treat prion diseases. C57BL6 wild-type mice and the transgenic mice Tg338, which overexpress PrPC, were intracerebrally inoculated with scrapie prions and then subjected to a treatment consisting of repeated intramuscular injections of TTC. Our results indicate that TTC displays neuroprotective effects in the murine models of prion disease reducing apoptosis, regulating autophagy and therefore increasing neuronal survival, although TTC did not increase survival time in these models.
Collapse
Affiliation(s)
- Marina Betancor
- Centro de Encefalopatías Y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain
| | - Laura Moreno-Martínez
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary, Institute for Health Research Aragon (IIS Aragón), AgriFood Institute of Aragon (IA2), University of Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Óscar López-Pérez
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain.,Instituto de Investigación Biomédica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alicia Otero
- Centro de Encefalopatías Y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain
| | - Adelaida Hernaiz
- Centro de Encefalopatías Y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain.,Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary, Institute for Health Research Aragon (IIS Aragón), AgriFood Institute of Aragon (IA2), University of Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain
| | - Tomás Barrio
- UMR Institut National de La Recherche Pour L'Agriculture, L'Alimentation Et L'Environment (INRAE)/École Nationale Vétérinaire de Toulouse (ENVT) 1225 IHAP (Interactions Hôtes-Agents Pathogènes), 31076, Toulouse, France
| | - Juan José Badiola
- Centro de Encefalopatías Y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain
| | - Rosario Osta
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary, Institute for Health Research Aragon (IIS Aragón), AgriFood Institute of Aragon (IA2), University of Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Rosa Bolea
- Centro de Encefalopatías Y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain.
| | - Inmaculada Martín-Burriel
- Centro de Encefalopatías Y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain.,Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary, Institute for Health Research Aragon (IIS Aragón), AgriFood Institute of Aragon (IA2), University of Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Candalija A, Scior T, Rackwitz HR, Ruiz-Castelan JE, Martinez-Laguna Y, Aguilera J. Interaction between a Novel Oligopeptide Fragment of the Human Neurotrophin Receptor TrkB Ectodomain D5 and the C-Terminal Fragment of Tetanus Neurotoxin. Molecules 2021; 26:molecules26133988. [PMID: 34208805 PMCID: PMC8272241 DOI: 10.3390/molecules26133988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
This article presents experimental evidence and computed molecular models of a potential interaction between receptor domain D5 of TrkB with the carboxyl-terminal domain of tetanus neurotoxin (Hc-TeNT). Computational simulations of a novel small cyclic oligopeptide are designed, synthesized, and tested for possible tetanus neurotoxin-D5 interaction. A hot spot of this protein-protein interaction is identified in analogy to the hitherto known crystal structures of the complex between neurotrophin and D5. Hc-TeNT activates the neurotrophin receptors, as well as its downstream signaling pathways, inducing neuroprotection in different stress cellular models. Based on these premises, we propose the Trk receptor family as potential proteic affinity receptors for TeNT. In vitro, Hc-TeNT binds to a synthetic TrkB-derived peptide and acts similar to an agonist ligand for TrkB, resulting in phosphorylation of the receptor. These properties are weakened by the mutagenesis of three residues of the predicted interaction region in Hc-TeNT. It also competes with Brain-derived neurotrophic factor, a native binder to human TrkB, for the binding to neural membranes, and for uptake in TrkB-positive vesicles. In addition, both molecules are located together in vivo at neuromuscular junctions and in motor neurons.
Collapse
Affiliation(s)
- Ana Candalija
- Molecular Biology Department, Institut de Neruociènces and Biochemistry, Medicine Faculty, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (A.C.); (J.A.)
| | - Thomas Scior
- Faculty of Chemical Sciences, BUAP, Puebla 72000, Mexico; (J.E.R.-C.); (Y.M.-L.)
- Correspondence: or ; Tel.: +52-222-229-5500 (ext. 7529)
| | - Hans-Richard Rackwitz
- Peptide Specialities Laboratory, Im Neuenheimer Feld, Univerisity Campus, 69120 Heidelberg, Germany;
| | | | | | - José Aguilera
- Molecular Biology Department, Institut de Neruociènces and Biochemistry, Medicine Faculty, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (A.C.); (J.A.)
- Center for Biomedical Research Network on Neurodegenerative Diseases (CIBERNED), 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
3
|
Li H, Wang C, Ma P, Zhang M, Yang H, Yuan S, Wei J, Tao L, Qian K, Xu M, Li L. The retinoid derivant ECPIRM selectively exhibited anti-proliferation effects in cutaneous T-Cell lymphoma via ITK-mediated signaling pathway. J Dermatol Sci 2020; 97:208-215. [PMID: 32165081 DOI: 10.1016/j.jdermsci.2020.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The treatment of Cutaneous T-cell lymphoma (CTCL) met huge challenges because of the heterogeneity and the scarcity of targeted drugs. ECPIRM derived from isotretinoin exhibited strong anti-proliferation effects in Hut78 and MJ cells rather than Myla cells. However, there was no data regarding the potential target of ECPIRM for its selective activity. OBJECTIVES To investigate the potential target of ECPIRM for its selective anti-proliferation activity. METHODS We evaluated the cell viability of CTCL cells after ECPIRM treatment, and detected the effects of ECPIRM on the biomarker genes of CTCL. Subsequently, the mRNA and protein level of Interleukin-2-inducible T-cell kinase (ITK) was determined. Then the induction of apoptosis triggered by ITK inhibitor BMS-509744 and ITK siRNAs were detected, and the docking of ECPIRM interacted with ITK and the effects of ECPIRM on ITK-mediated signaling pathway were analyzed. Finally, we evaluated the anti-growth activity of ECPIRM in Hut78-xenografted nude mice, and the relative expression of cleaved caspase-3, ITK, p-ERK and p-Akt were determined. RESULTS ITK was highly expressed in Hut78 and MJ cells rather than Myla cells, and targeted inhibition of ITK triggered cell apoptosis. ECPIRM efficiently bound the hydrophobic active pocket of ITK, and significantly inhibited ITK-mediated signaling pathway. In addition, ECPIRM suppressed tumor growth in Hut78-xenografted model, and upregulated the expression of cleaved caspase 3 and inhibited the expression of ITK, p-ERK and p-Akt in tumor tissues, which was consistent with in vitro study. CONCLUSION ECPIRM might provide a novel strategy for CTCL by inhibiting ITK-mediated signaling pathway.
