1
|
Chen S, Mao Q, Cheng H, Tai W. RNA-Binding Small Molecules in Drug Discovery and Delivery: An Overview from Fundamentals. J Med Chem 2024; 67:16002-16017. [PMID: 39287926 DOI: 10.1021/acs.jmedchem.4c01330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
RNA molecules, similar to proteins, fold into complex structures to confer diverse functions in cells. The intertwining of functions with RNA structures offers a new therapeutic opportunity for small molecules to bind and manipulate disease-relevant RNA pathways, thus creating a therapeutic realm of RNA-binding small molecules. The ongoing interest in RNA targeting and subsequent screening campaigns have led to the identification of numerous compounds that can regulate RNAs from splicing, degradation to malfunctions, with therapeutic benefits for a variety of diseases. Moreover, along with the rise of RNA-based therapeutics, RNA-binding small molecules have expanded their application to the modification, regulation, and delivery of RNA drugs, leading to the burgeoning interest in this field. This Perspective overviews the emerging roles of RNA-binding small molecules in drug discovery and delivery, covering aspects from their action fundamentals to therapeutic applications, which may inspire researchers to advance the field.
Collapse
Affiliation(s)
- Siyi Chen
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Qi Mao
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Hong Cheng
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Wanyi Tai
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
2
|
Song Y, Cui J, Zhu J, Kim B, Kuo ML, Potts PR. RNATACs: Multispecific small molecules targeting RNA by induced proximity. Cell Chem Biol 2024; 31:1101-1117. [PMID: 38876100 DOI: 10.1016/j.chembiol.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
RNA-targeting small molecules (rSMs) have become an attractive modality to tackle traditionally undruggable proteins and expand the druggable space. Among many innovative concepts, RNA-targeting chimeras (RNATACs) represent a new class of multispecific, induced proximity small molecules that act by chemically bringing RNA targets into proximity with an endogenous RNA effector, such as a ribonuclease (RNase). Depending on the RNA effector, RNATACs can alter the stability, localization, translation, or splicing of the target RNA. Although still in its infancy, this new modality has the potential for broad applications in the future to treat diseases with high unmet need. In this review, we discuss potential advantages of RNATACs, recent progress in the field, and challenges to this cutting-edge technology.
Collapse
Affiliation(s)
- Yan Song
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA.
| | - Jia Cui
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Jiaqiang Zhu
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Boseon Kim
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Mei-Ling Kuo
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Patrick Ryan Potts
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA.
| |
Collapse
|
3
|
Site-Selective Artificial Ribonucleases: Renaissance of Oligonucleotide Conjugates for Irreversible Cleavage of RNA Sequences. Molecules 2021; 26:molecules26061732. [PMID: 33808835 PMCID: PMC8003597 DOI: 10.3390/molecules26061732] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/17/2022] Open
Abstract
RNA-targeting therapeutics require highly efficient sequence-specific devices capable of RNA irreversible degradation in vivo. The most developed methods of sequence-specific RNA cleavage, such as siRNA or antisense oligonucleotides (ASO), are currently based on recruitment of either intracellular multi-protein complexes or enzymes, leaving alternative approaches (e.g., ribozymes and DNAzymes) far behind. Recently, site-selective artificial ribonucleases combining the oligonucleotide recognition motifs (or their structural analogues) and catalytically active groups in a single molecular scaffold have been proven to be a great competitor to siRNA and ASO. Using the most efficient catalytic groups, utilising both metal ion-dependent (Cu(II)-2,9-dimethylphenanthroline) and metal ion-free (Tris(2-aminobenzimidazole)) on the one hand and PNA as an RNA recognising oligonucleotide on the other, allowed site-selective artificial RNases to be created with half-lives of 0.5-1 h. Artificial RNases based on the catalytic peptide [(ArgLeu)2Gly]2 were able to take progress a step further by demonstrating an ability to cleave miRNA-21 in tumour cells and provide a significant reduction of tumour growth in mice.
Collapse
|
4
|
Kuzuya A, Machida K, Shi Y, Tanaka K, Komiyama M. Site-Selective RNA Activation by Acridine-Modified Oligodeoxynucleotides in Metal-Ion Catalyzed Hydrolysis: A Comprehensive Study. ACS OMEGA 2017; 2:5370-5377. [PMID: 31457805 PMCID: PMC6644747 DOI: 10.1021/acsomega.7b00966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/21/2017] [Indexed: 06/10/2023]
Abstract
Various types of acridine were conjugated to DNA and used for site-selective RNA scission together with another unmodified DNA and a Lu(III) ion. The target phosphodiester linkage in the substrate RNA was selectively and efficiently activated, and was hydrolyzed by the free Lu(III) ion. Among the investigated 14 conjugates, the conjugate bearing 9-amino-2-isopropoxy-6-nitroacridine was the best RNA-activator. Systematic evaluation of the RNA-activating ability of the acridines showed that (1) the acridines act as an acid catalyst within the RNA activation, (2) the amino-group at the 9-position of acridine is essential to modulate the acidity of acridine, (3) the electron-withdrawing group at the 3-position further enhances the acid catalysis, and (4) the substituent at the 2-position sterically modulates the orientation of acridine-intercalation favorably for the catalysis. Moreover, it is revealed that the opposite base of acridine does not inhibit direct interaction of acridine with the target phosphodiester linkage.
