1
|
Khan A, Sharma P, Dahiya S, Sharma B. Plexins: Navigating through the neural regulation and brain pathology. Neurosci Biobehav Rev 2025; 169:105999. [PMID: 39756719 DOI: 10.1016/j.neubiorev.2024.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Plexins are a family of transmembrane receptors known for their diverse roles in neural development, axon guidance, neuronal migration, synaptogenesis, and circuit formation. Semaphorins are a class of secreted and membrane proteins that act as primary ligands for plexin receptors. Semaphorins play a crucial role in central nervous system (CNS) development by regulating processes such as axonal growth, neuronal positioning, and synaptic connectivity. Various types of semaphorins like sema3A, sema4A, sema4C, sema4D, and many more have a crucial role in developing brain diseases. Likewise, various evidence suggests that plexin receptors are of four types: plexin A, plexin B, plexin C, and plexin D. Plexins have emerged as crucial regulators of neurogenesis and neuronal development and connectivity. When bound to semaphorins, these receptors trigger two major networking cascades, namely Rho and Ras GTPase networks. Dysregulation of plexin networking has been implicated in a myriad of brain disorders, including autism spectrum disorder (ASD), Schizophrenia, Alzheimer's disease (AD), Parkinson's disease (PD), and many more. This review synthesizes findings from molecular, cellular, and animal model studies to elucidate the mechanisms by which plexins contribute to the pathogenesis of various brain diseases.
Collapse
Affiliation(s)
- Ariba Khan
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India; Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, 201306 Uttar Pradesh, India.
| | - Sarthak Dahiya
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Gurugram University (A State Govt. University), Gurugram, Haryana, India.
| |
Collapse
|
2
|
Hoard TM, Liu K, Cadigan KM, Giger RJ, Allen BL. Semaphorin Receptors Antagonize Wnt Signaling Through Beta-Catenin Degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596372. [PMID: 38854152 PMCID: PMC11160715 DOI: 10.1101/2024.05.29.596372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Precise control of morphogen signaling levels is essential for proper development. An outstanding question is: what mechanisms ensure proper morphogen activity and correct cellular responses? Previous work has identified Semaphorin (SEMA) receptors, Neuropilins (NRPs) and Plexins (PLXNs), as positive regulators of the Hedgehog (HH) signaling pathway. Here, we provide evidence that NRPs and PLXNs antagonize Wnt signaling in both fibroblasts and epithelial cells. Further, Nrp1/2 deletion in fibroblasts results in elevated baseline Wnt pathway activity and increased maximal responses to Wnt stimulation. Notably, and in contrast to HH signaling, SEMA receptor-mediated Wnt antagonism is independent of primary cilia. Mechanistically, PLXNs and NRPs act downstream of Dishevelled (DVL) to destabilize β-catenin (CTNNB1) in a proteosome-dependent manner. Further, NRPs, but not PLXNs, act in a GSK3β/CK1-dependent fashion to antagonize Wnt signaling, suggesting distinct repressive mechanisms for these SEMA receptors. Overall, this study identifies SEMA receptors as novel Wnt pathway antagonists that may also play larger roles integrating signals from multiple inputs.
Collapse
Affiliation(s)
- Tyler M Hoard
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Katie Liu
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kenneth M Cadigan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
3
|
Toledano S, Sabag AD, Ilan N, Liburkin-Dan T, Kessler O, Neufeld G. Plexin-A2 enables the proliferation and the development of tumors from glioblastoma derived cells. Cell Death Dis 2023; 14:41. [PMID: 36658114 PMCID: PMC9852426 DOI: 10.1038/s41419-023-05554-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/25/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023]
Abstract
The semaphorin guidance factors receptor plexin-A2 transduces sema6A and sema6B signals and may mediate, along with plexin-A4, the anti-angiogenic effects of sema6A. When associated with neuropilins plexin-A2 also transduces the anti-angiogenic signals of sema3B. Here we show that inhibition of plexin-A2 expression in glioblastoma derived cells that express wild type p53 such as U87MG and A172 cells, or in primary human endothelial cells, strongly inhibits cell proliferation. Inhibition of plexin-A2 expression in U87MG cells also results in strong inhibition of their tumor forming ability. Knock-out of the plexin-A2 gene in U87MG cells using CRISPR/Cas9 inhibits cell proliferation which is rescued following plexin-A2 re-expression, or expression of a truncated plexin-A2 lacking its extracellular domain. Inhibition of plexin-A2 expression results in cell cycle arrest at the G2/M stage, and is accompanied by changes in cytoskeletal organization, cell flattening, and enhanced expression of senescence associated β-galactosidase. It is also associated with reduced AKT phosphorylation and enhanced phosphorylation of p38MAPK. We find that the pro-proliferative effects of plexin-A2 are mediated by FARP2 and FYN and by the GTPase activating (GAP) domain located in the intracellular domain of plexin-A2. Point mutations in these locations inhibit the rescue of cell proliferation upon re-expression of the mutated intracellular domain in the knock-out cells. In contrast re-expression of a plexin-A2 cDNA containing a point mutation in the semaphorin binding domain failed to inhibit the rescue. Our results suggest that plexin-A2 may represent a novel target for the development of anti-tumorigenic therapeutics.
Collapse
Affiliation(s)
- Shira Toledano
- Cancer research center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3109602, Israel
| | - Adi D Sabag
- Division of Allergy & Clinical Immunology, Bnai-Zion medical Center, Haifa, 33394, Israel
| | - Neta Ilan
- Cancer research center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3109602, Israel
| | - Tanya Liburkin-Dan
- Cancer research center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3109602, Israel
| | - Ofra Kessler
- Cancer research center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3109602, Israel
| | - Gera Neufeld
- Cancer research center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3109602, Israel.
| |
Collapse
|
4
|
Xu R, Höß C, Swiercz JM, Brandt DT, Lutz V, Petersen N, Li R, Zhao D, Oleksy A, Creigh-Pulatmen T, Trokter M, Fedorova M, Atzberger A, Strandby RB, Olsen AA, Achiam MP, Matthews D, Huber M, Gröne HJ, Offermanns S, Worzfeld T. A semaphorin-plexin-Rasal1 signaling pathway inhibits gastrin expression and protects against peptic ulcers. Sci Transl Med 2022; 14:eabf1922. [PMID: 35857828 DOI: 10.1126/scitranslmed.abf1922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Peptic ulcer disease is a frequent clinical problem with potentially serious complications such as bleeding or perforation. A decisive factor in the pathogenesis of peptic ulcers is gastric acid, the secretion of which is controlled by the hormone gastrin released from gastric G cells. However, the molecular mechanisms regulating gastrin plasma concentrations are poorly understood. Here, we identified a semaphorin-plexin signaling pathway that operates in gastric G cells to inhibit gastrin expression on a transcriptional level, thereby limiting food-stimulated gastrin release and gastric acid secretion. Using a systematic siRNA screening approach combined with biochemical, cell biology, and in vivo mouse experiments, we found that the RasGAP protein Rasal1 is a central mediator of plexin signal transduction, which suppresses gastrin expression through inactivation of the small GTPase R-Ras. Moreover, we show that Rasal1 is pathophysiologically relevant for the pathogenesis of peptic ulcers induced by nonsteroidal anti-inflammatory drugs (NSAIDs), a main risk factor of peptic ulcers in humans. Last, we show that application of recombinant semaphorin 4D alleviates peptic ulcer disease in mice in vivo, demonstrating that this signaling pathway can be harnessed pharmacologically. This study unravels a mode of G cell regulation that is functionally important in gastric homeostasis and disease.
Collapse
Affiliation(s)
- Rui Xu
- Institute of Pharmacology, University of Marburg, Marburg 35043, Germany.,Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Carsten Höß
- Institute of Pharmacology, University of Marburg, Marburg 35043, Germany
| | - Jakub M Swiercz
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Dominique T Brandt
- Institute of Pharmacology, University of Marburg, Marburg 35043, Germany
| | - Veronika Lutz
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg 35043, Germany
| | - Natalia Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Rui Li
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Dandan Zhao
- Institute of Pharmacology, University of Marburg, Marburg 35043, Germany
| | | | | | | | | | - Ann Atzberger
- Flow Cytometry Facility, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Rune B Strandby
- Department of Surgical Gastroenterology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - August A Olsen
- Department of Surgical Gastroenterology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Michael P Achiam
- Department of Surgical Gastroenterology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | | | - Magdalena Huber
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg 35043, Germany
| | - Hermann-Josef Gröne
- Institute of Pharmacology, University of Marburg, Marburg 35043, Germany.,Medical Faculty, University of Heidelberg, Heidelberg 69120, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany.,Medical Faculty, University of Frankfurt, Frankfurt 60590, Germany
| | - Thomas Worzfeld
- Institute of Pharmacology, University of Marburg, Marburg 35043, Germany.,Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| |
Collapse
|
5
|
Meng Z, Li FL, Fang C, Yeoman B, Qiu Y, Wang Y, Cai X, Lin KC, Yang D, Luo M, Fu V, Ma X, Diao Y, Giancotti FG, Ren B, Engler AJ, Guan KL. The Hippo pathway mediates Semaphorin signaling. SCIENCE ADVANCES 2022; 8:eabl9806. [PMID: 35613278 PMCID: PMC9132450 DOI: 10.1126/sciadv.abl9806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/11/2022] [Indexed: 02/05/2023]
Abstract
Semaphorins were originally identified as axonal guidance molecules, but they also control processes such as vascular development and tumorigenesis. The downstream signaling cascades of Semaphorins in these biological processes remain unclear. Here, we show that the class 3 Semaphorins (SEMA3s) activate the Hippo pathway to attenuate tissue growth, angiogenesis, and tumorigenesis. SEMA3B restoration in lung cancer cells with SEMA3B loss of heterozygosity suppresses cancer cell growth via activating the core Hippo kinases LATS1/2 (large tumor suppressor kinase 1/2). Furthermore, SEMA3 also acts through LATS1/2 to inhibit angiogenesis. We identified p190RhoGAPs as essential partners of the SEMA3A receptor PlexinA in Hippo regulation. Upon SEMA3 treatment, PlexinA interacts with the pseudo-guanosine triphosphatase (GTPase) domain of p190RhoGAP and simultaneously recruits RND GTPases to activate p190RhoGAP, which then stimulates LATS1/2. Disease-associated etiological factors, such as genetic lesions and oscillatory shear, diminish Hippo pathway regulation by SEMA3. Our study thus discovers a critical role of Hippo signaling in mediating SEMA3 physiological function.