Collapse
Affiliation(s)
- Hongyang Li
- The Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Science, Peking Union Medical College, Nanjing, China
| | - Cheng Wang
- The Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Science, Peking Union Medical College, Nanjing, China
| | - Pengcheng Ma
- The Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Science, Peking Union Medical College, Nanjing, China
| | - Mengli Zhang
- The Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Science, Peking Union Medical College, Nanjing, China
| | - Hua Yang
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Shengtao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Jun Wei
- The Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Science, Peking Union Medical College, Nanjing, China
| | - Lei Tao
- The Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Science, Peking Union Medical College, Nanjing, China
| | - Kun Qian
- The Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Science, Peking Union Medical College, Nanjing, China
| | - Man Xu
- The Department of Clinical Laboratory, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lingjun Li
- The Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Science, Peking Union Medical College, Nanjing, China.
| |
Collapse
|
4
|
Abstract
Tetanus is a vaccine-preventable disease that still commonly occurs in many low-income and middle-income countries, although it is rare in high-income countries. The disease is caused by the toxin of the bacterium Clostridium tetani and is characterised by muscle spasms and autonomic nervous system dysfunction. Global vaccination initiatives have had considerable success but they continue to face many challenges. Treatment for tetanus aims to control spasms and reduce cardiovascular instability, and consists of wound debridement, antitoxin, antibiotics, and supportive care. Recent research has focused on intravenous magnesium sulphate and intrathecal antitoxin administration as methods of spasm control that can avoid the need for ventilatory support. Nevertheless, without access to mechanical ventilation, mortality from tetanus remains high. Even with such care, patients require several weeks of hospitalisation and are vulnerable to secondary problems, such as hospital-acquired infections.
Collapse
Affiliation(s)
- Lam Minh Yen
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - C Louise Thwaites
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Zuverink M, Barbieri JT. Protein Toxins That Utilize Gangliosides as Host Receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:325-354. [PMID: 29747819 DOI: 10.1016/bs.pmbts.2017.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Subsets of protein toxins utilize gangliosides as host receptors. Gangliosides are preferred receptors due to their extracellular localization on the eukaryotic cell and due to their essential nature in host physiology. Glycosphingolipids, including gangliosides, are mediators of signal transduction within and between eukaryotic cells. Protein toxins possess AB structure-function organization, where the A domain encodes a catalytic function for the posttranslational modification of a host macromolecule, including proteins and nucleic acids, and a B domain, which encodes host receptor recognition, including proteins and glycosphingolipids, alone or in combination. Protein toxins use similar strategies to bind glycans by pockets and loops, generally employing hydrogen bonding and aromatic stacking to stabilize interactions with sugars. In some cases, glycan binding facilitates uptake, while in other cases, cross-linking or a second receptor is necessary to stimulate entry. The affinity that protein toxins have for host glycans is necessary for tissue targeting, but not always sufficient to cause disease. In addition to affinity for binding the glycan, the lipid moiety also plays an important role in productive uptake and tissue tropism. Upon endocytosis, the protein toxin must escape to another intracellular compartment or into cytosol to modify a host substrate, modulating host signaling, often resulting in cytotoxic or apoptotic events in the cell, and a unique morbidity for the organism. The study of protein toxins that utilize gangliosides as host receptors has illuminated numerous eukaryotic cellular processes, identified the basis for developing interventions to prevent disease through vaccines and control bacterial diseases through therapies. In addition, subsets of these protein toxins have been utilized as therapeutic agents to treat numerous human inflictions.
Collapse
|
6
|
Cobianchi S, Jaramillo J, Luvisetto S, Pavone F, Navarro X. Botulinum neurotoxin A promotes functional recovery after peripheral nerve injury by increasing regeneration of myelinated fibers. Neuroscience 2017; 359:82-91. [PMID: 28716587 DOI: 10.1016/j.neuroscience.2017.07.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 12/28/2022]
Abstract
The injection of safe doses of botulinum neurotoxin A (BoNT/A) have been reported to be useful for the treatment of neuropathic pain, but it is still unknown how functional recovery is induced after peripheral nerve injury. We evaluated the effects of intranerve application of BoNT/A, on regeneration and sensorimotor functional recovery in partial and complete peripheral nerve injuries in the mouse. After sciatic nerve crush (SNC) and intranerve delivery of BoNT/A (15pg), axonal regeneration was measured by nerve pinch test at different days. Regeneration of myelinated and unmyelinated fibers was assessed by immunohistochemical double labeling for NF200/GAP43 and CGRP/GAP43. S100 was used as Schwann cells marker. Medial footpad skin reinnervation was assessed by PGP staining. Motor functions were assessed by means of nerve conduction tests. In other mice groups, nerve conduction tests were performed also after chronic constriction injury (CCI) of the sciatic nerve and intraplantar injection of BoNT/A (15pg). In SNC mice, BoNT/A increased the rate of axonal regeneration. The advantage of regrowing myelinated axons after BoNT/A injection was evidenced by longer NF200+ nerve profiles and confirmed by nerve histology. We observed also a higher expression of S100 in the distal portion of BoNT/A-injected regenerated nerves. In CCI mice, BoNT/A induced an increase in reinnervation of gastrocnemius and plantar muscles. These results show that a low dose of BoNT/A, insufficient to produce muscular dysfunction, conversely speeds up sensorimotor recovery by stimulating myelinated axonal regeneration, and points out its application as a multipotent treatment for peripheral neuropathies.