Collapse
Affiliation(s)
- Akinori Kuzuya
- Department
of Chemistry and Materials Engineering, Kansai University, 3-3-35
Yamate, Suita, Osaka 564-8680, Japan
| | - Kenzo Machida
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Yun Shi
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Keita Tanaka
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Makoto Komiyama
- International
Center for Materials Nanoarchitechtonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
5
|
Patutina OA, Bichenkova EV, Miroshnichenko SK, Mironova NL, Trivoluzzi LT, Burusco KK, Bryce RA, Vlassov VV, Zenkova MA. miRNases: Novel peptide-oligonucleotide bioconjugates that silence miR-21 in lymphosarcoma cells. Biomaterials 2017; 122:163-178. [PMID: 28126663 DOI: 10.1016/j.biomaterials.2017.01.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) are active regulators in malignant growth and constitute potential targets for anticancer therapy. Consequently, considerable effort has focused on identifying effective ways to modulate aberrant miRNA expression. Here we introduce and assess a novel type of chemically engineered biomaterial capable of cleaving specific miRNA sequences, i.e. miRNA-specific artificial ribonucleases (hereafter 'miRNase'). The miRNase template presented here consists of the catalytic peptide Acetyl-[(LeuArg)2Gly]2 covalently attached to a miRNA-targeting oligonucleotide, which can be linear or hairpin. The peptide C-terminus is conjugated to an aminohexyl linker located at either the 3'- or 5'-end of the oligonucleotide. The cleavage efficacy, structural aspects of cleavage and biological relevance of a set of these designed miRNases was assayed with respect to highly oncogenic miR-21. Several miRNases demonstrated effective site-selective cleavage of miR-21 exclusively at G-X bonds. One of the most efficient miRNase was shown to specifically inhibit miR-21 in lymphosarcoma cells and lead to a reduction in their proliferative activity. This report provides the first experimental evidence that metallo-independent peptide-oligonucleotide chemical ribonucleases are able to effectively and selectively down-regulate oncogenic miRNA in tumour cells, thus suggesting their potential in development of novel therapeutics aimed at overcoming overexpression of disease-related miRNAs.
Collapse
Affiliation(s)
- Olga A Patutina
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - Elena V Bichenkova
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | - Svetlana K Miroshnichenko
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - Nadezhda L Mironova
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - Linda T Trivoluzzi
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Kepa K Burusco
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Richard A Bryce
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Valentin V Vlassov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - Marina A Zenkova
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia.
| |
Collapse
|
6
|
Williams A, Staroseletz Y, Zenkova MA, Jeannin L, Aojula H, Bichenkova EV. Peptidyl-oligonucleotide conjugates demonstrate efficient cleavage of RNA in a sequence-specific manner. Bioconjug Chem 2015; 26:1129-43. [PMID: 25955796 DOI: 10.1021/acs.bioconjchem.5b00193] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Described here is a new class of peptidyl-oligonucleotide conjugates (POCs) which show efficient cleavage of a target RNA in a sequence-specific manner. Through phosphoramidate attachment of a 17-mer TΨC-targeting oligonucleotide to amphiphilic peptide sequences containing leucine, arginine, and glycine, zero-linker conjugates are created which exhibit targeted phosphodiester cleavage under physiological conditions. tRNA(Phe) from brewer's yeast was used as a model target sequence in order to probe different structural variants of POCs in terms of selective TΨC-arm directed cleavage. Almost quantitative (97-100%) sequence-specific tRNA cleavage is observed for several POCs over a 24 h period with a reaction half-life of less than 1 h. Nontargeted cleavage of tRNA(Phe) or HIV-1 RNA is absent. Structure-activity relationships reveal that removal of the peptide's central glycine residue significantly decreases tRNA cleavage activity; however, this can be entirely restored through replacement of the peptide's C-terminal carboxylic acid group with the carboxamide functionality. Truncation of the catalytic peptide also has a detrimental effect on POC activity. Based on the encouraging results presented, POCs could be further developed with the aim of creating useful tools for molecular biology or novel therapeutics targeting specific messenger, miRNA, and genomic viral RNA sequences.
Collapse
Affiliation(s)
- Aled Williams
- †Manchester Pharmacy School, University of Manchester, Oxford Road, Manchester, United Kingdom, M13 9PT
| | - Yaroslav Staroseletz
- ‡Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Laurentiev Avenue, 630090, Novosibirsk, Russia
| | - Marina A Zenkova
- ‡Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Laurentiev Avenue, 630090, Novosibirsk, Russia
| | - Laurent Jeannin
- §Peptisyntha S.A., 310 Rue de Ransbeek, 1120 Brussels, Belgium
| | - Harmesh Aojula
- †Manchester Pharmacy School, University of Manchester, Oxford Road, Manchester, United Kingdom, M13 9PT
| | - Elena V Bichenkova
- †Manchester Pharmacy School, University of Manchester, Oxford Road, Manchester, United Kingdom, M13 9PT
| |
Collapse
|
7
|
Xu L, Ji C, Bai Y, He J, Liu K. DNA duplex-supported artificial esterase mimicking by cooperative grafting functional groups. Biochem Biophys Res Commun 2013; 434:516-20. [PMID: 23583410 DOI: 10.1016/j.bbrc.2013.03.106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 03/20/2013] [Indexed: 10/26/2022]
Abstract
The molecular structures of enzyme mimics may be modified to optimize their catalytic properties. In this study, to generate artificial enzyme mimics, Watson-Crick base paired DNA duplexes were designed as scaffolds which were assembled by nucleotides modified with specific functional groups. This process allowed various functional groups to be precisely assembled at different sites on the duplexes. By using this strategy, the 5-[2-(1H-imidazolyl-4)-(E)-ethylene]-2'-deoxythymidine (1) analog with the 5-substituted imidazolyl group was incorporated into single strands of DNA. Upon DNA duplex formation, several combinations of the imidazolyl group were formed. Using p-nitrophenyl acetate as the substrate of the catalytic reaction, we evaluated the hydrolysis capabilities of the imidazolyl assemblies. The catalytic ability was closely related to the distribution of imidazolyl groups in the DNA duplex. The most effective catalytic center was that of the duplex O5-O6 construct with three imidazolyl groups. This construct displayed bell-shaped pH-dependent and Mg(2+)-independent kinetic curves, which are typical characteristics of imidazolyl-mediated catalytic reactions.