Collapse
Affiliation(s)
- Zhipeng Meng
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Fu-Long Li
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cao Fang
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Benjamin Yeoman
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yunjiang Qiu
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ying Wang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Xiaomin Cai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kimberly C. Lin
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Di Yang
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Min Luo
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Vivian Fu
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiaoxiao Ma
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yarui Diao
- Regeneration Next Initiative, Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Filippo G. Giancotti
- Department of Cancer Biology and David H. Koch Center for Applied Research of GU Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Herbert Irving Comprehensive Cancer Center and Department of Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10033, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam J. Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Plexin-A1 expression in the inhibitory neurons of infralimbic cortex regulates the specificity of fear memory in male mice. Neuropsychopharmacology 2022; 47:1220-1230. [PMID: 34508226 PMCID: PMC9018853 DOI: 10.1038/s41386-021-01177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/02/2023]
Abstract
Maintaining appropriate levels of fear memory specificity is crucial for individual's survival and mental health, whereas overgeneralized fear commonly occurs in neuropsychiatric disorders, including posttraumatic stress disorder and generalized anxiety disorder. However, the molecular mechanisms regulating fear memory specificity remain poorly understood. The medial prefrontal cortex (mPFC) is considered as a key brain region in fear memory regulation. Previous transcriptomic studies have identified that plexin-A1, a transmembrane receptor critical for axon development, was downregulated in the mPFC after fear memory training. In this study, we identified that learning-induced downregulation of the mRNA and protein levels of plexin-A1 specifically occurred in the inhibitory but not excitatory neurons in the infralimbic cortex (IL) of mPFC. Further studies of plexin-A1 by virus-mediated over-expression of functional mutants selectively in the IL inhibitory neurons revealed the critical roles of plexin-A1 for regulating memory specificity and anxiety. Moreover, our findings revealed that plexin-A1 regulated the distribution of glutamic acid decarboxylase 67, a GABA synthetase, which in turn modulated the activity of IL and its downstream brain regions. Collectively, our findings elucidate the molecular modifier of IL inhibitory neurons in regulating memory specificity and anxiety, and provide candidates for developing therapeutic strategies for the prevention or treatment of a series of fear generalization-related neuropsychiatric disorders.
Collapse
|
7
|
Nakanishi Y, Kang S, Kumanogoh A. Crosstalk between axon guidance signaling and bone remodeling. Bone 2022; 157:116305. [PMID: 34973495 DOI: 10.1016/j.bone.2021.116305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 01/04/2023]
Abstract
The maintenance of skeletal integrity is tightly regulated by two cell types, bone forming osteoblasts and bone resorbing osteoclasts. Although the role of the nervous system in regulating osteoblasts and osteoclasts was identified over a decade ago, the molecular mechanism of skeletal-neural interactions in bone homeostasis has only been studied recently. In particular, the complex roles of axon guidance molecules, such as semaphorins and ephrins, in the bone have been studied extensively. In this review, we highlight the latest advances in determining the functions of semaphorins and ephrins in the establishment and maintenance of the skeletal system, with a focus on the functional interaction between the skeletal and nervous systems.
Collapse
Affiliation(s)
- Yoshimitsu Nakanishi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita City, Osaka 565-0871, Japan; Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita City, Osaka 565-0871, Japan
| | - Sujin Kang
- Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita City, Osaka 565-0871, Japan; Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita City, Osaka 565-0871, Japan; Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
8
|
Dworschak GC, Punetha J, Kalanithy JC, Mingardo E, Erdem HB, Akdemir ZC, Karaca E, Mitani T, Marafi D, Fatih JM, Jhangiani SN, Hunter JV, Dakal TC, Dhabhai B, Dabbagh O, Alsaif HS, Alkuraya FS, Maroofian R, Houlden H, Efthymiou S, Dominik N, Salpietro V, Sultan T, Haider S, Bibi F, Thiele H, Hoefele J, Riedhammer KM, Wagner M, Guella I, Demos M, Keren B, Buratti J, Charles P, Nava C, Héron D, Heide S, Valkanas E, Waddell LB, Jones KJ, Oates EC, Cooper ST, MacArthur D, Syrbe S, Ziegler A, Platzer K, Okur V, Chung WK, O'Shea SA, Alcalay R, Fahn S, Mark PR, Guerrini R, Vetro A, Hudson B, Schnur RE, Hoganson GE, Burton JE, McEntagart M, Lindenberg T, Yilmaz Ö, Odermatt B, Pehlivan D, Posey JE, Lupski JR, Reutter H. Biallelic and monoallelic variants in PLXNA1 are implicated in a novel neurodevelopmental disorder with variable cerebral and eye anomalies. Genet Med 2021; 23:1715-1725. [PMID: 34054129 PMCID: PMC8460429 DOI: 10.1038/s41436-021-01196-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To investigate the effect of PLXNA1 variants on the phenotype of patients with autosomal dominant and recessive inheritance patterns and to functionally characterize the zebrafish homologs plxna1a and plxna1b during development. METHODS We assembled ten patients from seven families with biallelic or de novo PLXNA1 variants. We describe genotype-phenotype correlations, investigated the variants by structural modeling, and used Morpholino knockdown experiments in zebrafish to characterize the embryonic role of plxna1a and plxna1b. RESULTS Shared phenotypic features among patients include global developmental delay (9/10), brain anomalies (6/10), and eye anomalies (7/10). Notably, seizures were predominantly reported in patients with monoallelic variants. Structural modeling of missense variants in PLXNA1 suggests distortion in the native protein. Our zebrafish studies enforce an embryonic role of plxna1a and plxna1b in the development of the central nervous system and the eye. CONCLUSION We propose that different biallelic and monoallelic variants in PLXNA1 result in a novel neurodevelopmental syndrome mainly comprising developmental delay, brain, and eye anomalies. We hypothesize that biallelic variants in the extracellular Plexin-A1 domains lead to impaired dimerization or lack of receptor molecules, whereas monoallelic variants in the intracellular Plexin-A1 domains might impair downstream signaling through a dominant-negative effect.
Collapse
Affiliation(s)
- Gabriel C Dworschak
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany.
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, Bonn, Germany.
- Department of Pediatrics, University Hospital Bonn, Bonn, Germany.
| | - Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeshurun C Kalanithy
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Enrico Mingardo
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Haktan B Erdem
- Department of Medical Genetics, University of Health Sciences, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Zeynep C Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ender Karaca
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jill V Hunter
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Bhanupriya Dhabhai
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Omar Dabbagh
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hessa S Alsaif
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Natalia Dominik
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Tipu Sultan
- Department of Pediatric Neurology, Institute of Child Health, The Children's Hospital Lahore, Lahore, Pakistan
| | - Shahzad Haider
- Department of Paediatric Medicine, Wah Medical College, Rawalpindi, Pakistan
| | - Farah Bibi
- University Institute of Biochemistry & Biotechnology, PMAS - Arid Agriculture University, Rawalpindi, Pakistan
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ilaria Guella
- Department of Medical Genetics, Centre for Applied Neurogenetics, University of British Columbia, Vancouver, BC, Canada
| | - Michelle Demos
- Division of Neurology, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Boris Keren
- AP-HP, Hôpital Pitié-Salpêtrière, Département de Génétique, Paris, France
| | - Julien Buratti
- AP-HP, Hôpital Pitié-Salpêtrière, Département de Génétique, Paris, France
| | - Perrine Charles
- AP-HP, Hôpital Pitié-Salpêtrière, Département de Génétique, Paris, France
| | - Caroline Nava
- AP-HP, Hôpital Pitié-Salpêtrière, Département de Génétique, Paris, France
- Institut du Cerveau et de la Moelle épinière, Sorbonne Université, UMR S 1127, Inserm U1127, CNRS UMR 7225, Paris, France
| | - Delphine Héron
- AP-HP, Hôpital Pitié-Salpêtrière, Département de Génétique, Paris, France
| | - Solveig Heide
- AP-HP, Hôpital Pitié-Salpêtrière, Département de Génétique, Paris, France
| | - Elise Valkanas
- Center for Mendelian Genomics, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Leigh B Waddell
- Kids Neuroscience Centre, Kids Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Kristi J Jones
- Kids Neuroscience Centre, Kids Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Emily C Oates
- Kids Neuroscience Centre, Kids Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Sydney, NSW, Australia
| | - Sandra T Cooper
- Kids Neuroscience Centre, Kids Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Children's Medical Research Institute, Westmead, NSW, Australia
| | - Daniel MacArthur
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Steffen Syrbe
- Division of Pediatric Epileptology, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas Ziegler
- Division of Pediatric Neurology and Metabolic Medicine, Centre for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Volkan Okur
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Sarah A O'Shea
- Department of Neurology, Columbia University, New York, NY, USA
| | - Roy Alcalay
- Department of Neurology, Columbia University, New York, NY, USA
| | - Stanley Fahn
- Department of Neurology, Columbia University, New York, NY, USA
| | - Paul R Mark
- Division of Medical Genetics, Helen DeVos Children's Hospital Grand Rapids, New York, MI, USA
| | - Renzo Guerrini
- Neuroscience Department, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Annalisa Vetro
- Neuroscience Department, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | | | | | - George E Hoganson
- Department of Pediatrics, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Jennifer E Burton
- Department of Pediatrics, University of Illinois, College of Medicine, Peoria, IL, USA
| | - Meriel McEntagart
- South West Thames Regional Genetics Centre, St. George's Healthcare NHS Trust, St. George's, University of London, London, United Kingdom
| | - Tobias Lindenberg
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, Germany
| | - Öznur Yilmaz
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Benjamin Odermatt
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, Bonn, Germany
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, Germany
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Section of Neurology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Heiko Reutter
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
- Department of Neonatology and Pediatric Intensive Care, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
9
|
Binamé F, Pham-Van LD, Bagnard D. Manipulating oligodendrocyte intrinsic regeneration mechanism to promote remyelination. Cell Mol Life Sci 2021; 78:5257-5273. [PMID: 34019104 PMCID: PMC11073109 DOI: 10.1007/s00018-021-03852-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/14/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023]
Abstract
In demyelinated lesions, astrocytes, activated microglia and infiltrating macrophages secrete several factors regulating oligodendrocyte precursor cells' behaviour. What appears to be the initiation of an intrinsic mechanism of myelin repair is only leading to partial recovery and inefficient remyelination, a process worsening over the course of the disease. This failure is largely due to the concomitant accumulation of inhibitory cues in and around the lesion sites opposing to growth promoting factors. Here starts a complex game of interactions between the signalling pathways controlling oligodendrocytes migration or differentiation. Receptors of positive or negative cues are modulating Ras, PI3K or RhoGTPases pathways acting on oligodendrocyte cytoskeleton remodelling. From the description of this intricate signalling network, this review addresses the extent to which the modulation of the global response to inhibitory cues may pave the route towards novel therapeutic approaches for myelin repair.