Collapse
Affiliation(s)
- Stefano Cobianchi
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| | - Jessica Jaramillo
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Siro Luvisetto
- CNR-National Research Council, Institute of Cell Biology and Neurobiology, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Flaminia Pavone
- CNR-National Research Council, Institute of Cell Biology and Neurobiology, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| |
Collapse
|
7
|
Patricio-Martínez A, Mendieta L, Martínez I, Aguilera J, Limón I. The recombinant C-terminal fragment of tetanus toxin protects against cholinotoxicity by intraseptal injection of β-amyloid peptide (25–35) in rats. Neuroscience 2016; 315:18-30. [DOI: 10.1016/j.neuroscience.2015.11.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/19/2015] [Accepted: 11/30/2015] [Indexed: 11/30/2022]
|
8
|
The restorative effect of intramuscular injection of tetanus toxin C-fragment in hemiparkinsonian rats. Neurosci Res 2014; 84:1-9. [DOI: 10.1016/j.neures.2014.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 04/01/2014] [Accepted: 04/26/2014] [Indexed: 11/22/2022]
|
9
|
Park BH, Kim HG, Jin SW, Song SG, Jeong HG. Metallothionein-III increases ADAM10 activity in association with furin, PC7, and PKCα during non-amyloidogenic processing. FEBS Lett 2014; 588:2294-300. [DOI: 10.1016/j.febslet.2014.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
|
10
|
Terenzio M, Golding M, Schiavo G. siRNA screen of ES cell-derived motor neurons identifies novel regulators of tetanus toxin and neurotrophin receptor trafficking. Front Cell Neurosci 2014; 8:140. [PMID: 24904285 PMCID: PMC4033017 DOI: 10.3389/fncel.2014.00140] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/01/2014] [Indexed: 11/21/2022] Open
Abstract
Neurons rely on the long-range transport of several signaling molecules such as neurotrophins and their receptors, which are required for neuronal development, function and survival. However, the nature of the machinery controlling the trafficking of signaling endosomes containing activated neurotrophin receptors has not yet been completely elucidated. We aimed to identify new players involved in the dynamics of neurotrophin signaling endosomes using a medium-throughput unbiased siRNA screening approach to quantify the intracellular accumulation of two fluorescently tagged reporters: the binding fragment of tetanus neurotoxin (HCT), and an antibody directed against the neurotrophin receptor p75NTR. This screen performed in motor neurons differentiated from mouse embryonic stem (ES) cells identified a number of candidate genes encoding molecular motors and motor adaptor proteins involved in regulating the intracellular trafficking of these probes. Bicaudal D homolog 1 (BICD1), a molecular motor adaptor with pleiotropic roles in intracellular trafficking, was selected for further analyses, which revealed that BICD1 regulates the intracellular trafficking of HCT and neurotrophin receptors and likely plays an important role in nervous system development and function.
Collapse
Affiliation(s)
- Marco Terenzio
- Molecular NeuroPathobiology Laboratory, Cancer Research UK London Research Institute London, UK
| | - Matthew Golding
- Molecular NeuroPathobiology Laboratory, Cancer Research UK London Research Institute London, UK
| | - Giampietro Schiavo
- Molecular NeuroPathobiology Laboratory, Cancer Research UK London Research Institute London, UK ; Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London London, UK
| |
Collapse
|
11
|
Gunay H, Kucuk L, Erbas O, Atamaz FC, Kucuk U, Coskunol E. The effectiveness of tetanus toxin on sciatic nerve regeneration: a preliminary experimental study in rats. Microsurgery 2014; 34:384-9. [PMID: 24665036 DOI: 10.1002/micr.22249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 02/22/2014] [Accepted: 02/28/2014] [Indexed: 12/17/2022]
Abstract
OBJECT The purpose was to investigate the effects of local tetanus toxin (TeTx) application on sciatic nerve regeneration following a rat model of transection injury. METHODS After both sciatic nerves were transected and repaired with three epineural sutures, 12 male Wistar albino rats were divided into two groups. 0.25 ml (2.5 flocculation units) TeTx was injected into a piece of absorbable gelatin sponge in TeTx group. In controls, 0.25 ml saline injected. Assessments were performed by using climbing degrees, compound muscle action potentials (CMAPs) and histological parameters (axon number and axonal diameter) 12th week. RESULTS CMAPs amplitudes were 11.6 ± 4.7 mV and 1.4 ± 1.3 mV in gastrocnemius and interdigital muscles in TeTx group (5.8 ± 2.4 mV and 0.2 ± 0.1 mV, P < 0.05). Climbing degrees were significantly different (61.6 ± 1.7 vs. 38.3 ± 2.6, P < 0.05). Total axon numbers were higher (1341.1 ± 57.3 vs. 877.5 ± 34.9, P < 0.05) and the mean axon diameter was smaller (4.2 ± 2.1 vs. 2.5 ± 1.9, P < 0.05) in the TeTx group. CONCLUSION This preliminary study firstly demonstrated the effectiveness of TeTx on nerve repair in experimental sciatic rat model based on functional, electromyographic and histological parameters.