Collapse
Affiliation(s)
- Liang Xu
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | | | | | | | | |
Collapse
|
8
|
Beloglazova NG, Fabani MM, Polushin NN, Sil'nikov VV, Vlassov VV, Bichenkova EV, Zenkova MA. Site-selective artificial ribonucleases: oligonucleotide conjugates containing multiple imidazole residues in the catalytic domain. J Nucleic Acids 2011; 2011:748632. [PMID: 21961054 PMCID: PMC3180074 DOI: 10.4061/2011/748632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/05/2011] [Indexed: 12/05/2022] Open
Abstract
Design of site-selective artificial ribonucleases (aRNases) is one of the most challenging tasks in RNA targeting. Here, we designed and studied oligonucleotide-based aRNases containing multiple imidazole residues in the catalytic part and systematically varied structure of cleaving constructs. We demonstrated that the ribonuclease activity of the conjugates is strongly affected by the number of imidazole residues in the catalytic part, the length of a linker between the catalytic imidazole groups of the construct and the oligonucleotide, and the type of anchor group, connecting linker structure and the oligonucleotide. Molecular modeling of the most active aRNases showed that preferable orientation(s) of cleaving constructs strongly depend on the structure of the anchor group and length of the linker. The inclusion of deoxyribothymidine anchor group significantly reduced the probability of cleaving groups to locate near the cleavage site, presumably due to a stacking interaction with the neighbouring nucleotide residue. Altogether the obtained results show that dynamics factors play an important role in site-specific RNA cleavage. Remarkably high cleavage activity was displayed by the conjugates with the most flexible and extended cleaving construct, which presumably provides a better opportunity for imidazole residues to be correctly positioned in the vicinity of scissile phosphodiester bond.
Collapse
Affiliation(s)
- Natalia G Beloglazova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | | | | | | | | | | | | |
Collapse
|
9
|
Saleh AD, Miller PS. Hydrolysis of bulged nucleotides in hybrids formed by RNA and imidazole-derivatized oligo-2'-O-methylribonucleotides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2011; 30:235-55. [PMID: 21491332 DOI: 10.1080/15257770.2011.569810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In order to enhance the efficacy of small antisense molecules, we examined a series of antisense oligonucleotides derivatized with functional groups designed to enable them to hydrolyze their RNA target. Solid phase synthetic methods were used to prepare imidazole-derivatized antisense oligo-2'-O-methylribonucleotides. Upon binding, these oligonucleotides create internal bulged bases in the target RNA that serve as sites for hydrolysis. We observed that an oligonucleotide derivatized with a side chain containing two imidazole groups was capable of hydrolyzing 58% of its RNA target when incubated with the target for 48 hours at 37°C and physiological pH.
Collapse
Affiliation(s)
- Anthony D Saleh
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
10
|
Thomas JM, Yoon JK, Perrin DM. Investigation of the catalytic mechanism of a synthetic DNAzyme with protein-like functionality: an RNaseA mimic? J Am Chem Soc 2010; 131:5648-58. [PMID: 20560639 DOI: 10.1021/ja900125n] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The protein enzyme ribonuclease A (RNaseA) cleaves RNA with catalytic perfection, although with little sequence specificity, by a divalent metal ion (M(2+))-independent mechanism in which a pair of imidazoles provides general acid and base catalysis, while a cationic amine provides electrostatic stabilization of the transition state. Synthetic imitation of this remarkable organo-catalyst ("RNaseA mimicry") has been a longstanding goal in biomimetic chemistry. The 9(25)-11 DNAzyme contains synthetically modified nucleotides presenting both imidazole and cationic amine side chains, and catalyzes RNA cleavage with turnover in the absence of M(2+) similarly to RNaseA. Nevertheless, the catalytic roles, if any, of the "protein-like" functional groups have not been defined, and hence the question remains whether 9(25)-11 engages any of these functionalities to mimic aspects of the mechanism of RNaseA. To address this question, we report a mechanistic investigation of 9(25)-11 catalysis wherein we have employed a variety of experiments, such as DNAzyme functional group deletion, mechanism-based affinity labeling, and bridging and nonbridging phosphorothioate substitution of the scissile phosphate. Several striking parallels exist between the results presented here for 9(25)-11 and the results of analogous experiments applied previously to RNaseA. Specifically, our results implicate two particular imidazoles in general acid and base catalysis and suggest that a specific cationic amine stabilizes the transition state via diastereoselective interaction with the scissile phosphate. Overall, 9(25)-11 appears to meet the minimal criteria of an RNaseA mimic; this demonstrates how added synthetic functionality can expand the mechanistic repertoire available to a synthetic DNA-based catalyst.
Collapse
Affiliation(s)
- Jason M Thomas
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | | | | |
Collapse
|
11
|
Tamkovich NV, Zenkov AN, Vlasov VV, Zenkova MA. [An RNA sequence determines the speed of its splitting by artificial ribonucleases]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2010; 36:223-35. [PMID: 20531481 DOI: 10.1134/s106816201002010x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phosphodiester bonds in RNA situated between similar nucleotides but in different sequences (context) were split under the action of artificial and natural ribonucleases with different speeds, and the reason for this phenomenon has not yet been fully revealed. In this study, the influence of one-nucleotide substitution on the sensitivity to splitting of the phosphodiester bonds in linear and structured RNA with homologous sequences is studied for the first time. It is indicated that the introduction of one-nucleotide substitution in the RNA sequence significantly (up to 10 times) changes the speed of the splitting of the bonds that are separated from the substitution point not only by 1-3, but also 6-8 nucleotides, by artificial ribonucleases. The observed regularities may be explained by the fact that the introduction of a one-nucleotide substitution significantly changes the stacking interactions and the net of hydrogen bonds in the RNA molecule. The applied value of this study consists of the ability of using low-molecular artificial ribonucleases with the aim of choosing the region of the binding of the oligonucleotide in the construction of a conjugate for the site-directed cutting of RNA, because the choice of a phosphodiester bond (motif) easily subjected to splitting significantly determines the effectiveness of artificial ribonucleases of directed action.