Collapse
Affiliation(s)
- Fabien Binamé
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France
| | - Lucas D Pham-Van
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France
| | - Dominique Bagnard
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France.
| |
Collapse
|
10
|
Van Battum E, Heitz-Marchaland C, Zagar Y, Fouquet S, Kuner R, Chédotal A. Plexin-B2 controls the timing of differentiation and the motility of cerebellar granule neurons. eLife 2021; 10:60554. [PMID: 34100719 PMCID: PMC8211449 DOI: 10.7554/elife.60554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Plexin-B2 deletion leads to aberrant lamination of cerebellar granule neurons (CGNs) and Purkinje cells. Although in the cerebellum Plexin-B2 is only expressed by proliferating CGN precursors in the outer external granule layer (oEGL), its function in CGN development is still elusive. Here, we used 3D imaging, in vivo electroporation and live-imaging techniques to study CGN development in novel cerebellum-specific Plxnb2 conditional knockout mice. We show that proliferating CGNs in Plxnb2 mutants not only escape the oEGL and mix with newborn postmitotic CGNs. Furthermore, motility of mitotic precursors and early postmitotic CGNs is altered. Together, this leads to the formation of ectopic patches of CGNs at the cerebellar surface and an intermingling of normally time-stamped parallel fibers in the molecular layer (ML), and aberrant arborization of Purkinje cell dendrites. There results suggest that Plexin-B2 restricts CGN motility and might have a function in cytokinesis.
Collapse
Affiliation(s)
- Eljo Van Battum
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Yvrick Zagar
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Stéphane Fouquet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Rohini Kuner
- Pharmacology Institute, Heidelberg University, Heidelberg, Germany
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
11
|
Higgins DMO, Caliva M, Schroeder M, Carlson B, Upadhyayula PS, Milligan BD, Cheshier SH, Weissman IL, Sarkaria JN, Meyer FB, Henley JR. Semaphorin 3A mediated brain tumor stem cell proliferation and invasion in EGFRviii mutant gliomas. BMC Cancer 2020; 20:1213. [PMID: 33302912 PMCID: PMC7727139 DOI: 10.1186/s12885-020-07694-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/26/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults, with a median survival of approximately 15 months. Semaphorin 3A (Sema3A), known for its axon guidance and antiangiogenic properties, has been implicated in GBM growth. We hypothesized that Sema3A directly inhibits brain tumor stem cell (BTSC) proliferation and drives invasion via Neuropilin 1 (Nrp1) and Plexin A1 (PlxnA1) receptors. METHODS GBM BTSC cell lines were assayed by immunostaining and PCR for levels of Semaphorin 3A (Sema3A) and its receptors Nrp1 and PlxnA1. Quantitative BrdU, cell cycle and propidium iodide labeling assays were performed following exogenous Sema3A treatment. Quantitative functional 2-D and 3-D invasion assays along with shRNA lentiviral knockdown of Nrp1 and PlxnA1 are also shown. In vivo flank studies comparing tumor growth of knockdown versus control BTSCs were performed. Statistics were performed using GraphPad Prism v7. RESULTS Immunostaining and PCR analysis revealed that BTSCs highly express Sema3A and its receptors Nrp1 and PlxnA1, with expression of Nrp1 in the CD133 positive BTSCs, and absence in differentiated tumor cells. Treatment with exogenous Sema3A in quantitative BrdU, cell cycle, and propidium iodide labeling assays demonstrated that Sema3A significantly inhibited BTSC proliferation without inducing cell death. Quantitative functional 2-D and 3-D invasion assays showed that treatment with Sema3A resulted in increased invasion. Using shRNA lentiviruses, knockdown of either NRP1 or PlxnA1 receptors abrogated Sema3A antiproliferative and pro-invasive effects. Interestingly, loss of the receptors mimicked Sema3A effects, inhibiting BTSC proliferation and driving invasion. Furthermore, in vivo studies comparing tumor growth of knockdown and control infected BTSCs implanted into the flanks of nude mice confirmed the decrease in proliferation with receptor KD. CONCLUSIONS These findings demonstrate the importance of Sema3A signaling in GBM BTSC proliferation and invasion, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Dominique M O Higgins
- Mayo Clinic: College of Medicine, Rochester, MN, 55905, USA.
- Department of Neurosurgery, Columbia University Medical Center, 710 W. 168th Street, New York, NY, 10032, USA.
| | - Maisel Caliva
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Currently: Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, HI, 96813, USA
| | - Mark Schroeder
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Brett Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Pavan S Upadhyayula
- Department of Neurosurgery, Columbia University Medical Center, 710 W. 168th Street, New York, NY, 10032, USA
| | - Brian D Milligan
- Mayo Clinic: College of Medicine, Rochester, MN, 55905, USA
- Currently: Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Samuel H Cheshier
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84113, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Fredric B Meyer
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - John R Henley
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
12
|
Abstract
Rnd proteins constitute a subfamily of Rho GTPases represented in mammals by Rnd1, Rnd2 and Rnd3. Despite their GTPase structure, their specific feature is the inability to hydrolyse GTP-bound nucleotide. This aspect makes them atypical among Rho GTPases. Rnds are regulated for their expression at the transcriptional or post-transcriptional levels and they are activated through post-translational modifications and interactions with other proteins. Rnd proteins are mainly involved in the regulation of the actin cytoskeleton and cell proliferation. Whereas Rnd3 is ubiquitously expressed, Rnd1 and 2 are tissue-specific. Increasing data has described their important role during development and diseases. Herein, we describe their involvement in physiological and pathological conditions with a focus on the neuronal and vascular systems, and summarize their implications in tumorigenesis.
Collapse
Affiliation(s)
- Sara Basbous
- INSERM, BaRITOn, U1053, F-33000, Univ. Bordeaux, Bordeaux, France
| | - Roberta Azzarelli
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - Emilie Pacary
- INSERM, U1215 - Neurocentre Magendie, F-33077, Univ. Bordeaux, Bordeaux, France
| | - Violaine Moreau
- INSERM, BaRITOn, U1053, F-33000, Univ. Bordeaux, Bordeaux, France
| |
Collapse
|
13
|
Zhang X, Shao S, Li L. Characterization of Class-3 Semaphorin Receptors, Neuropilins and Plexins, as Therapeutic Targets in a Pan-Cancer Study. Cancers (Basel) 2020; 12:cancers12071816. [PMID: 32640719 PMCID: PMC7409005 DOI: 10.3390/cancers12071816] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022] Open
Abstract
Class-3 semaphorins (SEMA3s), initially characterized as axon guidance cues, have been recognized as key regulators for immune responses, angiogenesis, tumorigenesis and drug responses. The functions of SEMA3s are attributed to the activation of downstream signaling cascades mainly mediated by cell surface receptors neuropilins (NRPs) and plexins (PLXNs), yet their roles in human cancers are not completely understood. Here, we provided a detailed pan-cancer analysis of NRPs and PLXNs in their expression, and association with key signal transducers, patient survival, tumor microenvironment (TME), and drug responses. The expression of NRPs and PLXNs were dysregulated in many cancer types, and the majority of them were further dysregulated in metastatic tumors, indicating a role in metastatic progression. Importantly, the expression of these genes was frequently associated with key transducers, patient survival, TME, and drug responses; however, the direction of the association varied for the particular gene queried and the specific cancer type/subtype tested. Specifically, NRP1, NRP2, PLXNA1, PLXNA3, PLXNB3, PLXNC1, and PLXND1 were primarily associated with aggressive phenotypes, whereas the rest were more associated with favorable prognosis. These data highlighted the need to study each as a separate entity in a cancer type- and subtype-dependent manner.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Dr., Columbus, OH 43210, USA;
- Correspondence:
| | - Shuai Shao
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43201, USA;
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Dr., Columbus, OH 43210, USA;
| |
Collapse
|
14
|
Zhao XF, Kohen R, Parent R, Duan Y, Fisher GL, Korn MJ, Ji L, Wan G, Jin J, Püschel AW, Dolan DF, Parent JM, Corfas G, Murphy GG, Giger RJ. PlexinA2 Forward Signaling through Rap1 GTPases Regulates Dentate Gyrus Development and Schizophrenia-like Behaviors. Cell Rep 2019; 22:456-470. [PMID: 29320740 PMCID: PMC5788190 DOI: 10.1016/j.celrep.2017.12.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/30/2017] [Accepted: 12/12/2017] [Indexed: 01/20/2023] Open
Abstract
Dentate gyrus (DG) development requires specification of granule cell (GC) progenitors in the hippocampal neuroepithelium, as well as their proliferation and migration into the primordial DG. We identify the Plexin family members Plxna2 and Plxna4 as important regulators of DG development. Distribution of immature GCs is regulated by Sema5A signaling through PlxnA2 and requires a functional PlxnA2 GTPase-activating protein (GAP) domain and Rap1 small GTPases. In adult Plxna2−/− but not Plxna2-GAP-deficient mice, the dentate GC layer is severely malformed, neurogenesis is compromised, and mossy fibers form aberrant synaptic boutons within CA3. Behavioral studies with Plxna2−/− mice revealed deficits in associative learning, sociability, and sensorimotor gating—traits commonly observed in neuropsychiatric disorder. Remarkably, while morphological defects are minimal in Plxna2-GAP-deficient brains, defects in fear memory and sensorimotor gating persist. Since allelic variants of human PLXNA2 and RAP1 associate with schizophrenia, our studies identify a biochemical pathway important for brain development and mental health.
Collapse
Affiliation(s)
- Xiao-Feng Zhao
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rafi Kohen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rachel Parent
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuntao Duan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Grace L Fisher
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew J Korn
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lingchao Ji
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guoqiang Wan
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jing Jin
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence, University of Münster, 48149 Münster, Germany
| | - Andreas W Püschel
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence, University of Münster, 48149 Münster, Germany
| | - David F Dolan
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jack M Parent
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gabriel Corfas
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Geoffrey G Murphy
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
15
|
Guajardo R, Luginbuhl DJ, Han S, Luo L, Li J. Functional divergence of Plexin B structural motifs in distinct steps of Drosophila olfactory circuit assembly. eLife 2019; 8:48594. [PMID: 31225795 PMCID: PMC6597256 DOI: 10.7554/elife.48594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/20/2019] [Indexed: 12/27/2022] Open
Abstract
Plexins exhibit multitudinous, evolutionarily conserved functions in neural development. How Plexins employ their diverse structural motifs in vivo to perform distinct roles is unclear. We previously reported that Plexin B (PlexB) controls multiple steps during the assembly of the Drosophila olfactory circuit (Li et al., 2018b). Here, we systematically mutagenized structural motifs of PlexB and examined the function of these variants in these multiple steps: axon fasciculation, trajectory choice, and synaptic partner selection. We found that the extracellular Sema domain is essential for all three steps, the catalytic site of the intracellular RapGAP is engaged in none, and the intracellular GTPase-binding motifs are essential for trajectory choice and synaptic partner selection, but are dispensable for fasciculation. Moreover, extracellular PlexB cleavage serves as a regulatory mechanism of PlexB signaling. Thus, the divergent roles of PlexB motifs in distinct steps of neural development contribute to its functional versatility in neural circuit assembly.