Collapse
Affiliation(s)
- Huseyin Gunay
- Department of Orthopaedic Surgery, Medical Faculty of Ege University, Izmir, Turkey
| | | | | | | | | | | |
Collapse
|
12
|
Cubí R, Candalija A, Ortega A, Gil C, Aguilera J. Tetanus Toxin Hc Fragment Induces the Formation of Ceramide Platforms and Protects Neuronal Cells against Oxidative Stress. PLoS One 2013; 8:e68055. [PMID: 23826362 PMCID: PMC3694913 DOI: 10.1371/journal.pone.0068055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 05/25/2013] [Indexed: 11/18/2022] Open
Abstract
Tetanus toxin (TeTx) is the protein, synthesized by the anaerobic bacteria Clostridium tetani, which causes tetanus disease. TeTx gains entry into target cells by means of its interaction with lipid rafts, which are membrane domains enriched in sphingomyelin and cholesterol. However, the exact mechanism of host membrane binding remains to be fully established. In the present study we used the recombinant carboxyl terminal fragment from TeTx (Hc-TeTx), the domain responsible for target neuron binding, showing that Hc-TeTx induces a moderate but rapid and sustained increase in the ceramide/sphingomyelin ratio in primary cultures of cerebellar granule neurons and in NGF-differentiated PC12 cells, as well as induces the formation of ceramide platforms in the plasma membrane. The mentioned increase is due to the promotion of neutral sphingomyelinase activity and not to the de novo synthesis, since GW4869, a specific neutral sphingomyelinase inhibitor, prevents neutral sphingomyelinase activity increase and formation of ceramide platforms. Moreover, neutral sphingomyelinase inhibition with GW4869 prevents Hc-TeTx-triggered signaling (Akt phosphorylation), as well as the protective effect of Hc-TeTx on PC12 cells subjected to oxidative stress, while siRNA directed against nSM2 prevents protection by Hc-TeTx of NSC-34 cells against oxidative insult. Finally, neutral sphingomyelinase activity seems not to be related with the internalization of Hc-TeTx into PC12 cells. Thus, the presented data shed light on the mechanisms triggered by TeTx after membrane binding, which could be related with the events leading to the neuroprotective action exerted by the Hc-TeTx fragment.
Collapse
Affiliation(s)
- Roger Cubí
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Catalunya, Spain
| | - Ana Candalija
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Catalunya, Spain
| | - Arturo Ortega
- Departamento de Genética y Biología Molecular, Cinvestav-IPN, México DF, Mexico
| | - Carles Gil
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Catalunya, Spain
- * E-mail:
| | - José Aguilera
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Catalunya, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| |
Collapse
|
13
|
Mendieta L, Bautista E, Sánchez A, Guevara J, Herrando-Grabulosa M, Moran J, Martínez R, Aguilera J, Limón ID. The C-terminal domain of the heavy chain of tetanus toxin given by intramuscular injection causes neuroprotection and improves the motor behavior in rats treated with 6-hydroxydopamine. Neurosci Res 2012; 74:156-67. [DOI: 10.1016/j.neures.2012.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/21/2012] [Accepted: 08/24/2012] [Indexed: 12/24/2022]
|
14
|
Calvo AC, Oliván S, Manzano R, Zaragoza P, Aguilera J, Osta R. Fragment C of tetanus toxin: new insights into its neuronal signaling pathway. Int J Mol Sci 2012; 13:6883-6901. [PMID: 22837670 PMCID: PMC3397502 DOI: 10.3390/ijms13066883] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/08/2012] [Accepted: 05/23/2012] [Indexed: 11/16/2022] Open
Abstract
When Clostridium tetani was discovered and identified as a Gram-positive anaerobic bacterium of the genus Clostridium, the possibility of turning its toxin into a valuable biological carrier to ameliorate neurodegenerative processes was inconceivable. However, the non-toxic carboxy-terminal fragment of the tetanus toxin heavy chain (fragment C) can be retrogradely transported to the central nervous system; therefore, fragment C has been used as a valuable biological carrier of neurotrophic factors to ameliorate neurodegenerative processes. More recently, the neuroprotective properties of fragment C have also been described in vitro and in vivo, involving the activation of Akt kinase and extracellular signal-regulated kinase (ERK) signaling cascades through neurotrophin tyrosine kinase (Trk) receptors. Although the precise mechanism of the molecular internalization of fragment C in neuronal cells remains unknown, fragment C could be internalized and translocated into the neuronal cytosol through a clathrin-mediated pathway dependent on proteins, such as dynamin and AP-2. In this review, the origins, molecular properties and possible signaling pathways of fragment C are reviewed to understand the biochemical characteristics of its intracellular and synaptic transport.
Collapse
Affiliation(s)
- Ana C. Calvo
- LAGENBIO (Laboratory of Genetics and Biochemistry), Faculty of Veterinary-I3A, Aragonese Institute of Health Sciences (IACS), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; E-Mails: (A.C.C.); (S.O.); (R.M.); , (P.Z.)
| | - Sara Oliván
- LAGENBIO (Laboratory of Genetics and Biochemistry), Faculty of Veterinary-I3A, Aragonese Institute of Health Sciences (IACS), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; E-Mails: (A.C.C.); (S.O.); (R.M.); , (P.Z.)
| | - Raquel Manzano
- LAGENBIO (Laboratory of Genetics and Biochemistry), Faculty of Veterinary-I3A, Aragonese Institute of Health Sciences (IACS), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; E-Mails: (A.C.C.); (S.O.); (R.M.); , (P.Z.)
| | - Pilar Zaragoza
- LAGENBIO (Laboratory of Genetics and Biochemistry), Faculty of Veterinary-I3A, Aragonese Institute of Health Sciences (IACS), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; E-Mails: (A.C.C.); (S.O.); (R.M.); , (P.Z.)
| | - José Aguilera
- Institute of Neurosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona (UAB), Center of Biomedical Research Network in Neurodegenerative Diseases (CIBERNET), 08193, Cerdanyola del Vallès, Spain; E-Mail:
| | - Rosario Osta
- LAGENBIO (Laboratory of Genetics and Biochemistry), Faculty of Veterinary-I3A, Aragonese Institute of Health Sciences (IACS), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; E-Mails: (A.C.C.); (S.O.); (R.M.); , (P.Z.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-976-761621; Fax: +34-976-762949
| |
Collapse
|
15
|
Toivonen JM, Oliván S, Osta R. Tetanus toxin C-fragment: the courier and the cure? Toxins (Basel) 2010; 2:2622-44. [PMID: 22069568 PMCID: PMC3153173 DOI: 10.3390/toxins2112622] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 10/28/2010] [Indexed: 12/14/2022] Open
Abstract
In many neurological disorders strategies for a specific delivery of a biological activity from the periphery to the central nervous system (CNS) remains a considerable challenge for successful therapy. Reporter assays have established that the non-toxic C-fragment of tetanus toxin (TTC), provided either as protein or encoded by non-viral naked DNA plasmid, binds pre-synaptic motor neuron terminals and can facilitate the retrograde axonal transport of desired therapeutic molecules to the CNS. Alleviated symptoms in animal models of neurological diseases upon delivery of therapeutic molecules offer a hopeful prospect for TTC therapy. This review focuses on what has been learned on TTC-mediated neuronal targeting, and discusses the recent discovery that, instead of being merely a carrier molecule, TTC itself may well harbor neuroprotective properties.