Collapse
Affiliation(s)
- N V Tamkovich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent'eva 8, Novosibirsk, 630090 Russia
| | | | | | | |
Collapse
|
12
|
Razkin J, Lindgren J, Nilsson H, Baltzer L. Enhanced complexity and catalytic efficiency in the hydrolysis of phosphate diesters by rationally designed helix-loop-helix motifs. Chembiochem 2008; 9:1975-84. [PMID: 18600814 DOI: 10.1002/cbic.200800057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
HJ1, a 42-residue peptide that folds into a helix-loop-helix motif and dimerizes to form a four-helix bundle, successfully catalyzes the cleavage of "early stage" DNA model substrates in an aqueous solution at pH 7.0, with a rate enhancement in the hydrolysis of heptyl 4-nitrophenyl phosphate of over three orders of magnitude over that of the imidazole-catalyzed reaction, k(2)(HJ1)/k(2)(Im) = 3135. The second-order rate constant, k(2)(HJ1) was determined to be 1.58x10(-4) M(-1) s(-1). The catalyst successfully assembles residues that in a single elementary reaction step are capable of general-acid and general-base catalysis as well as transition state stabilization and proximity effects. The reactivity achieved with the HJ1 polypeptide, rationally designed to catalyze the hydrolysis of phosphodiesters, is based on two histidine residues flanked by four arginines and two adjacent tyrosine residues, all located on the surface of a helix-loop-helix motif. The introduction of Tyr residues close to the catalytic site improves efficiency, in the cleavage of activated aryl alkyl phosphates as well as less activated dialkyl phosphates. HJ1 is also effective in the cleavage of an RNA-mimic substrate, uridine-3'-2,2,2-trichloroethyl phosphate (leaving group pK(a) = 12.3) with a second-order rate constant of 8.23x10(-4) M(-1) s(-1) in aqueous solution at pH 7.0, some 500 times faster than the reaction catalyzed by imidazole, k(2)(HJ1)/k(2)(Im) = 496.
Collapse
Affiliation(s)
- Jesus Razkin
- Department of Applied Chemistry, Public University of Navarra, 31006 Pamplona, Navarra, Spain.
| | | | | | | |
Collapse
|
13
|
Koroleva LS, Kuz'min VE, Muratov EN, Artemenko AG, Sil'nikov VN. [Artificial ribonucleases: quantitative analysis of the structure-activity relationship and new insight into the strategy of design of highly efficient RNase mimetics]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2008; 34:495-505. [PMID: 18695722 DOI: 10.1134/s1068162008040080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The dependence of hydrolytic activity of artificial ribonucleases toward an HIV-I RNA fragment, a 21-mer oligonucleotide, and tRNA Asp on the structure of the RNase mimetic was analyzed. The quantitative structure-activity relationship (QSAR task) was determined by the method of simplex representation of the molecular structure where the amounts of four-atom fragments (simplexes) of fixed structure, symmetry, and chirality served as descriptors. Not only the types of atoms participating in simplexes but also their physicochemical properties (e.g., partial charges, lipophilicities, etc.) were taken into account. This allowed the estimation of the relative role of various factors affecting the interaction of molecules under study with the corresponding biological target. The 2D QSAR models obtained by the method of projection to latent structures have quite satisfactory statistical indices (R2 = 0.82-0.96; Q2 = 0.73-0.89), which help predict the activities of new compounds. The electrostatic properties of ribonuclease atoms were shown to contribute significantly to the manifestation of the hydrolytic activity of ribonucleases in the case of the 21-mer oligonucleotide and tRNA. In addition, the structural fragments that most greatly contribute to the alteration of the hydrolytic activity of RNases were identified. The models obtained were used for the virtual screening and molecular design of new highly efficient RNase mimetics.
Collapse
|
14
|
Kumar R, Garneau P, Nguyen N, William Lown J, Pelletier J. Methionine Sustituted Polyamides are RNAse Mimics that Inhibit Translation. J Drug Target 2008; 12:125-34. [PMID: 15203891 DOI: 10.1080/1061186042000220728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
RNAse mimics are small molecules that can cleave RNA in a fashion similar to ribonucleases. These compounds would be very useful as gene specific reagents if their activities could be regulated and targeted. We demonstrate here that polyamides with methionine substituents show enhanced RNA cleavage activity relative to other polyamides. Conjugation of these compounds to aminoglycosides produced RNAse mimics that are capable of inhibiting eukaryotic protein synthesis. As a new class of compounds capable of interacting with nucleic acids, these novel aminoglycoside-polyamides constitute promising scaffolds for the construction of nuclease mimics with biological activity.