Collapse
Affiliation(s)
- Ricardo Guajardo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - David J Luginbuhl
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Shuo Han
- Department of Chemistry, Stanford University, Stanford, United States
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Jiefu Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| |
Collapse
|
16
|
The Sema3A receptor Plexin-A1 suppresses supernumerary axons through Rap1 GTPases. Sci Rep 2018; 8:15647. [PMID: 30353093 PMCID: PMC6199275 DOI: 10.1038/s41598-018-34092-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 10/06/2018] [Indexed: 01/14/2023] Open
Abstract
The highly conserved Rap1 GTPases perform essential functions during neuronal development. They are required for the polarity of neuronal progenitors and neurons as well as for neuronal migration in the embryonic brain. Neuronal polarization and axon formation depend on the precise temporal and spatial regulation of Rap1 activity by guanine nucleotide exchange factors (GEFs) and GTPases-activating proteins (GAPs). Several Rap1 GEFs have been identified that direct the formation of axons during cortical and hippocampal development in vivo and in cultured neurons. However little is known about the GAPs that limit the activity of Rap1 GTPases during neuronal development. Here we investigate the function of Sema3A and Plexin-A1 as a regulator of Rap1 GTPases during the polarization of hippocampal neurons. Sema3A was shown to suppress axon formation when neurons are cultured on a patterned substrate. Plexin-A1 functions as the signal-transducing subunit of receptors for Sema3A and displays GAP activity for Rap1 GTPases. We show that Sema3A and Plexin-A1 suppress the formation of supernumerary axons in cultured neurons, which depends on Rap1 GTPases.
Collapse
|
17
|
Chen X, Shibata AC, Hendi A, Kurashina M, Fortes E, Weilinger NL, MacVicar BA, Murakoshi H, Mizumoto K. Rap2 and TNIK control Plexin-dependent tiled synaptic innervation in C. elegans. eLife 2018; 7:38801. [PMID: 30063210 PMCID: PMC6067881 DOI: 10.7554/elife.38801] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/11/2018] [Indexed: 12/22/2022] Open
Abstract
During development, neurons form synapses with their fate-determined targets. While we begin to elucidate the mechanisms by which extracellular ligand-receptor interactions enhance synapse specificity by inhibiting synaptogenesis, our knowledge about their intracellular mechanisms remains limited. Here we show that Rap2 GTPase (rap-2) and its effector, TNIK (mig-15), act genetically downstream of Plexin (plx-1) to restrict presynaptic assembly and to form tiled synaptic innervation in C. elegans. Both constitutively GTP- and GDP-forms of rap-2 mutants exhibit synaptic tiling defects as plx-1 mutants, suggesting that cycling of the RAP-2 nucleotide state is critical for synapse inhibition. Consistently, PLX-1 suppresses local RAP-2 activity. Excessive ectopic synapse formation in mig-15 mutants causes a severe synaptic tiling defect. Conversely, overexpression of mig-15 strongly inhibited synapse formation, suggesting that mig-15 is a negative regulator of synapse formation. These results reveal that subcellular regulation of small GTPase activity by Plexin shapes proper synapse patterning in vivo. Genes do more than just direct the color of our hair or eyes. They produce proteins that are involved in almost every process in the body. In humans, the majority of active genes can be found in the brain, where they help it to develop and work properly – effectively controlling how we move and behave. The brain’s functional units, the nerve cells or neurons, communicate with each other by releasing messenger molecules in the gap between them, the synapse. These molecules are then picked up from specific receptor proteins of the receiving neuron. In the nervous system, neurons only form synapses with the cells they need to connect with, even though they are surrounded by many more cells. This implies that they use specific mechanisms to stop neurons from forming synapses with incorrect target cells. This is important, because if too many synapses were present or if synapses formed with incorrect target cells, it would compromise the information flow in the nervous system. This would ultimately lead to various neurological conditions, including Autism Spectrum Disorder. In 2013, researchers found that in the roundworm Caenorhabditis elegans, a receptor protein called Plexin, is located at the surface of the neurons and can inhibit the formation of nearby synapses. Now, Chen et al. – including one author involved in the previous research – wanted to find out what genes Plexin manipulates when it stops synapses from growing. Knowing what each of those genes does can help us understand how neurons can inhibit synapses. The results revealed that Plexin appears to regulate two genes, Rap2 and TNIK. Plexin reduced the activity of Rap2 in the neuron that released the messenger, which hindered the formation of synapses. The gene TNIK and its protein on the other hand, have the ability to modify other proteins and could so inhibit the growth of synapses. When TNIK was experimentally removed, the number of synapses increased, but when its activity was increased, the number of synapses was strongly reduced. These findings could help scientists understand how mutations in Rap2 or TNIK can lead to various neurological conditions. A next step will be to test if these genes also affect the formation of synapses in other species such as mice, which have a more complex nervous system that is structurally and functionally more similar to that of humans.
Collapse
Affiliation(s)
- Xi Chen
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | - Akihiro Ce Shibata
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Ardalan Hendi
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | - Mizuki Kurashina
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | - Ethan Fortes
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | | | - Brian A MacVicar
- Department of Psychiatry, The University of British Columbia, Vancouver, Canada
| | - Hideji Murakoshi
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Kota Mizumoto
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
18
|
Grindel BJ, Martinez JR, Tellman TV, Harrington DA, Zafar H, Nakhleh L, Chung LW, Farach-Carson MC. Matrilysin/MMP-7 Cleavage of Perlecan/HSPG2 Complexed with Semaphorin 3A Supports FAK-Mediated Stromal Invasion by Prostate Cancer Cells. Sci Rep 2018; 8:7262. [PMID: 29740048 PMCID: PMC5940808 DOI: 10.1038/s41598-018-25435-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/19/2018] [Indexed: 12/13/2022] Open
Abstract
Interrupting the interplay between cancer cells and extracellular matrix (ECM) is a strategy to halt tumor progression and stromal invasion. Perlecan/heparan sulfate proteoglycan 2 (HSPG2) is an extracellular proteoglycan that orchestrates tumor angiogenesis, proliferation, differentiation and invasion. Metastatic prostate cancer (PCa) cells degrade perlecan-rich tissue borders to reach bone, including the basement membrane, vasculature, reactive stromal matrix and bone marrow. Domain IV-3, perlecan’s last 7 immunoglobulin repeats, mimics native proteoglycan by promoting tumoroid formation. This is reversed by matrilysin/matrix metalloproteinase-7 (MMP-7) cleavage to favor cell dispersion and tumoroid dyscohesion. Both perlecan and Domain IV-3 induced a strong focal adhesion kinase (FAK) dephosphorylation/deactivation. MMP-7 cleavage of perlecan reversed this, with FAK in dispersed tumoroids becoming phosphorylated/activated with metastatic phenotype. We demonstrated Domain IV-3 interacts with the axon guidance protein semaphorin 3A (Sema3A) on PCa cells to deactivate pro-metastatic FAK. Sema3A antibody mimicked the Domain IV-3 clustering activity. Direct binding experiments showed Domain IV-3 binds Sema3A. Knockdown of Sema3A prevented Domain IV-3-induced tumoroid formation and Sema3A was sensitive to MMP-7 proteolysis. The perlecan-Sema3A complex abrogates FAK activity and stabilizes PCa cell interactions. MMP-7 expressing cells destroy the complex to initiate metastasis, destroy perlecan-rich borders, and favor invasion and progression to lethal bone disease.
Collapse
Affiliation(s)
- Brian J Grindel
- Department of BioSciences, Rice University, Houston, TX, 77005, USA.,Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, 77054, USA.,Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jerahme R Martinez
- Department of BioSciences, Rice University, Houston, TX, 77005, USA.,Department of Mechanical Engineering, University of Delaware, Newark, DE, 19706, USA
| | - Tristen V Tellman
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, 77054, USA
| | - Daniel A Harrington
- Department of BioSciences, Rice University, Houston, TX, 77005, USA.,Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, 77054, USA
| | - Hamim Zafar
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Luay Nakhleh
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Leland W Chung
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Mary C Farach-Carson
- Department of BioSciences, Rice University, Houston, TX, 77005, USA. .,Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, 77054, USA.
| |
Collapse
|
19
|
Neuronal expression patterns of the PlexinA family during zebrafish development. Gene Expr Patterns 2017; 27:56-66. [PMID: 29107805 DOI: 10.1016/j.gep.2017.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 12/15/2022]
Abstract
Plexins (Plxns) and Semaphorins (Semas) are key signaling molecules that regulate many aspects of development. Plxns are a family of transmembrane protein receptors that are activated upon extracellular binding by Semas. Activated Plxns trigger intracellular signaling cascades, which regulate a range of developmental processes, including axon guidance, neuronal positioning and vasculogenesis. Semas are a large family of both transmembrane and secreted signaling molecules, and show subtype specific binding to different Plxn family members. Each Plxn can play different roles in development, and so tightly regulated temporal and spatial expression of receptor subtypes is critical to ensure appropriate signaling. Here we elucidate the expression profiles of the plxnA family, plxnA1a, A1b, A2, A3 and A4 at 18, 24, 36, 48, 60 and 72 h post fertilization in the developing zebrafish. We show that PlxnA family members are expressed in neuronal tissues during zebrafish development, but exhibit key differences in expression within these tissues. We also highlight that plxnA1 has two genes in zebrafish, A1a and A1b, which show divergences in expression patterns during early development.
Collapse
|
20
|
Wylie T, Garg R, Ridley AJ, Conte MR. Analysis of the interaction of Plexin-B1 and Plexin-B2 with Rnd family proteins. PLoS One 2017; 12:e0185899. [PMID: 29040270 PMCID: PMC5645086 DOI: 10.1371/journal.pone.0185899] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/21/2017] [Indexed: 02/03/2023] Open
Abstract
The Rnd family of proteins, Rnd1, Rnd2 and Rnd3, are atypical Rho family GTPases, which bind to but do not hydrolyse GTP. They interact with plexins, which are receptors for semaphorins, and are hypothesised to regulate plexin signalling. We recently showed that each Rnd protein has a distinct profile of interaction with three plexins, Plexin-B1, Plexin-B2 and Plexin-B3, in mammalian cells, although it is unclear which region(s) of these plexins contribute to this specificity. Here we characterise the binary interactions of the Rnd proteins with the Rho-binding domain (RBD) of Plexin-B1 and Plexin-B2 using biophysical approaches. Isothermal titration calorimetry (ITC) experiments for each of the Rnd proteins with Plexin-B1-RBD and Plexin-B2-RBD showed similar association constants for all six interactions, although Rnd1 displayed a small preference for Plexin-B1-RBD and Rnd3 for Plexin-B2-RBD. Furthermore, mutagenic analysis of Rnd3 suggested similarities in its interaction with both Plexin-B1-RBD and Plexin-B2-RBD. These results suggest that Rnd proteins do not have a clear-cut specificity for different Plexin-B-RBDs, possibly implying the contribution of additional regions of Plexin-B proteins in conferring functional substrate selection.