Collapse
Affiliation(s)
- Janne M Toivonen
- LAGENBIO-I3A, Veterinary School, Aragón Institute of Health Sciences (IACS), Universidad de Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain.
| | | | | |
Collapse
|
16
|
Moreno-Igoa M, Calvo AC, Penas C, Manzano R, Oliván S, Muñoz MJ, Mancuso R, Zaragoza P, Aguilera J, Navarro X, Osta Pinzolas R. Fragment C of tetanus toxin, more than a carrier. Novel perspectives in non-viral ALS gene therapy. J Mol Med (Berl) 2010; 88:297-308. [PMID: 19921501 DOI: 10.1007/s00109-009-0556-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/29/2009] [Accepted: 10/13/2009] [Indexed: 11/29/2022]
Abstract
The non-toxic carboxy-terminal fragment of tetanus toxin heavy chain (TTC) has been implicated in the activation of cascades responsible for trophic actions and neuroprotection by inhibition of apoptosis. Previous in vitro studies have described signalling pathways that underlie the administration of TTC to neurons. We investigated whether these properties were maintained in a mouse model of neurodegenerative disease. Naked DNA encoding for TTC was injected intramuscularly and neuromuscular function and clinical behaviour were monitored until endstage in the transgenic SOD1G93A mouse model that expresses a mutant variant of human superoxide dismutase 1 (SOD1). Our results indicate that TTC treatment ameliorated the decline of hindlimb muscle innervation, significantly delayed the onset of symptoms and functional deficits, improved spinal motor neuron survival, and prolonged lifespan. Furthermore, we found that caspase-1 and caspase-3 proapoptotic genes were down-regulated in the spinal cord of treated mice. Western blot analysis showed that the active form of caspase-3 was also down-regulated after TTC treatment and survival signals, such as the significant phosphorylation of serine/threonine protein kinase Akt, were also detected. These results suggest that fragment C of tetanus toxin, TTC, provides a potential therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- María Moreno-Igoa
- LAGENBIO-I3A, Aragon's Institute of Health Sciences, University of Zaragoza, Miguel Servet 177, Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Popoff MR, Poulain B. Bacterial toxins and the nervous system: neurotoxins and multipotential toxins interacting with neuronal cells. Toxins (Basel) 2010; 2:683-737. [PMID: 22069606 PMCID: PMC3153206 DOI: 10.3390/toxins2040683] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 03/18/2010] [Accepted: 04/07/2010] [Indexed: 12/13/2022] Open
Abstract
Toxins are potent molecules used by various bacteria to interact with a host organism. Some of them specifically act on neuronal cells (clostridial neurotoxins) leading to characteristics neurological affections. But many other toxins are multifunctional and recognize a wider range of cell types including neuronal cells. Various enterotoxins interact with the enteric nervous system, for example by stimulating afferent neurons or inducing neurotransmitter release from enterochromaffin cells which result either in vomiting, in amplification of the diarrhea, or in intestinal inflammation process. Other toxins can pass the blood brain barrier and directly act on specific neurons.
Collapse
Affiliation(s)
- Michel R. Popoff
- Neurotransmission et Sécrétion Neuroendocrine, CNRS UPR 2356 IFR 37 - Neurosciences, Centre de Neurochimie, 5, rue Blaise Pascal, F-67084 STRASBOURG cedex, France;
- Author to whom correspondence should be addressed;
| | | |
Collapse
|
18
|
Gil C, Cubí R, Aguilera J. Shedding of the p75NTRneurotrophin receptor is modulated by lipid rafts. FEBS Lett 2007; 581:1851-8. [PMID: 17433308 DOI: 10.1016/j.febslet.2007.03.080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 03/15/2007] [Accepted: 03/23/2007] [Indexed: 01/16/2023]
Abstract
Protein ectodomain shedding is the proteolytic release of the extracellular domain of membrane-bound proteins. Neurotrophin receptor p75(NTR) is known to be affected by shedding. The present work provides evidence, in rat brain synaptosomes, that p75(NTR) is present in detergent-resistant membranes (DRM), also known as lipid rafts, only in its full-length form. Disrupting the integrity of lipid rafts causes solubilization of p75(NTR) after detergent treatment and enhancement of the shedding. Analyses of the enzymes described as being responsible for p75(NTR) shedding, i.e. tumor necrosis factor alpha convertase (TACE) and presenilin-1 (PS1), revealed that TACE is absent in DRM, while variable proportions of the C-terminal and N-terminal fragments of PS1 are found. In summary, our results point to a role of lipid rafts in the modulation of the shedding of the p75(NTR) receptor.