Collapse
Affiliation(s)
- Rohtash Kumar
- Department of Chemistry University of Alberta Edmonton Alta. Canada
| | | | | | | | | |
Collapse
|
15
|
Kovalev NA, Medvedeva DA, Zenkova MA, Vlassov VV. Cleavage of RNA by an amphiphilic compound lacking traditional catalytic groups. Bioorg Chem 2007; 36:33-45. [PMID: 18061645 DOI: 10.1016/j.bioorg.2007.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/02/2007] [Accepted: 10/05/2007] [Indexed: 12/23/2022]
Abstract
Recently, in experiments with combinatorial libraries of amphiphilic compounds lacking groups, known as catalysts of transesterification reaction, we discovered novel RNA-cleaving compounds [N. Kovalev, E. Burakova, V. Silnikov, M. Zenkova, V. Vlassov, Bioorg. Chem. 34 (2006) 274-286]. In the present study, we investigate cleavage of RNA by the most active representative of these libraries, compound named Dp12. Sequence-specificity of RNA cleavage and influence of reaction conditions on cleavage rate suggested that Dp12 enormously accelerates spontaneous RNA cleavage. Light scattering experiments revealed that the RNA cleavage proceeds within multiplexes formed by assembles of RNA and Dp12 molecules, at Dp12 concentration far below critical concentration of micelle formation. Under these conditions, Dp12 is presented in the solution as individual molecules, but addition of RNA to this solution triggers formation of the multiplexes. The obtained data suggest a possible mechanism of RNA cleavage, which includes interaction of the compound with RNA sugar-phosphate backbone resulting in changing of ribose conformation. This leads to juxtaposition of the 2'-hydroxyl group and internucleotide phosphorus atom at a distance needed for the transesterification to occur.
Collapse
Affiliation(s)
- N A Kovalev
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russian Federation
| | | | | | | |
Collapse
|
16
|
Razkin J, Nilsson H, Baltzer L. Catalysis of the cleavage of uridine 3'-2,2,2-trichloroethylphosphate by a designed helix-loop-helix motif peptide. J Am Chem Soc 2007; 129:14752-8. [PMID: 17985898 DOI: 10.1021/ja075478i] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A 42-residue peptide that folds into a helix-loop-helix motif and dimerizes to form a four-helix bundle has been designed to catalyze the hydrolysis of phosphodiesters. The active site on the surface of the folded catalyst is composed of two histidine and four arginine residues, with the capacity to provide general acid, general base, and/or nucleophilic catalysis as well as transition state stabilization. Uridine 3'-2,2,2 trichloroethylphosphate (2) is a mimic of RNA with a leaving group pKa of 12.3. Its hydrolysis is energetically less favorable than that of commonly used model substrates with p-nitrophenyl leaving groups and therefore a more realistic model for the design of catalysts capable of cleaving RNA. The second-order rate constant for the hydrolysis of 2 at pH 7.0 by the polypeptide catalyst was 418 x 10(-6) M-1 s-1, and that of the imidazole catalyzed reaction was 1.66 x 10(-6) M-1 s-1. The pH dependence suggested that catalysis is due to the unprotonated form of a residue with a pKa of around 5.3, and the observed kinetic solvent isotope effect of 1.9 showed that there is significant hydrogen bonding in the transition state, consistent with general acid-base catalysis. The rate constant ratio k2(Pep)/k2(Im) of 252 is probably due to a combination of nucleophilic and general acid-base catalysis, as well as transition state stabilization. Substrate binding was weak since no sign of saturation kinetics was observed for substrate concentrations in the range from 5 to 40 mM. The results provide a platform for the further development of catalysts for RNA cleavage with a potential role in the development of drugs.
Collapse
Affiliation(s)
- Jesus Razkin
- Department of Applied Chemistry, Public University of Navarra, 31006 Pamplona, Navarra, Spain.
| | | | | |
Collapse
|
17
|
Kovalev N, Burakova E, Silnikov V, Zenkova M, Vlassov V. Artificial ribonucleases: from combinatorial libraries to efficient catalysts of RNA cleavage. Bioorg Chem 2006; 34:274-86. [PMID: 16889817 DOI: 10.1016/j.bioorg.2006.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 06/21/2006] [Accepted: 06/21/2006] [Indexed: 11/23/2022]
Abstract
Combinatorial libraries of small organic compounds capable of cleaving RNA were synthesized. The compounds contain benzene ring substituted with two residues of bis quaternary salt of diazabicyclo[2.2.2]octane (DABCO) bearing hydrophobic fragments of different length and structure, attached to DABCO at the bridge position. These compounds, lacking traditional functionalities involved in transesterification reaction, exhibit pronounced RNA cleavage activity. To identify the most active artificial ribonucleases, sublibraries and truncated libraries, containing compounds lacking one of substituents were synthesized. Analysis of ribonuclease activity of truncated libraries resulted in identification of the most active compounds, which are characterized by the presence of at least one long oligomethylene substituent.
Collapse
Affiliation(s)
- N Kovalev
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8, Lavrentiev Ave., Novosibirsk, 630090, Russian Federation
| | | | | | | | | |
Collapse
|
18
|
Dioubankova NN, Malakhov AD, Stetsenko DA, Gait MJ, Korshun VA. Phosphoramidites and solid supports based on N-substituted 2,4-dihydroxybutyramides: universal reagents for synthesis of modified oligonucleotides. Tetrahedron 2006. [DOI: 10.1016/j.tet.2006.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Holmes SC, Gait MJ. Syntheses and Oligonucleotide Incorporation of Nucleoside Analogues Containing Pendant Imidazolyl or Amino Functionalities - The Search for Sequence-Specific Artificial Ribonucleases. European J Org Chem 2005. [DOI: 10.1002/ejoc.200500413] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Abstract
Mimicking the action of enzymes by simpler and more robust man-made catalysts has long inspired bioorganic chemists. During the past decade, mimics for RNA-cleaving enzymes, ribonucleases, or, more precisely, mimics of ribozymes that cleave RNA in sequence-selective rather than base-selective manner, have received special attention. These artificial ribonucleases are typically oligonucleotides (or their structural analogs) that bear a catalytically active conjugate group and catalyze sequence-selective hydrolysis of RNA phosphodiester bonds.