Collapse
Affiliation(s)
- Thomas Wylie
- Randall Division of Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, United Kingdom
| | - Ritu Garg
- Randall Division of Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, United Kingdom
| | - Anne J. Ridley
- Randall Division of Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, United Kingdom
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, United Kingdom
| |
Collapse
|
21
|
A thirty-year quest for a role of R-Ras in cancer: from an oncogene to a multitasking GTPase. Cancer Lett 2017; 403:59-65. [DOI: 10.1016/j.canlet.2017.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/28/2017] [Accepted: 06/03/2017] [Indexed: 12/30/2022]
|
22
|
Bulloj A, Maminishkis A, Mizui M, Finnemann SC. Semaphorin4D-PlexinB1 Signaling Attenuates Photoreceptor Outer Segment Phagocytosis by Reducing Rac1 Activity of RPE Cells. Mol Neurobiol 2017. [PMID: 28624895 DOI: 10.1007/s12035-017-0649-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Semaphorins form a family of secreted and membrane-bound molecules that were identified originally as axonal guidance factors during neuronal development. Given their wide distribution in many including mature tissues, semaphorin 4D (sema4D) and its main functional receptor plexin B1 (plxnB1) are expected to fulfill additional functions that remain to be uncovered. A main characteristic of the plexin receptor family is its ability to reorganize the cytoskeleton. PlxnB1 specifically may directly interact with Rho family GTPases to regulate F-actin driven pathways in cells in culture. Diurnal clearance phagocytosis by the retinal pigment epithelium (RPE) of photoreceptor outer segment fragments (POS) is critical for photoreceptor function and longevity. In this process, rearrangement of RPE cytoskeletal F-actin via activation of the Rho family GTPase Rac1 is essential for POS internalization. Here, we show a novel role in POS phagocytosis by RPE cells in culture and in vivo for plexin B1 and its ligand sema4D. Exogenous sema4D abolishes POS internalization (but not binding) by differentiated RPE cells in culture by decreasing the GTP load of Rac1. In the rat eye, sema4D localizes to retinal photoreceptors, while PlxnB1 is expressed by neighboring RPE cells. At the peak of diurnal retinal phagocytosis after light onset, plxnB1 phosphorylation and sema4D levels are reduced in wild-type rat retina in situ but not in mutant RCS rat retina in which the RPE lacks phagocytic activity. Finally, increased POS phagosome content after light onset is observed in the RPE in situ of mice with either plxnB1 or sema4D gene deletion. Altogether, our results demonstrate a novel physiological function for sema4D/plxnB1 signaling in RPE phagocytosis serving as attenuating brake prior to light onset whose release enables the diurnal phagocytic burst.
Collapse
Affiliation(s)
- Ayelen Bulloj
- Department of Biological Sciences Center for Cancer, Genetic Diseases, and Gene Regulation, Fordham University, Larkin Hall, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Arvydas Maminishkis
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Masayuki Mizui
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Silvia C Finnemann
- Department of Biological Sciences Center for Cancer, Genetic Diseases, and Gene Regulation, Fordham University, Larkin Hall, 441 East Fordham Road, Bronx, NY, 10458, USA.
| |
Collapse
|
23
|
Shah B, Püschel AW. Regulation of Rap GTPases in mammalian neurons. Biol Chem 2017; 397:1055-69. [PMID: 27186679 DOI: 10.1515/hsz-2016-0165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/06/2016] [Indexed: 12/15/2022]
Abstract
Small GTPases are central regulators of many cellular processes. The highly conserved Rap GTPases perform essential functions in the mammalian nervous system during development and in mature neurons. During neocortical development, Rap1 is required to regulate cadherin- and integrin-mediated adhesion. In the adult nervous system Rap1 and Rap2 regulate the maturation and plasticity of dendritic spine and synapses. Although genetic studies have revealed important roles of Rap GTPases in neurons, their regulation by guanine nucleotide exchange factors (GEFs) that activate them and GTPase activating proteins (GAPs) that inactivate them by stimulating their intrinsic GTPase activity is just beginning to be explored in vivo. Here we review how GEFs and GAPs regulate Rap GTPases in the nervous system with a focus on their in vivo function.
Collapse
|
24
|
McColl B, Garg R, Riou P, Riento K, Ridley AJ. Rnd3-induced cell rounding requires interaction with Plexin-B2. J Cell Sci 2016; 129:4046-4056. [PMID: 27656111 PMCID: PMC5117210 DOI: 10.1242/jcs.192211] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/02/2016] [Indexed: 12/24/2022] Open
Abstract
Rnd proteins are atypical members of the Rho GTPase family that induce actin cytoskeletal reorganization and cell rounding. Rnd proteins have been reported to bind to the intracellular domain of several plexin receptors, but whether plexins contribute to the Rnd-induced rounding response is not known. Here we show that Rnd3 interacts preferentially with plexin-B2 of the three plexin-B proteins, whereas Rnd2 interacts with all three B-type plexins, and Rnd1 shows only very weak interaction with plexin-B proteins in immunoprecipitations. Plexin-B1 has been reported to act as a GAP for R-Ras and/or Rap1 proteins. We show that all three plexin-B proteins interact with R-Ras and Rap1, but Rnd proteins do not alter this interaction or R-Ras or Rap1 activity. We demonstrate that plexin-B2 promotes Rnd3-induced cell rounding and loss of stress fibres, and enhances the inhibition of HeLa cell invasion by Rnd3. We identify the amino acids in Rnd3 that are required for plexin-B2 interaction, and show that mutation of these amino acids prevents Rnd3-induced morphological changes. These results indicate that plexin-B2 is a downstream target for Rnd3, which contributes to its cellular function.
Collapse
Affiliation(s)
- Brad McColl
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Ritu Garg
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Philippe Riou
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Kirsi Riento
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
25
|
In Vitro Assay for the Rap GTPase-Activating Protein Activity of the Purified Cytoplasmic Domain of Plexin. Methods Mol Biol 2016. [PMID: 27787845 DOI: 10.1007/978-1-4939-6448-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Plexins are cell surface receptors that bind semaphorins and regulate essential processes such as axon guidance and angiogenesis. The cytoplasmic regions of plexins contain a functionally essential GTPase-activating protein (GAP) domain, which initiates downstream signaling by specifically inactivating the Rap GTPase. Here we describe the methods for expression and purification of the plexin cytoplasmic region in E. coli, and characterization of its GAP activity using a photometric assay. We also provide a protocol for measuring GAP activity of single-chain constructs with Rap covalently linked to the plexin cytoplasmic region.
Collapse
|
26
|
Yang DS, Roh S, Jeong S. The axon guidance function of Rap1 small GTPase is independent of PlexA RasGAP activity in Drosophila. Dev Biol 2016; 418:258-67. [DOI: 10.1016/j.ydbio.2016.08.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/25/2016] [Accepted: 08/22/2016] [Indexed: 12/20/2022]
|
27
|
Marita M, Wang Y, Kaliszewski MJ, Skinner KC, Comar WD, Shi X, Dasari P, Zhang X, Smith AW. Class A Plexins Are Organized as Preformed Inactive Dimers on the Cell Surface. Biophys J 2016; 109:1937-45. [PMID: 26536270 DOI: 10.1016/j.bpj.2015.04.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 04/10/2015] [Accepted: 04/27/2015] [Indexed: 01/08/2023] Open
Abstract
Plexins are single-pass transmembrane receptors that bind the axon guidance molecules semaphorins. Single-pass transmembrane proteins are an important class of receptors that display a wide variety of activation mechanisms, often involving ligand-dependent dimerization or conformational changes. Resolving the activation mechanism and dimerization state of these receptors is extremely challenging, especially in a live-cell environment. Here, we report on the dimerization state of PlexinA4 and its response to activation by semaphorin binding. Semaphorins are dimeric molecules that activate plexin by binding two copies of plexin simultaneously and inducing formation of a specific active dimer of plexin. An open question is whether there are preexisting plexin dimers that could act as autoinhibitory complexes. We address these questions with pulsed interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). PIE-FCCS is a two-color fluorescence microscopy method that is directly sensitive to protein dimerization in a live-cell environment. With PIE-FCCS, we show that inactive PlexinA4 is dimerized in the live-cell plasma membrane. By comparing the cross correlation of full-length PlexinA4 to control proteins and plexin mutants, we show that dimerization of inactive PlexinA4 requires the Sema domain, but not the cytoplasmic domain. Ligand stimulation with Sema6A does not change the degree of cross correlation, indicating that plexin activation does not lead to higher-order oligomerization. Together, the results suggest that semaphorin activates plexin by disrupting an inhibitory plexin dimer and inducing the active dimer.
Collapse
Affiliation(s)
- Morgan Marita
- Department of Chemistry, University of Akron, Akron, Ohio
| | - Yuxiao Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | | | | | | | - Xiaojun Shi
- Department of Chemistry, University of Akron, Akron, Ohio
| | - Pranathi Dasari
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Adam W Smith
- Department of Chemistry, University of Akron, Akron, Ohio.
| |
Collapse
|
28
|
Abstract
Secreted class 3 semaphorins (Sema3), which signal through holoreceptor complexes that are formed by different subunits, such as neuropilins (Nrps), proteoglycans, and plexins, were initially characterized as fundamental regulators of axon guidance during embryogenesis. Subsequently, Sema3A, Sema3C, Sema3D, and Sema3E were discovered to play crucial roles in cardiovascular development, mainly acting through Nrp1 and Plexin D1, which funnels the signal of multiple Sema3 in vascular endothelial cells. Mechanistically, Sema3 proteins control cardiovascular patterning through the enzymatic GTPase-activating-protein activity of the cytodomain of Plexin D1, which negatively regulates the function of Rap1, a small GTPase that is well-known for its ability to drive vascular morphogenesis and to elicit the conformational activation of integrin adhesion receptors.
Collapse
Affiliation(s)
- Donatella Valdembri
- a Department of Oncology , University of Torino School of Medicine , Candiolo, Torino , Italy.,b Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) , Candiolo, Torino , Italy
| | - Donatella Regano
- c Laboratory of Transgenic Mouse Models, Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) , Candiolo, Torino , Italy.,d Department of Science and Drug Technology , University of Torino , Candiolo, Torino , Italy
| | - Federica Maione
- c Laboratory of Transgenic Mouse Models, Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) , Candiolo, Torino , Italy.,d Department of Science and Drug Technology , University of Torino , Candiolo, Torino , Italy
| | - Enrico Giraudo
- c Laboratory of Transgenic Mouse Models, Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) , Candiolo, Torino , Italy.,d Department of Science and Drug Technology , University of Torino , Candiolo, Torino , Italy
| | - Guido Serini
- a Department of Oncology , University of Torino School of Medicine , Candiolo, Torino , Italy.,b Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) , Candiolo, Torino , Italy
| |
Collapse
|
29
|
Pascoe HG, Wang Y, Zhang X. Structural mechanisms of plexin signaling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:161-8. [PMID: 25824683 DOI: 10.1016/j.pbiomolbio.2015.03.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/20/2015] [Accepted: 03/20/2015] [Indexed: 02/03/2023]
Abstract
Signaling through plexin, the major cell surface receptor for semaphorin, plays critical roles in regulating processes such as neuronal axon guidance, angiogenesis and immune response. Plexin is normally kept inactive in the absence of semaphorin. Upon binding of semaphorin to the extracellular region, plexin is activated and transduces signal to the inside of the cell through its cytoplasmic region. The GTPase Activating Protein (GAP) domain in the plexin cytoplasmic region mediates the major intracellular signaling pathway. The substrate specificity and regulation mechanisms of the GAP domain have only been revealed recently. Many intracellular proteins serve as either upstream regulators or downstream transducers by directly interacting with plexin. The mechanisms of action for some of these proteins also start to emerge from recent studies. We review here these advances in the mechanistic understanding of plexin intracellular signaling from a structural perspective.