Collapse
Affiliation(s)
- Carles Gil
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Edifici M, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Catalunya, Spain.
| | | | | |
Collapse
|
19
|
Roux S, Saint Cloment C, Curie T, Girard E, Miana Mena FJ, Barbier J, Osta R, Molgó J, Brûlet P. Brain-derived neurotrophic factor facilitates in vivo internalization of tetanus neurotoxin C-terminal fragment fusion proteins in mature mouse motor nerve terminals. Eur J Neurosci 2007; 24:1546-54. [PMID: 17004918 DOI: 10.1111/j.1460-9568.2006.05030.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In a previous study it was reported that fusion proteins composed of the atoxic C-terminal fragment of tetanus toxin (TTC) and green fluorescent protein or beta-galactosidase (GFP-TTC and beta-gal-TTC, respectively) rapidly cluster at motor nerve terminals of the mouse neuromuscular junction (NMJ). Because this traffic involves presynaptic activity, probably via the secretion of active molecules, we examined whether it is affected by brain-derived neurotrophic factor (BDNF). Quantitative confocal microscopy and a fluorimetric assay for beta-gal activity revealed that co-injecting BDNF and the fusion proteins significantly increased the kinetics and amount of the proteins' localization at the NMJ and their internalization by motor nerve terminals. The observed increases were independent of synaptic vesicle recycling because BDNF did not affect spontaneous quantal acetylcholine release. In addition, injecting anti-BDNF antibody shortly before injecting GFP-TTC, and before co-injecting GFP-TTC and BDNF, significantly reduced the fusion protein's localization at the NMJ. Co-injecting GFP-TTC with neurotrophin-4 (NT-4) or glial-derived neurotrophic factor (GDNF), but not with nerve growth factor, neurotrophin-3 or ciliary neurotrophic factor, also significantly increased the fusion protein's localization at the NMJ. Thus, TTC probes may use for their neuronal internalization endocytic pathways normally stimulated by BDNF, NT-4 and GDNF binding. Different tyrosine kinase receptors with similar signalling pathways are activated by BDNF/NT-4 and GDNF binding. Thus, activated components of these signalling pathways may be involved in the TTC probes' internalization, perhaps by facilitating localization of receptors of TTC in specific membrane microdomains or by recruiting various factors needed for internalization of TTC.
Collapse
Affiliation(s)
- Sylvie Roux
- CNRS, Institut de Neurobiologie Alfred Fessard, FRC2118, Laboratoire de Neurobiologie Cellulaire et Moléculaire, UPR9040, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yamaguchi Y, Tabata K, Asami S, Miyake M, Suzuki T. A Novel Cyclophane Compound, CPPy, Facilitates NGF-Induced TrkA Signal Transduction and Induces Cell Differentiation in Neuroblastoma. Biol Pharm Bull 2007; 30:638-43. [PMID: 17409494 DOI: 10.1248/bpb.30.638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuroblastoma (NB) often causes spontaneously regression, and can mature to ganglioneuroma. The form with the most favorable prognosis expresses high levels of TrkA, a high-affinity receptor for nerve growth factor (NGF), whereas advanced NB and associated cell lines have abnormalities in the NGF/TrkA signaling pathway. A novel cyclophane, cyclophane pyridine (CPPy), was designed to conserve the tyrosine phosphorylation of TrkA, thereby enhancing NGF/TrkA signal transduction. We investigated whether this compound improved NGF-induced tyrosine phosphorylation of the Y490 domain of TrkA and conserved the expression of an early gene (c-fos) in human NB cell lines (IMR-32 and NB-39). As determined by Western blotting, TrkA (Y490) phosphorylation was enhanced by the combination of CPPy (10(-8) M) and NGF (100 ng/ml) compared with NGF alone. CPPy also conserved NGF-induced c-fos mRNA expression. Moreover, CPPy induced the morphological differentiation of NB cells, leading to expression of the neuronal marker gene GAP-43. These data suggest that CPPy can induce the differentiation of NB cell lines by facilitating NGF-induced TrkA/Ras/MAPK signal transduction, and may therefore be an effective therapeutic agent for NB.
Collapse
|
21
|
Gil C, Chaib-Oukadour I, Aguilera J. C-terminal fragment of tetanus toxin heavy chain activates Akt and MEK/ERK signalling pathways in a Trk receptor-dependent manner in cultured cortical neurons. Biochem J 2003; 373:613-20. [PMID: 12710887 PMCID: PMC1223507 DOI: 10.1042/bj20030333] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2003] [Revised: 04/04/2003] [Accepted: 04/23/2003] [Indexed: 11/17/2022]
Abstract
Previous publications from our group [Gil, Chaib, Pelliccioni and Aguilera (2000) FEBS Lett. 481, 177-182; Gil, Chaib, Blasi and Aguilera (2001) Biochem. J. 356, 97-103] have reported the activation, in rat brain synaptosomes, of several phosphoproteins, such as neurotrophin tyrosine kinase (Trk) A receptor, phospholipase Cgamma-1, protein kinase C (PKC) isoforms and extracellular-signal-regulated kinases 1 and 2 (ERK-1/2). In the present study, we examined, by means of phospho-specific antibodies, the activation of the signalling cascades involving neurotrophin Trk receptor, Akt kinase and ERK pathway, in cultured cortical neurons from foetal rat brain, by tetanus toxin (TeTx) as well as by the C-terminal part of its heavy chain (H(C)-TeTx). TeTx and H(C)-TeTx induce fast and transient phosphorylation of Trk receptor at Tyr(674) and Tyr(675), but not at Tyr(490), although the potency of TeTx in this action was higher when compared with H(C)-TeTx action. Moreover, H(C)-TeTx and TeTx also induced phosphorylation of Akt (at Ser(473) and Thr(308)) and of ERK-1/2 (Thr(202)/Tyr(204)), in a time- and concentration-dependent manner. The detection of TeTx- and H(C)-TeTx-induced phosphorylation at Ser(9) of glycogen synthase kinase 3beta confirms Akt activation. In the extended analysis of the ERK pathway, phosphorylation of the Raf, mitogen-activated protein kinase kinase (MEK)-1/2 and p90Rsk kinases and phosphorylation of the transcription factor cAMP-response-element-binding protein were detected. The use of tyrphostin AG879, an inhibitor of Trk receptors, demonstrates their necessary participation in the H(C)-TeTx-induced activation of Akt and ERK pathways, as well as in the phosphorylation of phospholipase Cgamma-1. Furthermore, both pathways are totally dependent on phosphatidylinositol 3-kinase action, and they are independent of PKC action, as assessed using wortmannin and Ro-31-8220 as inhibitors. The activation of PKC isoforms was determined by their translocation from the cytosolic compartment to the membranous compartment, showing a clear H(C)-TeTx-induced translocation of PKC-alpha and -beta, but not of PKC- epsilon.