Collapse
Affiliation(s)
- Teija Niittymäki
- Department of Chemistry, University of Turku, FIN-20014, Turku, Finland
| | | |
Collapse
|
21
|
Niittymäki T, Lönnberg H. Sequence-selective cleavage of oligoribonucleotides by 3d transition metal complexes of 1,5,9-triazacyclododecane-functionalized 2'-O-methyl oligoribonucleotides. Bioconjug Chem 2005; 15:1275-80. [PMID: 15546193 DOI: 10.1021/bc0498323] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2'-O-Methyl oligoribonucleotides bearing a 3'-[2,6-dioxo-3,7-diaza-10-(1,5,9-triazacyclododec-3-yl)decyl phospate conjugate group have been shown to cleave in slight excess of Zn(2+) ions complementary oligoribonucleotides at the 5'-side of the last base-paired nucleotide. The cleavage obeys first-order kinetics and exhibits turnover. The acceleration compared to the monomeric Zn(2+) 1,5,9-triazacyclododecane chelate is more than 100-fold. In addition, 2'-O-methyl oligoribonucleotides having the 1,5,9-triazacyclododec-3-yl group tethered to the anomeric carbon of an intrachain 2-deoxy-beta-d-erythro-pentofuranosyl group via a 2-oxo-3-azahexyl, 2,6-dioxo-3,7-diazadecyl, or 2,9-dioxo-3,10-diazatridecyl linker have been studied as cleaving agents. These cleave as zinc chelates a tri- and pentaadenyl bulge opposite to the conjugate group approximately 50 times as fast as the monomeric chelate and show turnover. The cleavage rate is rather insensitive to the length of linker. Interestingly, a triuridyl bulge remains virtually intact in striking contrast to a triadenyl bulge. Evidently binding of the zinc chelate to a uracil base prevents its catalytic action. Replacement of Zn(2+) with Cu(2+) or Ni(2+) retards the cleaving activity of all the cleaving agents tested.
Collapse
Affiliation(s)
- Teija Niittymäki
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | | |
Collapse
|
22
|
Shi Y, Niikura F, Kuzuya A, Komiyama M. Noncovalent Combination of Oligoamine and Oligonucleotide as Totally Organic Site-selective RNA Cutter. CHEM LETT 2004. [DOI: 10.1246/cl.2004.1012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Beloglazova NG, Fabani MM, Zenkova MA, Bichenkova EV, Polushin NN, Sil'nikov VV, Douglas KT, Vlassov VV. Sequence-specific artificial ribonucleases. I. Bis-imidazole-containing oligonucleotide conjugates prepared using precursor-based strategy. Nucleic Acids Res 2004; 32:3887-97. [PMID: 15273275 PMCID: PMC506794 DOI: 10.1093/nar/gkh702] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 06/24/2004] [Accepted: 06/24/2004] [Indexed: 11/14/2022] Open
Abstract
Antisense oligonucleotide conjugates, bearing constructs with two imidazole residues, were synthesized using a precursor-based technique employing post-synthetic histamine functionalization of oligonucleotides bearing methoxyoxalamido precursors at the 5'-termini. The conjugates were assessed in terms of their cleavage activities using both biochemical assays and conformational analysis by molecular modelling. The oligonucleotide part of the conjugates was complementary to the T-arm of yeast tRNA(Phe) (44-60 nt) and was expected to deliver imidazole groups near the fragile sequence C61-ACA-G65 of the tRNA. The conjugates showed ribonuclease activity at neutral pH and physiological temperature resulting in complete cleavage of the target RNA, mainly at the C63-A64 phosphodiester bond. For some constructs, cleavage was completed within 1-2 h under optimal conditions. Molecular modelling was used to determine the preferred orientation(s) of the cleaving group(s) in the complexes of the conjugates with RNA target. Cleaving constructs bearing two imidazole residues were found to be conformationally highly flexible, adopting no preferred specific conformation. No interactions other than complementary base pairing between the conjugates and the target were found to be the factors stabilizing the 'active' cleaving conformation(s).
Collapse
Affiliation(s)
- Natalia G Beloglazova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kuzuya A, Mizoguchi R, Sasayama T, Zhou JM, Komiyama M. Selective activation of two sites in RNA by acridine-bearing oligonucleotides for clipping of designated RNA fragments. J Am Chem Soc 2004; 126:1430-6. [PMID: 14759201 DOI: 10.1021/ja0389568] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Artificial enzymes for selective scission of RNA at two designated sites, which are valuable for advanced RNA science, have been prepared by combining lanthanide(III) ion with an oligonucleotide bearing two acridine groups. When these modified oligonucleotides form heteroduplexes with substrate RNA, the two phosphodiester linkages in front of the acridines are selectively activated and preferentially hydrolyzed by lanthanide ion. This two-site RNA scission does not require any specific RNA sequence at the scission sites, and the length of clipped RNA fragment is easily and precisely controllable by changing the distance between two acridine groups in the modified oligonucleotide. The two-site scission is also successful even when the substrate RNA has higher-order structures. By using these two-site RNA cutters, RNA fragments of predetermined length were obtained from long RNA substrates and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Single nucleotide polymorphisms in homozygous and heterozygous samples were accurately and easily detected in terms of the difference in mass number. Multiplex analyses of in vitro transcripts from human genome were also successful.