Collapse
Affiliation(s)
- Heath G Pascoe
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuxiao Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
30
|
Semaphorin7A regulates neuroglial plasticity in the adult hypothalamic median eminence. Nat Commun 2015; 6:6385. [PMID: 25721933 PMCID: PMC4351556 DOI: 10.1038/ncomms7385] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/26/2015] [Indexed: 11/08/2022] Open
Abstract
Reproductive competence in mammals depends on the projection of gonadotropin-releasing hormone (GnRH) neurons to the hypothalamic median eminence (ME) and the timely release of GnRH into the hypothalamic-pituitary-gonadal axis. In adult rodents, GnRH neurons and the specialized glial cells named tanycytes periodically undergo cytoskeletal plasticity. However, the mechanisms that regulate this plasticity are still largely unknown. We demonstrate that Semaphorin7A, expressed by tanycytes, plays a dual role, inducing the retraction of GnRH terminals and promoting their ensheathment by tanycytic end feet via the receptors PlexinC1 and Itgb1, respectively. Moreover, Semaphorin7A expression is regulated during the oestrous cycle by the fluctuating levels of gonadal steroids. Genetic invalidation of Semaphorin7A receptors in mice induces neuronal and glial rearrangements in the ME and abolishes normal oestrous cyclicity and fertility. These results show a role for Semaphorin7A signalling in mediating periodic neuroglial remodelling in the adult ME during the ovarian cycle.
Collapse
|
31
|
Azzarelli R, Guillemot F, Pacary E. Function and regulation of Rnd proteins in cortical projection neuron migration. Front Neurosci 2015; 9:19. [PMID: 25705175 PMCID: PMC4319381 DOI: 10.3389/fnins.2015.00019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/13/2015] [Indexed: 01/08/2023] Open
Abstract
The mammalian cerebral cortex contains a high variety of neuronal subtypes that acquire precise spatial locations and form long or short-range connections to establish functional neuronal circuits. During embryonic development, cortical projection neurons are generated in the areas lining the lateral ventricles and they subsequently undergo radial migration to reach the position of their final maturation within the cortical plate. The control of the neuroblast migratory behavior and the coordination of the migration process with other neurogenic events such as cell cycle exit, differentiation and final maturation are crucial to normal brain development. Among the key regulators of cortical neuron migration, the small GTP binding proteins of the Rho family and the atypical Rnd members play important roles in integrating intracellular signaling pathways into changes in cytoskeletal dynamics and motility behavior. Here we review the role of Rnd proteins during cortical neuronal migration and we discuss both the upstream mechanisms that regulate Rnd protein activity and the downstream molecular pathways that mediate Rnd effects on cell cytoskeleton.
Collapse
Affiliation(s)
- Roberta Azzarelli
- Cambridge Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge Cambridge, UK
| | - François Guillemot
- Division of Molecular Neurobiology, MRC National Institute for Medical Research London, UK
| | - Emilie Pacary
- Institut National de la Santé et de la Recherche Médicale U862, Neurocentre Magendie Bordeaux, France ; Université de Bordeaux Bordeaux, France
| |
Collapse
|
32
|
Abstract
Semaphorins were originally identified as neuronal guidance molecules mediating their attractive or repulsive signals by forming complexes with plexin and neuropilin receptors. Subsequent research has identified functions for semaphorin signaling in many organs and tissues outside of the nervous system. Vital roles for semaphorin signaling in vascular patterning and cardiac morphogenesis have been demonstrated, and impaired semaphorin signaling has been associated with various human cardiovascular disorders, including persistent truncus arteriosus, sinus bradycardia and anomalous pulmonary venous connections. Here, we review the functions of semaphorins and their receptors in cardiovascular development and disease and highlight important recent discoveries in the field.
Collapse
Affiliation(s)
- Jonathan A Epstein
- Department of Cell and Developmental Biology, Cardiovascular Institute and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA.
| | - Haig Aghajanian
- Department of Cell and Developmental Biology, Cardiovascular Institute and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Manvendra K Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School Singapore, and the National Heart Research Institute Singapore, National Heart Center Singapore, Singapore.
| |
Collapse
|
33
|
Barton R, Palacio D, Iovine MK, Berger BW. A cytosolic juxtamembrane interface modulates plexin A3 oligomerization and signal transduction. PLoS One 2015; 10:e0116368. [PMID: 25565389 PMCID: PMC4286236 DOI: 10.1371/journal.pone.0116368] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/09/2014] [Indexed: 01/24/2023] Open
Abstract
Plexins (plxns) are transmembrane (TM) receptors involved in the guidance of vascular, lymphatic vessel, and neuron growth as well as cancer metastasis. Plxn signaling results in cytosolic GTPase-activating protein activity, and previous research implicates dimerization as important for activation of plxn signaling. Purified, soluble plxn extracellular and cytosolic domains exhibit only weak homomeric interactions, suggesting a role for the plxn TM and juxtamembrane regions in homooligomerization. In this study, we consider a heptad repeat in the Danio rerio PlxnA3 cytosolic juxtamembrane domain (JM) for its ability to influence PlxnA3 homooligomerization in TM-domain containing constructs. Site-directed mutagenesis in conjunction with the AraTM assay and bioluminescent energy transfer (BRET²) suggest an interface involving a JM heptad repeat, in particular residue M1281, regulates PlxnA3 homomeric interactions when examined in constructs containing an ectodomain, TM and JM domain. In the presence of a neuropilin-2a co-receptor and semaphorin 3F ligand, disruption to PlxnA3 homodimerization caused by an M1281F mutation is eliminated, suggesting destabilization of the PlxnA3 homodimer in the JM is not sufficient to disrupt co-receptor complex formation. In contrast, enhanced homodimerization of PlxnA3 caused by mutation M1281L remains even in the presence of ligand semaphorin 3F and co-receptor neuropilin-2a. Consistent with this pattern of PlxnA3 dimerization in the presence of ligand and co-receptor, destabilizing mutations to PlxnA3 homodimerization (M1281F) are able to rescue motor patterning defects in sidetracked zebrafish embryos, whereas mutations that enhance PlxnA3 homodimerization (M1281L) are not. Collectively, our results indicate the JM heptad repeat, in particular residue M1281, forms a switchable interface that modulates both PlxnA3 homomeric interactions and signal transduction.
Collapse
Affiliation(s)
- Rachael Barton
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Danica Palacio
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - M. Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Bryan W. Berger
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
- Program in Bioengineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
34
|
Duan Y, Wang SH, Song J, Mironova Y, Ming GL, Kolodkin AL, Giger RJ. Semaphorin 5A inhibits synaptogenesis in early postnatal- and adult-born hippocampal dentate granule cells. eLife 2014; 3. [PMID: 25313870 PMCID: PMC4236683 DOI: 10.7554/elife.04390] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/13/2014] [Indexed: 12/20/2022] Open
Abstract
Human SEMAPHORIN 5A (SEMA5A) is an autism susceptibility gene; however, its function in brain development is unknown. In this study, we show that mouse Sema5A negatively regulates synaptogenesis in early, developmentally born, hippocampal dentate granule cells (GCs). Sema5A is strongly expressed by GCs and regulates dendritic spine density in a cell-autonomous manner. In the adult mouse brain, newly born Sema5A-/- GCs show an increase in dendritic spine density and increased AMPA-type synaptic responses. Sema5A signals through PlexinA2 co-expressed by GCs, and the PlexinA2-RasGAP activity is necessary to suppress spinogenesis. Like Sema5A-/- mutants, PlexinA2-/- mice show an increase in GC glutamatergic synapses, and we show that Sema5A and PlexinA2 genetically interact with respect to GC spine phenotypes. Sema5A-/- mice display deficits in social interaction, a hallmark of autism-spectrum-disorders. These experiments identify novel intra-dendritic Sema5A/PlexinA2 interactions that inhibit excitatory synapse formation in developmentally born and adult-born GCs, and they provide support for SEMA5A contributions to autism-spectrum-disorders.
Collapse
Affiliation(s)
- Yuntao Duan
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, United States
| | - Shih-Hsiu Wang
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Juan Song
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Yevgeniya Mironova
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, United States
| | - Guo-li Ming
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Alex L Kolodkin
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, United States
| |
Collapse
|
35
|
Tata A, Stoppel DC, Hong S, Ben-Zvi A, Xie T, Gu C. An image-based RNAi screen identifies SH3BP1 as a key effector of Semaphorin 3E-PlexinD1 signaling. ACTA ACUST UNITED AC 2014; 205:573-90. [PMID: 24841563 PMCID: PMC4033773 DOI: 10.1083/jcb.201309004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extracellular signals have to be precisely interpreted intracellularly and translated into diverse cellular behaviors often mediated by cytoskeletal changes. Semaphorins are one of the largest families of guidance cues and play a critical role in many systems. However, how different cell types translate extracellular semaphorin binding into intracellular signaling remains unclear. Here we developed and performed a novel image-based genome-wide functional RNAi screen for downstream signaling molecules that convert the interaction between Semaphorin 3E (Sema3E) and PlexinD1 into cellular behaviors. One of the genes identified in this screen is a RhoGAP protein, SH3-domain binding protein 1 (SH3BP1). We demonstrate that SH3BP1 mediates Sema3E-induced cell collapse through interaction with PlexinD1 and regulation of Ras-related C3 botulinum toxin substrate 1 (Rac1) activity. The identification and characterization of SH3BP1 as a novel downstream effector of Sema3E-PlexinD1 provides an explanation for how extracellular signals are translated into cytoskeletal changes and unique cell behavior, but also lays the foundation for characterizing other genes identified from our screen to obtain a more complete picture of plexin signaling.