Collapse
Affiliation(s)
- Carles Gil
- Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Institut de Neurociències, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Catalunya, Spain.
| | | | | |
Collapse
|
22
|
Gil C, Najib A, Aguilera J. Serotonin transport is modulated differently by tetanus toxin and growth factors. Neurochem Int 2003; 42:535-42. [PMID: 12590935 DOI: 10.1016/s0197-0186(02)00187-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has been previously shown that 5-HT uptake inhibition produced by tetanus toxin (TeTx) corresponds to a non-competitive inhibition, and it is preceded by phosphorylation of the tyrosine-kinase receptor trkA, phospholipase C activation and translocation of protein kinase C isoforms [FEBS Lett. 481 (2000) 177; FEBS Lett. 486 (2000) 136]. In the present work, it is shown that agonists of tyrosine-kinase receptors (NGF, EGF, basic FGF) enhance Na(+)-dependent, 5-hydroxytryptamine (serotonin, 5-HT) uptake in the synaptosomal-enriched P(2) fraction from rat-brain, suggesting a divergence in the intracellular signal pathways triggered by TeTx and by agonists of TyrK receptors. Co-applications of TeTx and agonists of TyrK receptors result in a mutual and partial reversion of their effects on 5-HT transport. In spite of their differences on transport, TeTx, TPA and NGF produce an increase in serotonin transporter phosphorylation in Ser separately, which is abolished by the PKC-inhibitor bisindolylmaleimide-1. Co-application of sodium vanadate, a tyrosine-phosphatase inhibitor, partially abolishes the effect produced by TeTx, whereas genistein, a tyrosine-kinase inhibitor, does not exert any variation of TeTx inhibition. Analyses by immunoblotting of the activation of specific PKC isoforms activation, determined as translocation to the membrane compartment, reveals differences in the pattern produced by NGF and TeTx. PKC gamma, delta, and epsilon isoforms are equally activated by both compounds, whereas the beta isoform is activated in a sustained manner only by TeTx, and the alpha isoform is only down-regulated by NGF. The aim of the present work was to explore whether NGF have the same effect on 5-HT transport than TeTx, since both compounds share the ability of activate part of the same transduction pathways. In spite of this, growth factors and TeTx show an opposite effect on 5-HT transport, even though SERT phosphorylation is enhanced in both cases. The differential effect on alpha- and beta-PKC isoenzymes found between NGF and TeTx action could explain this apparent discrepancy.
Collapse
Affiliation(s)
- Carles Gil
- Departament de Bioquímica i de Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallés, Barcelona, Spain
| | | | | |
Collapse
|
23
|
Schrenk K, Kapfhammer JP, Metzger F. Altered dendritic development of cerebellar Purkinje cells in slice cultures from protein kinase Cgamma-deficient mice. Neuroscience 2002; 110:675-89. [PMID: 11934475 DOI: 10.1016/s0306-4522(01)00559-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein kinase C (PKC) is a key molecule for the expression of long-term depression at the parallel fiber-Purkinje cell synapse in the cerebellum, a well known model for synaptic plasticity. We have recently shown that activity of PKC also profoundly affects the dendritic morphology of Purkinje cells in rat cerebellar slice cultures suggesting that synaptic efficacy and dendritic development may be controlled by similar intracellular signalling pathways. Here we have analyzed the role of the gamma-isoform of protein kinase C (PKCgamma), which is strongly and specifically expressed in Purkinje cells, during dendritic development. After pharmacological treatment with PKC modulators, phosphorylation of PKCgamma at serine 660 was altered in cerebellar slices suggesting that a change of PKCgamma activity by these treatments was taking place within the Purkinje cells. In PKCgamma-deficient mice, Purkinje cell dendritic trees were enlarged and had an increased number of branching points compared to wild-type mice indicating a role for the PKCgamma isoform as a negative regulator of dendritic growth and branching. Furthermore, the branching-stimulating effects of the PKC inhibitors 2-[1-(3-dimethylaminopropyl)indol-3-yl]-3-(indol-3-yl)maleimide and Gö6976 found in wild-type cultures were abolished in the absence of PKCgamma. In contrast, the strong inhibitory effect on dendritic growth by the PKC activator phorbol-12-myristate-13-acetate (PMA) did not require the presence of the PKCgamma isoform since it was still present in the cultures of PKCgamma-deficient mice. Our results clearly demonstrate an involvement of PKCgamma in Purkinje cell dendritic differentiation in cerebellar slice cultures.
Collapse
Affiliation(s)
- K Schrenk
- AG Neuronale Plastizität, Anatomisches Institut I, Universität Freiburg, Germany
| | | | | |
Collapse
|
24
|
Herreros J, Schiavo G. Lipid microdomains are involved in neurospecific binding and internalisation of clostridial neurotoxins. Int J Med Microbiol 2002; 291:447-53. [PMID: 11890543 DOI: 10.1078/1438-4221-00152] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The neuroparalytic syndromes of tetanus and botulism are caused by tetanus and botulinum neurotoxins, which are produced by bacteria of the genus Clostridia. These neurotoxins are structurally organised in three-domains endowed with different functions: specific interaction with the neuronal surface, membrane translocation and specific cleavage of three key components of the neurotransmitter release apparatus. Despite an identical intracellular activity, tetanus and botulinum neurotoxins are characterised by a differential intraneuronal trafficking, which is likely to be responsible for the different symptoms observed in clinical tetanus and botulism. This review aims to highlight recent discoveries on the recruitment of clostridial neurotoxins (CNTs) to the surface of neurons and neuronally-differentiated cell lines and to discuss their relevance for the internalisation and sorting of these neurotoxins.