Collapse
Affiliation(s)
- Akinori Kuzuya
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904 Japan
| | | | | | | | | |
Collapse
|
25
|
Niittymäki T, Kaukinen U, Virta P, Mikkola S, Lönnberg H. Preparation of azacrown-functionalized 2'-O-methyl oligoribonucleotides, potential artificial RNases. Bioconjug Chem 2004; 15:174-84. [PMID: 14733598 DOI: 10.1021/bc034166b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An improved synthesis for 3-(3-aminopropyl)- and 3-(3-mercaptopropyl)-1,5,9-triazacyclododecane has been developed and alternative methods for their conjugation to oligonucleotides have been described. Accordingly, the 3-aminopropyl azacrown and its N-(3-aminopropanoyl)-3-aminopropyl analogue have been tethered to the 3'-terminus of a 2'-O-methyloligoribonucleotide by aminolytic cleavage of the thioester linker utilized for the chain assembly. Studies on a monomeric model compound verify that the reaction proceeds solely by the attack of the primary amino group. 5'-Conjugation has been achieved by introducing a 2-benzylthio-2-oxoethyl group to the 5'-terminus as a phosphoramidite reagent and cleaving the thioester bond with the 3-aminopropyl azacrown. For intrachain conjugation, a phosphoramidite reagent derived from 1-deoxy-1-(2-benzylthio-2-oxoethyl)-beta-d-erythro-pentofuranose has been inserted in a desired position within the chain and subjected to on-support aminolysis with the 3-aminopropyl azacrown or its N-(3-aminopropanoyl)-3-aminopropyl and N-(6-aminohexanoyl)-3-aminopropyl analogues. The 3-mercaptopropyl-derivatized azacrown has been tetherd by a disulfide bond to a 3'-(3-mercaptoalkyl)phosphate-tailed oligonucleotide. The 3'- and intrachain-tethered conjugates have been shown to cleave as their Zn(II) chelate complementary oligoribonucleotide sequences.
Collapse
Affiliation(s)
- Teija Niittymäki
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | | | | | | | | |
Collapse
|
26
|
Fouace S, Gaudin C, Picard S, Corvaisier S, Renault J, Carboni B, Felden B. Polyamine derivatives as selective RNaseA mimics. Nucleic Acids Res 2004; 32:151-7. [PMID: 14704352 PMCID: PMC373269 DOI: 10.1093/nar/gkh157] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Site-selective scission of ribonucleic acids (RNAs) has attracted considerable interest, since RNA is an intermediate in gene expression and the genetic material of many pathogenic viruses. Polyamine-imidazole conjugates for site-selective RNA scission, without free imidazole, were synthesized and tested on yeast phenylalanine transfer RNA. These molecules catalyze RNA hydrolysis non-randomly. Within the polyamine chain, the location of the imidazole residue, the numbers of nitrogen atoms and their relative distances have notable influence on cleavage selectivity. A norspermine derivative reduces the cleavage sites to a unique location, in the anticodon loop of the tRNA, in the absence of complementary sequence. Experimental results are consistent with a cooperative participation of an ammonium group of the polyamine moiety, in addition to it's binding to the negatively charged ribose-phosphate backbone, as proton source, and the imidazole moiety as a base. There is correlation between the location of the magnesium binding sites and the RNA cleavage sites, suggesting that the protonated nitrogens of the polycationic chain compete with some of the magnesium ions for RNA binding. Therefore, the cleavage pattern is specific of the RNA structure. These compounds cleave at physiological pH, representing novel reactive groups for antisense oligonucleotide derivatives or to enhance ribozyme activity.
Collapse
MESH Headings
- Anticodon/genetics
- Base Sequence
- Binding Sites
- Escherichia coli/genetics
- Hydrogen-Ion Concentration
- Hydrolysis
- Imidazoles/metabolism
- Magnesium/metabolism
- Models, Molecular
- Molecular Mimicry
- Molecular Sequence Data
- Molecular Structure
- Nucleic Acid Conformation
- Polyamines/chemistry
- Polyamines/metabolism
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Phe/metabolism
- Ribonuclease, Pancreatic/chemistry
- Ribonuclease, Pancreatic/metabolism
- Spermine/analogs & derivatives
- Spermine/chemistry
- Spermine/metabolism
- Structure-Activity Relationship
- Substrate Specificity
- Yeasts/genetics
Collapse
Affiliation(s)
- Sandra Fouace
- SESO, UMR 6510 CNRS, Institut de Chimie, Université de Rennes 1, F-35042 Rennes Cedex, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Whitney A, Gavory G, Balasubramanian S. Site-specific cleavage of human telomerase RNA using PNA-neocuproine.Zn(II) derivatives. Chem Commun (Camb) 2003:36-7. [PMID: 12610953 DOI: 10.1039/b210135a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report the synthesis of a novel PNA based neocuproine.Zn RNA cleaving agent; we demonstrate that such agents sequence specifically cleave a synthetic RNA target and in particular the RNA component of human telomerase.
Collapse
Affiliation(s)
- Andrew Whitney
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK CB2 1EW
| | | | | |
Collapse
|
28
|
|
29
|
Lermer L, Roupioz Y, Ting R, Perrin DM. Toward an RNaseA mimic: A DNAzyme with imidazoles and cationic amines. J Am Chem Soc 2002; 124:9960-1. [PMID: 12188639 DOI: 10.1021/ja0205075] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Site-specific RNA cleavage has received considerable attention over the years. Directed synthesis to append imidazoles or amines or both to oligonucleotides to target specific RNA cleavage represents an exciting avenue of research. However, to date catalysis by such synthetic constructs, particularly in terms of turnover, has been difficult to observe. This is the first report of a truly catalytic M2+-independent DNAzyme synthetically modified with imidazoles and cationic amines that would seem to mimic RNaseA. This work now demonstrates how synthetic organic chemistry, when merged with combinatorial selection, can result in a new class of DNAzymes that meets the ongoing synthetic challenges for developing relatively small biomimetic catalysts.