Collapse
Affiliation(s)
- Aleksandra Tata
- Department of Neurobiology and Image and Data Analysis Core (IDAC), Harvard Medical School, Boston, MA 02115
| | - David C Stoppel
- Department of Neurobiology and Image and Data Analysis Core (IDAC), Harvard Medical School, Boston, MA 02115
| | - Shangyu Hong
- Department of Neurobiology and Image and Data Analysis Core (IDAC), Harvard Medical School, Boston, MA 02115
| | - Ayal Ben-Zvi
- Department of Neurobiology and Image and Data Analysis Core (IDAC), Harvard Medical School, Boston, MA 02115
| | - Tiao Xie
- Department of Neurobiology and Image and Data Analysis Core (IDAC), Harvard Medical School, Boston, MA 02115
| | - Chenghua Gu
- Department of Neurobiology and Image and Data Analysis Core (IDAC), Harvard Medical School, Boston, MA 02115
| |
Collapse
|
36
|
STI1 antagonizes cytoskeleton collapse mediated by small GTPase Rnd1 and regulates neurite growth. Exp Cell Res 2014; 324:84-91. [PMID: 24690281 DOI: 10.1016/j.yexcr.2014.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/19/2014] [Accepted: 03/22/2014] [Indexed: 01/10/2023]
Abstract
Rnd proteins comprise a branch of the Rho family of small GTP-binding proteins, which have been implicated in rearrangements of the actin cytoskeleton and microtubule dynamics. Particularly in the nervous system, Rnd family proteins regulate neurite formation, dendrite development and axonal branching. A secreted form of the co-chaperone Stress-Inducible Protein 1 (STI1) has been described as a prion protein partner that is involved in several processes of the nervous system, such as neurite outgrowth, neuroprotection, astrocyte development, and the self-renewal of neural progenitor cells. We show that cytoplasmic STI1 directly interacts with the GTPase Rnd1. This interaction is specific for the Rnd1 member of the Rnd family. In the COS collapse assay, overexpression of STI1 prevents Rnd1-plexin-A1-mediated cytoskeleton retraction. In PC-12 cells, overexpression of STI1 enhances neurite outgrowth in cellular processes initially established by Rnd1. Therefore, we propose that STI1 participates in Rnd1-induced signal transduction pathways that are involved in the dynamics of the actin cytoskeleton.
Collapse
|
37
|
Abstract
Mammalian plexins constitute a family of transmembrane receptors for semaphorins and represent critical regulators of various processes during development of the nervous, cardiovascular, skeletal, and renal system. In vitro studies have shown that plexins exert their effects via an intracellular R-Ras/M-Ras GTPase-activating protein (GAP) domain or by activation of RhoA through interaction with Rho guanine nucleotide exchange factor proteins. However, which of these signaling pathways are relevant for plexin functions in vivo is largely unknown. Using an allelic series of transgenic mice, we show that the GAP domain of plexins constitutes their key signaling module during development. Mice in which endogenous Plexin-B2 or Plexin-D1 is replaced by transgenic versions harboring mutations in the GAP domain recapitulate the phenotypes of the respective null mutants in the developing nervous, vascular, and skeletal system. We further provide genetic evidence that, unexpectedly, the GAP domain-mediated developmental functions of plexins are not brought about via R-Ras and M-Ras inactivation. In contrast to the GAP domain mutants, Plexin-B2 transgenic mice defective in Rho guanine nucleotide exchange factor binding are viable and fertile but exhibit abnormal development of the liver vasculature. Our genetic analyses uncover the in vivo context-dependence and functional specificity of individual plexin-mediated signaling pathways during development.
Collapse
|
38
|
Choi YI, Duke-Cohan JS, Tan J, Gui J, Singh MK, Epstein JA, Reinherz EL. Plxnd1 expression in thymocytes regulates their intrathymic migration while that in thymic endothelium impacts medullary topology. Front Immunol 2013; 4:392. [PMID: 24312099 PMCID: PMC3832804 DOI: 10.3389/fimmu.2013.00392] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/07/2013] [Indexed: 02/02/2023] Open
Abstract
An important role for plexinD1 in thymic development is inferred from studies of germline Plxnd1 knockout (KO) mice where mislocalized CD69+ thymocytes as well as ectopic thymic subcapsular medullary structures were observed. Given embryonic lethality of the Plxnd1−/− genotype, fetal liver transplantation was employed in these prior analyses. Such embryonic hematopoietic reconstitution may have transferred Plxnd1 KO endothelial and/or epithelial stem cells in addition to Plxnd1 KO lymphoid progenitors, thereby contributing to that phenotype. Here we use Plxnd1flox/flox mice crossed to pLck-Cre, pKeratin14-Cre, or pTek-Cre transgenic animals to create cell-type specific conditional knockout (CKO) lines involving thymocytes (D1ThyCKO), thymic epithelium (D1EpCKO), and thymic endothelium (D1EnCKO), respectively. These CKOs allowed us to directly assess the role of plexinD1 in each lineage. Loss of plexinD1 expression on double positive (DP) thymocytes leads to their aberrant migration and cortical retention after TCR-mediated positive selection. In contrast, ectopic medulla formation is a consequence of loss of plexinD1 expression on endothelial cells, in turn linked to dysregulation of thymic angiogenesis. D1EpCKO thymi manifest neither abnormality. Collectively, our findings underscore the non-redundant roles for plexinD1 on thymocytes and endothelium, including the dynamic nature of medulla formation resulting from crosstalk between these thymic cellular components.
Collapse
Affiliation(s)
- Young I Choi
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute , Boston, MA , USA ; Department of Medicine, Harvard Medical School , Boston, MA , USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Cagnoni G, Tamagnone L. Semaphorin receptors meet receptor tyrosine kinases on the way of tumor progression. Oncogene 2013; 33:4795-802. [DOI: 10.1038/onc.2013.474] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/25/2013] [Accepted: 09/25/2013] [Indexed: 12/21/2022]
|
40
|
Wang Y, Pascoe HG, Brautigam CA, He H, Zhang X. Structural basis for activation and non-canonical catalysis of the Rap GTPase activating protein domain of plexin. eLife 2013; 2:e01279. [PMID: 24137545 PMCID: PMC3787391 DOI: 10.7554/elife.01279] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 08/22/2013] [Indexed: 12/14/2022] Open
Abstract
Plexins are cell surface receptors that bind semaphorins and transduce signals for regulating neuronal axon guidance and other processes. Plexin signaling depends on their cytoplasmic GTPase activating protein (GAP) domain, which specifically inactivates the Ras homolog Rap through an ill-defined non-canonical catalytic mechanism. The plexin GAP is activated by semaphorin-induced dimerization, the structural basis for which remained unknown. Here we present the crystal structures of the active dimer of zebrafish PlexinC1 cytoplasmic region in the apo state and in complex with Rap. The structures show that the dimerization induces a large-scale conformational change in plexin, which opens the GAP active site to allow Rap binding. Plexin stabilizes the switch II region of Rap in an unprecedented conformation, bringing Gln63 in Rap into the active site for catalyzing GTP hydrolysis. The structures also explain the unique Rap-specificity of plexins. Mutational analyses support that these mechanisms underlie plexin activation and signaling. DOI:http://dx.doi.org/10.7554/eLife.01279.001.
Collapse
Affiliation(s)
- Yuxiao Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Heath G Pascoe
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chad A Brautigam
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Huawei He
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
41
|
Mizumoto K, Shen K. Interaxonal interaction defines tiled presynaptic innervation in C. elegans. Neuron 2013; 77:655-66. [PMID: 23439119 DOI: 10.1016/j.neuron.2012.12.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2012] [Indexed: 10/27/2022]
Abstract
VIDEO ABSTRACT Cellular interactions between neighboring axons are essential for global topographic map formation. Here we show that axonal interactions also precisely instruct the location of synapses. Motoneurons form en passant synapses in Caenorhabditis elegans. Although axons from the same neuron class significantly overlap, each neuron innervates a unique and tiled segment of the muscle field by restricting its synapses to a distinct subaxonal domain-a phenomenon we term synaptic tiling. Using DA8 and DA9 motoneurons, we found that the synaptic tiling requires the PlexinA4 homolog, PLX-1, and two transmembrane semaphorins. In the plexin or semaphorin mutants, synaptic domains from both neurons expand and overlap with each other without guidance defects. In a semaphorin-dependent manner, PLX-1 is concentrated at the synapse-free axonal segment, delineating the tiling border. Furthermore, plexin inhibits presynapse formation by suppressing synaptic F-actin through its cytoplasmic GTPase-activating protein (GAP) domain. Hence, contact-dependent, intra-axonal plexin signaling specifies synaptic circuits by inhibiting synapse formation at the subcellular loci.
Collapse
Affiliation(s)
- Kota Mizumoto
- Department of Biology, Howard Hughes Medical Institute, Stanford University, 385 Serra Mall, Stanford, CA 94305, USA
| | | |
Collapse
|
42
|
Siebold C, Jones EY. Structural insights into semaphorins and their receptors. Semin Cell Dev Biol 2013; 24:139-45. [PMID: 23253452 DOI: 10.1016/j.semcdb.2012.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
Abstract
Ten years ago nothing was known of the three-dimensional structure of members of the semaphorin family of cell guidance cues, nor of their major receptors, the plexins. The structural biology of this cell surface ligand-receptor system has now come of age. Detailed atomic level information is available on the architecture of semaphorin and plexin ectodomains and their recognition complexes. Similarly the structure of the plexin cytoplasmic region, and its interactions with members of the Rho family of small GTPases have been unveiled. These structural analyses, in combination with biochemical, biophysical and cellular studies, have progressed our understanding of this signalling system into the realm of molecular mechanism.
Collapse
Affiliation(s)
- Christian Siebold
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| | | |
Collapse
|
43
|
Hota PK, Buck M. Plexin structures are coming: opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Cell Mol Life Sci 2012; 69:3765-805. [PMID: 22744749 PMCID: PMC11115013 DOI: 10.1007/s00018-012-1019-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 01/13/2023]
Abstract
Plexin transmembrane receptors and their semaphorin ligands, as well as their co-receptors (Neuropilin, Integrin, VEGFR2, ErbB2, and Met kinase) are emerging as key regulatory proteins in a wide variety of developmental, regenerative, but also pathological processes. The diverse arenas of plexin function are surveyed, including roles in the nervous, cardiovascular, bone and skeletal, and immune systems. Such different settings require considerable specificity among the plexin and semaphorin family members which in turn are accompanied by a variety of cell signaling networks. Underlying the latter are the mechanistic details of the interactions and catalytic events at the molecular level. Very recently, dramatic progress has been made in solving the structures of plexins and of their complexes with associated proteins. This molecular level information is now suggesting detailed mechanisms for the function of both the extracellular as well as the intracellular plexin regions. Specifically, several groups have solved structures for extracellular domains for plexin-A2, -B1, and -C1, many in complex with semaphorin ligands. On the intracellular side, the role of small Rho GTPases has been of particular interest. These directly associate with plexin and stimulate a GTPase activating (GAP) function in the plexin catalytic domain to downregulate Ras GTPases. Structures for the Rho GTPase binding domains have been presented for several plexins, some with Rnd1 bound. The entire intracellular domain structure of plexin-A1, -A3, and -B1 have also been solved alone and in complex with Rac1. However, key aspects of the interplay between GTPases and plexins remain far from clear. The structural information is helping the plexin field to focus on key questions at the protein structural, cellular, as well as organism level that collaboratoria of investigations are likely to answer.