Collapse
Affiliation(s)
- Judit Herreros
- Molecular Neuropathobiology Laboratory, Imperial Cancer Research Fund, London, United Kingdom.
| | | |
Collapse
|
25
|
Herreros J, Ng T, Schiavo G. Lipid rafts act as specialized domains for tetanus toxin binding and internalization into neurons. Mol Biol Cell 2001; 12:2947-60. [PMID: 11598183 PMCID: PMC60147 DOI: 10.1091/mbc.12.10.2947] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Tetanus (TeNT) is a zinc protease that blocks neurotransmission by cleaving the synaptic protein vesicle-associated membrane protein/synaptobrevin. Although its intracellular catalytic activity is well established, the mechanism by which this neurotoxin interacts with the neuronal surface is not known. In this study, we characterize p15s, the first plasma membrane TeNT binding proteins and we show that they are glycosylphosphatidylinositol-anchored glycoproteins in nerve growth factor (NGF)-differentiated PC12 cells, spinal cord cells, and purified motor neurons. We identify p15 as neuronal Thy-1 in NGF-differentiated PC12 cells. Fluorescence lifetime imaging microscopy measurements confirm the close association of the binding domain of TeNT and Thy-1 at the plasma membrane. We find that TeNT is recruited to detergent-insoluble lipid microdomains on the surface of neuronal cells. Finally, we show that cholesterol depletion affects a raft subpool and blocks the internalization and intracellular activity of the toxin. Our results indicate that TeNT interacts with target cells by binding to lipid rafts and that cholesterol is required for TeNT internalization and/or trafficking in neurons.
Collapse
Affiliation(s)
- J Herreros
- Molecular Neuropathobiology, Imperial Cancer Research Fund, WC2A 3PX London, United Kingdom.
| | | | | |
Collapse
|
26
|
Gil C, Chaib-Oukadour I, Blasi J, Aguilera J. HC fragment (C-terminal portion of the heavy chain) of tetanus toxin activates protein kinase C isoforms and phosphoproteins involved in signal transduction. Biochem J 2001; 356:97-103. [PMID: 11336640 PMCID: PMC1221816 DOI: 10.1042/0264-6021:3560097] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A recent report [Gil, Chaib-Oukadour, Pelliccioni and Aguilera (2000) FEBS Lett. 481, 177-182] describes activation of signal transduction pathways by tetanus toxin (TeTx), a Zn(2+)-dependent endopeptidase synthesized by the Clostridium tetani bacillus, which is responsible for tetanus disease. In the present work, specific activation of protein kinase C (PKC) isoforms and of intracellular signal-transduction pathways, which include nerve-growth-factor (NGF) receptor trkA, phospholipase C(PLC)gamma-1 and extracellular regulated kinases (ERKs) 1 and 2, by the recombinant C-terminal portion of the TeTx heavy chain (H(C)-TeTx) is reported. The activation of PKC isoforms was assessed through their translocation from the soluble (cytosolic) compartment to the membranous compartment, showing that clear translocation of PKC-alpha, -beta, -gamma and -delta isoforms exists, whereas PKC-epsilon showed a slight decrease in its soluble fraction immunoreactivity. The PKC-zeta isoform showed no consistent response. Using immunoprecipitation assays against phosphotyrosine residues, time- and dose-dependent increases in tyrosine phosphorylation were observed in the trkA receptor, PLCgamma-1 and ERK-1/2. The effects shown by the H(C)-TeTx fragment on tyrosine phosphorylation were compared with the effects produced by NGF. The trkA and ERK-1/2 activation were corroborated using phospho-specific antibodies against trkA phosphorylated on Tyr(490), and antibodies against Thr/Tyr phosphorylated ERK-1/2. Moreover, PLCgamma-1 phosphorylation was supported by its H(C)-TeTx-induced translocation to the membranous compartment, an event related to PLCgamma-1 activation. Since H(C)-TeTx is the domain responsible for membrane binding and lacks catalytic activity, the activations described here must be exclusively triggered by the interaction of TeTx with a membrane component.
Collapse
Affiliation(s)
- C Gil
- Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|
27
|
Najib A, Pelliccioni P, Gil C, Aguilera J. Serotonin transporter phosphorylation modulated by tetanus toxin. FEBS Lett 2000; 486:136-42. [PMID: 11113454 DOI: 10.1016/s0014-5793(00)02294-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tetanus toxin (TeTx) modifies Na(+)-dependent, high-affinity 5-hydroxytryptamine (5-HT, serotonin) uptake in a synaptosomal-enriched P(2) fraction from rat brain. The effect corresponds to a rapid and non-competitive uptake inhibition, and it is preceded by induction of phospholipase C (PLC) activity and translocation and down-regulation of the classical protein kinase C (PKC-alpha, -beta and -gamma) isoforms. The effects on serotonin transport and on cPKC activation were similar to the effects exhibited by phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). Moreover, after treatment with TeTx, an increase in Ser- and Tyr-specific phosphorylation was found. Activation of PKC by both TeTx and TPA results in a loss of transport capacity and serotonin transporter (SERT) phosphorylation, which are abolished by coapplication of the specific PKC inhibitor bisindolylmaleimide-1. Since a specific PLCgamma1 phosphorylation prior to TeTx's inducing SERT phosphorylation was found, the studies suggest that part of the action of TeTx consists of modifying the signal cascade initiated in tyrosine kinase receptors on nerve tissue previous to its cellular internalization, resulting in transporter phosphorylation.
Collapse
Affiliation(s)
- A Najib
- Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallés, Barcelona, Spain
| | | | | | | |
Collapse
|