Collapse
Affiliation(s)
- Leonard Lermer
- Department of Chemistry, The University of British Columbia, Vancouver, V6T-1Z1 Canada
| | | | | | | |
Collapse
|
30
|
Kuzuya A, Mizoguchi R, Morisawa F, Machida K, Komiyama M. Metal ion-induced site-selective RNA hydrolysis by use of acridine-bearing oligonucleotide as cofactor. J Am Chem Soc 2002; 124:6887-94. [PMID: 12059210 DOI: 10.1021/ja025653p] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New types of noncovalent ribozyme-mimics for site-selective RNA scission are prepared by combining metal ions with oligonucleotides bearing an acridine. Lanthanide(III) ions and various divalent metal ions (Zn(II), Mn(II), Cu(II), Ni(II), Co(II), Mg(II), and Ca(II)) are employed without being bound to any sequence-recognizing moiety. The modified oligonucleotide forms a heteroduplex with the substrate RNA, and selectively activates the phosphodiester linkages in front of the acridine. As a result, these linkages are preferentially hydrolyzed over the others, even though the metal ions are not fixed anywhere. The scission is efficient under physiological conditions, irrespective of the sequence at the target site. Site-selective RNA scission is also successful with the combination of an oligonucleotide bearing an acridine at its terminus, another unmodified oligonucleotide, and the metal ion. In a proposed mechanism, the acridine pushes the unpaired ribonucleotide out of the heteroduplex and changes the conformation of RNA at the target site for the sequence-selective activation.
Collapse
Affiliation(s)
- Akinori Kuzuya
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | | | | | | | | |
Collapse
|
31
|
Kuzuya A, Machida K, Mizoguchi R, Komiyama M. Conjugation of various acridines to DNA for site-selective RNA scission by lanthanide ion. Bioconjug Chem 2002; 13:365-9. [PMID: 11906275 DOI: 10.1021/bc015573v] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three types of DNA conjugates having 9-acridinecarboxamide, 9-aminoacridine, and 9-amino-6-chloro-2-methoxyacridine at the 5'-ends were synthesized and used for site-selective RNA scission together with another unmodified DNA and Lu(III) ion. The target phosphodiester linkages in the substrate RNA were selectively and efficiently activated and were hydrolyzed by free Lu(III) ion. The conjugate bearing 9-amino-6-chloro-2-methoxyacridine was the most active. However, its duplex with the substrate RNA was almost as stable as that of the 9-aminoacridine-bearing conjugate, which was much less active for the RNA activation. The 9-acridinecarboxamide-bearing conjugate was only marginally active. The substituents on the acridine groups in these conjugates positively participate in the present RNA activation, probably by fixing the orientation of the acridine rings.
Collapse
Affiliation(s)
- Akinori Kuzuya
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8904 Japan
| | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Bodo Baumeister
- Department of Organic Chemistry, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
33
|
Kushon SA, Jordan JP, Seifert JL, Nielsen H, Nielsen PE, Armitage BA. Effect of secondary structure on the thermodynamics and kinetics of PNA hybridization to DNA hairpins. J Am Chem Soc 2001; 123:10805-13. [PMID: 11686681 DOI: 10.1021/ja016310e] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The binding of a series of PNA and DNA probes to a group of unusually stable DNA hairpins of the tetraloop motif has been observed using absorbance hypochromicity (ABS), circular dichroism (CD), and a colorimetric assay for PNA/DNA duplex detection. These results indicate that both stable PNA-DNA and DNA-DNA duplexes can be formed with these target hairpins, even when the melting temperatures for the resulting duplexes are up to 50 degrees C lower than that of the hairpin target. Both hairpin/single-stranded and hairpin/hairpin interactions are considered in the scope of these studies. Secondary structures in both target and probe molecules are shown to depress the melting temperatures and free energies of the probe-target duplexes. Kinetic analysis of hybridization yields reaction rates that are up to 160-fold slower than hybridization between two unstructured strands. The thermodynamic and kinetic obstacles to hybridization imposed by both target and probe secondary structure are significant concerns for the continued development of antisense agents and especially diagnostic probes.
Collapse
Affiliation(s)
- S A Kushon
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213-3890, USA
| | | | | | | | | | | |
Collapse
|
34
|
Helm M, Kopka ML, Sharma SK, Lown JW, Giegé R. RNase activity of a DNA minor groove binder with a minimalist catalytic motif from RNase A. Biochem Biophys Res Commun 2001; 281:1283-90. [PMID: 11243875 DOI: 10.1006/bbrc.2001.4503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Imidazole and compounds containing imidazole residues have been shown to cleave RNA in an RNase A-mimicking manner. Di-imidazole lexitropsin is a compound which is derived from the polyamide drugs distamycin and netropsin essentially by the replacement of two pyrrole heterocycles with N-methyl-imidazole residues. This enables it to bind to the minor groove of B-DNA in a sequence-specific manner. We demonstrate here that this lexitropsin derivative has RNA cleavage activity, as tested on model RNAs. Optimal cleavage conditions and cleavage specificity resemble those known from other imidazole conjugates and are thus consistent with an RNase A type cleavage mechanism. The optimum concentration of the compound for cleavage is similar to previously investigated imidazole-based RNase mimics. As a whole new class of chemical compounds capable of interacting with nucleic acids through extensive hydrogen bonding, these imidazole containing compounds constitute promising scaffolds and ligands, for the construction of novel RNase mimics with high affinity.
Collapse
Affiliation(s)
- M Helm
- Département 'Mécanismes et Macromolécules de la Synthèse Protéique et Cristallogenèse', UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15 rue René Descartes, Strasbourg Cedex, F 67084, France.
| | | | | | | | | |
Collapse
|
35
|
|