Collapse
Affiliation(s)
- Prasanta K. Hota
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Neuroscience, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Comprehensive Cancer Center, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| |
Collapse
|
44
|
Yang T, Terman JR. 14-3-3ε couples protein kinase A to semaphorin signaling and silences plexin RasGAP-mediated axonal repulsion. Neuron 2012; 74:108-21. [PMID: 22500634 DOI: 10.1016/j.neuron.2011.12.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2011] [Indexed: 10/28/2022]
Abstract
The biochemical means through which multiple signaling pathways are integrated in navigating axons is poorly understood. Semaphorins are among the largest families of axon guidance cues and utilize Plexin (Plex) receptors to exert repulsive effects on axon extension. However, Semaphorin repulsion can be silenced by other distinct cues and signaling cascades, raising questions of the logic underlying these events. We now uncover a simple biochemical switch that controls Semaphorin/Plexin repulsive guidance. Plexins are Ras/Rap family GTPase activating proteins (GAPs) and we find that the PlexA GAP domain is phosphorylated by the cAMP-dependent protein kinase (PKA). This PlexA phosphorylation generates a specific binding site for 14-3-3ε, a phospho-binding protein that we find to be necessary for axon guidance. These PKA-mediated Plexin-14-3-3ε interactions prevent PlexA from interacting with its Ras family GTPase substrate and antagonize Semaphorin repulsion. Our results indicate that these interactions switch repulsion to adhesion and identify a point of convergence for multiple guidance molecules.
Collapse
Affiliation(s)
- Taehong Yang
- Departments of Neuroscience and Pharmacology and Neuroscience Graduate Program, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
45
|
Cao Y, E G, Wang E, Pal K, Dutta SK, Bar-Sagi D, Mukhopadhyay D. VEGF exerts an angiogenesis-independent function in cancer cells to promote their malignant progression. Cancer Res 2012; 72:3912-8. [PMID: 22693250 DOI: 10.1158/0008-5472.can-11-4058] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
VEGF/vascular permeability factor (VEGF/VPF or VEGF-A) is a pivotal driver of cancer angiogenesis that is a central therapeutic target in the treatment of malignancy. However, little work has been devoted to investigating functions of VEGF that are independent of its proangiogenic activity. Here, we report that VEGF produced by tumor cells acts in an autocrine manner to promote cell growth through interaction with the VEGF receptor neuropilin-1 (NRP-1). Reducing VEGF expression by tumor cells induced a differentiated phenotype in vitro and inhibited tumor forming capacity in vivo, independent of effects on angiogenesis. Autocrine activation of tumor cell growth was dependent on signaling through NRP-1, and Ras was determined to be a critical effector signaling molecule downstream of NRP-1. Our findings define a novel function for VEGF in dedifferentiation of tumor cells expanding its role in cancer beyond its known proangiogenic function.
Collapse
Affiliation(s)
- Ying Cao
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Ruediger T, Zimmer G, Barchmann S, Castellani V, Bagnard D, Bolz J. Integration of opposing semaphorin guidance cues in cortical axons. ACTA ACUST UNITED AC 2012; 23:604-14. [PMID: 22368082 DOI: 10.1093/cercor/bhs044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previous work demonstrated that members of the semaphorin family, Sema3A and Sema3C, act as repulsive and attractive guidance signals, respectively, for cortical axons. During the development of corticofugal projections, these semaphorins are expressed in adjacent cortical zones, but there is a considerable overlap between Sema3A and Sema3C expression in the subventricular zone. We used different in vitro assays to examine the response of cortical axons exposed to defined mixtures of these opposing guidance cues. Results showed that even at very low concentrations, Sema3A overrides the effects of Sema3C. Moreover, experiments with function-blocking antibodies directed against neuropilin provided insights into how cortical axons integrate disparate guidance signals at the receptor level. These in vitro data suggest that the pathway of corticofugal axons is defined by an attractive cue in the intermediate zone, where Sema3C is expressed alone. To directly test this hypothesis in vivo, we performed axon-tracing experiments in Sema3C-deficient mice. Compared with wild-type animals, corticofugal axons take a more superficial route in Sema3C(-/-) mice, and the corticofugal pathway is more compacted. This phenotype is expected when an attractive cue for cortical axons, Sema3C, is eliminated and a repulsive cue, Sema3A, becomes predominant.
Collapse
Affiliation(s)
- Tina Ruediger
- Institut für Allgemeine Zoologie und Tierphysiologie, Universität Jena, 07743 Jena, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Wang Y, He H, Srivastava N, Vikarunnessa S, Chen YB, Jiang J, Cowan CW, Zhang X. Plexins are GTPase-activating proteins for Rap and are activated by induced dimerization. Sci Signal 2012; 5:ra6. [PMID: 22253263 DOI: 10.1126/scisignal.2002636] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plexins are cell surface receptors that bind to semaphorins and transduce signals that regulate neuronal development, immune responses, and other processes. Signaling through plexins has been proposed to rely on specific guanosine triphosphatase (GTPase)-activating protein (GAP) activity for R-Ras and M-Ras. Activation of this GAP activity of plexins appears to require simultaneous binding of semaphorin to the plexin extracellular domain and of the Rho GTPases Rac1 or Rnd1 to the cytoplasmic region. However, GAP activity of plexins has eluded detection in several recent studies. We show that the purified cytoplasmic region of plexin uses a noncanonical catalytic mechanism to act as a GAP for Rap, but not for R-Ras or M-Ras. The RapGAP activity of plexins was autoinhibited and was activated by induced dimerization. Biochemical and crystallographic analyses demonstrated that binding of Rho GTPases did not directly contribute to activation of plexin RapGAP activity. Semaphorin stimulated the RapGAP activity of full-length plexin in cells, which was required for plexin-mediated neuronal growth cone collapse. Together, these findings define a pathway for plexin signaling and provide insights into the mechanism for semaphorin-induced activation of plexins.
Collapse
Affiliation(s)
- Yuxiao Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75063, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Perälä N, Sariola H, Immonen T. More than nervous: the emerging roles of plexins. Differentiation 2011; 83:77-91. [PMID: 22099179 DOI: 10.1016/j.diff.2011.08.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/27/2011] [Accepted: 08/04/2011] [Indexed: 12/30/2022]
Abstract
Plexins are the receptors for semaphorins, a large family of axon guidance cues. Accordingly, the role of plexins in the development of the nervous system was the first to be acknowledged. However, the expression of plexins is not restricted to neuronal cells, and recent research has been increasingly focused on the roles of plexin-semaphorin signalling outside of the nervous system. During embryogenesis, plexins regulate the development of many organs, including the cardiovascular system, skeleton and kidney. They have also been shown to be involved in immune system functions and tumour progression. Analyses of the plexin signalling in different tissues and cell types have provided new insight to the versatility of plexin interactions with semaphorins and other cell-surface receptors. In this review we try to summarise the current understanding of the roles of plexins in non-neural development and immunity.
Collapse
Affiliation(s)
- Nina Perälä
- Institute of Biomedicine/Biochemistry and Developmental Biology, Biomedicum Helsinki, University of Helsinki, Finland
| | | | | |
Collapse
|
49
|
Bell CH, Aricescu AR, Jones EY, Siebold C. A dual binding mode for RhoGTPases in plexin signalling. PLoS Biol 2011; 9:e1001134. [PMID: 21912513 PMCID: PMC3166162 DOI: 10.1371/journal.pbio.1001134] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 07/20/2011] [Indexed: 11/19/2022] Open
Abstract
Plexins are cell surface receptors for the semaphorin family of cell guidance cues. The cytoplasmic region comprises a Ras GTPase-activating protein (GAP) domain and a RhoGTPase binding domain. Concomitant binding of extracellular semaphorin and intracellular RhoGTPase triggers GAP activity and signal transduction. The mechanism of this intricate regulation remains elusive. We present two crystal structures of the human Plexin-B1 cytoplasmic region in complex with a constitutively active RhoGTPase, Rac1. The structure of truncated Plexin-B1-Rac1 complex provides no mechanism for coupling RhoGTPase and Ras binding sites. On inclusion of the juxtamembrane helix, a trimeric structure of Plexin-B1-Rac1 complexes is stabilised by a second, novel, RhoGTPase binding site adjacent to the Ras site. Site-directed mutagenesis combined with cellular and biophysical assays demonstrate that this new binding site is essential for signalling. Our findings are consistent with a model in which extracellular and intracellular plexin clustering events combine into a single signalling output.
Collapse
Affiliation(s)
- Christian H. Bell
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - A. Radu Aricescu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - E. Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Christian Siebold
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
50
|
Hernández-Miranda LR, Cariboni A, Faux C, Ruhrberg C, Cho JH, Cloutier JF, Eickholt BJ, Parnavelas JG, Andrews WD. Robo1 regulates semaphorin signaling to guide the migration of cortical interneurons through the ventral forebrain. J Neurosci 2011; 31:6174-87. [PMID: 21508241 PMCID: PMC3088089 DOI: 10.1523/jneurosci.5464-10.2011] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 02/23/2011] [Accepted: 03/02/2011] [Indexed: 12/24/2022] Open
Abstract
Cortical interneurons, generated predominantly in the medial ganglionic eminence, migrate around and avoid the developing striatum in the subpallium en route to the cortex. This is attributable to the chemorepulsive cues of class 3 semaphorins expressed in the striatal mantle and acting through neuropilin (Nrp1 and Nrp2) receptors expressed in these cells. Cortical interneurons also express Robo receptors, and we show here that in mice lacking Robo1, but not Robo2, these cells migrate aberrantly through the striatum. In vitro experiments demonstrated that interneurons lacking Robo1 function are significantly less responsive to the effects of semaphorins. Failure to respond to semaphorin appears to be attributable to a reduction in Nrp1 and PlexinA1 receptors within these cells. Biochemical studies further demonstrated that Robo1 binds directly to Nrp1, but not to semaphorins, and this interaction is mediated by a region contained within its first two Ig domains. Thus, we show for the first time that Robo1 interacts with Nrp1 to modulate semaphorin signaling in the developing forebrain and direct the migration of interneurons through the subpallium and into the cortex.
Collapse
Affiliation(s)
- Luis R. Hernández-Miranda
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Anna Cariboni
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Clare Faux
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Christiana Ruhrberg
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Jin Hyung Cho
- Montreal Neurological Institute, Centre for Neuronal Survival and
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada, and
| | - Jean-François Cloutier
- Montreal Neurological Institute, Centre for Neuronal Survival and
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada, and
| | - Britta J. Eickholt
- Medical Research Council Centre for Developmental Neurobiology, King's College London, London SE1 1UL, United Kingdom
| | - John G. Parnavelas
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - William D. Andrews
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|