1
|
Li Y, Singhal R, Taylor IW, McMinn PH, Chua XY, Cline K, Fernandez DE. The Sec2 translocase of the chloroplast inner envelope contains a unique and dedicated SECE2 component. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:647-658. [PMID: 26406904 DOI: 10.1111/tpj.13028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/28/2015] [Accepted: 09/03/2015] [Indexed: 06/05/2023]
Abstract
Biogenesis of chloroplasts involves a series of protein trafficking events. Nuclear-encoded proteins are imported into the organelle, and then trafficked to various chloroplast locations by systems that are directly homologous to bacterial systems. Although the thylakoid-based systems have been studied extensively, much less is known about the systems that reside and function in the inner envelope membrane. One such system, the Sec2 system, is homologous to both the thylakoid-based Sec1 system and bacterial Sec systems, and may mediate both integration and translocation across the inner envelope. At a minimum, this system is expected to include three components, but only two, SCY2 and SECA2, have been identified in Arabidopsis. Bioinformatics and protein modeling were used to identify the protein encoded by At4g38490 as a candidate for the missing component (SECE2). Cellular localization, biochemistry, protein interaction assays in yeast, and co-immunoprecipitation experiments were used to establish that this protein is an integral membrane protein of the inner envelope, and specifically interacts with the SCY2 component in vivo. Sequence analyses indicated that SECE2 proteins are found in a variety of plants, and differ from the thylakoid SECE1 proteins in a stroma-exposed helical domain, which may contribute to their specificity. Finally, a genetic analysis indicated that SECE2 plays an essential role in plant growth and development.
Collapse
Affiliation(s)
- Yubing Li
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Rajneesh Singhal
- Department of Botany, University of Wisconsin at Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Isaiah W Taylor
- Department of Botany, University of Wisconsin at Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Patrick H McMinn
- Department of Botany, University of Wisconsin at Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Xien Yu Chua
- Department of Botany, University of Wisconsin at Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Kenneth Cline
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Donna E Fernandez
- Department of Botany, University of Wisconsin at Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| |
Collapse
|
2
|
Zhang Z, Kuipers G, Niemiec Ł, Baumgarten T, Slotboom DJ, de Gier JW, Hjelm A. High-level production of membrane proteins in E. coli BL21(DE3) by omitting the inducer IPTG. Microb Cell Fact 2015; 14:142. [PMID: 26377812 PMCID: PMC4574001 DOI: 10.1186/s12934-015-0328-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/28/2015] [Indexed: 11/17/2022] Open
Abstract
Background For membrane protein production, the Escherichia coli T7 RNA polymerase (T7 RNAP)-based protein production strain BL21(DE3) in combination with T7-promoter based expression vectors is widely used. Cells are routinely cultured in Lysogeny broth (LB medium) and expression of the chromosomally localized t7rnap gene is governed by the isopropyl-β-d-1-thiogalactopyranoside (IPTG) inducible lacUV5 promoter. The T7 RNAP drives the expression of the plasmid borne gene encoding the recombinant membrane protein. Production of membrane proteins in the cytoplasmic membrane rather than in inclusion bodies in a misfolded state is usually preferred, but often hampered due to saturation of the capacity of the Sec-translocon, resulting in low yields. Results Contrary to expectation we observed that omission of IPTG from BL21(DE3) cells cultured in LB medium can lead to significantly higher membrane protein production yields than when IPTG is added. In the complete absence of IPTG cultures stably produce membrane proteins in the cytoplasmic membrane, whereas upon the addition of IPTG membrane proteins aggregate in the cytoplasm and non-producing clones are selected for. Furthermore, in the absence of IPTG, membrane proteins are produced at a lower rate than in the presence of IPTG. These observations indicate that in the absence of IPTG the Sec-translocon capacity is not/hardly saturated, leading to enhanced membrane protein production yields in the cytoplasmic membrane. Importantly, for more than half of the targets tested the yields obtained using un-induced BL21(DE3) cells were higher than the yields obtained in the widely used membrane protein production strains C41(DE3) and C43(DE3). Since most secretory proteins reach the periplasm via the Sec-translocon, we also monitored the production of three secretory recombinant proteins in the periplasm of BL21(DE3) cells in the presence and absence of IPTG. For all three targets tested omitting IPTG led to the highest production levels in the periplasm. Conclusions Omission of IPTG from BL21(DE3) cells cultured in LB medium provides a very cost- and time effective alternative for the production of membrane and secretory proteins. Therefore, we recommend that this condition is incorporated in membrane- and secretory protein production screens. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0328-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 106 91, Stockholm, Sweden.
| | | | - Łukasz Niemiec
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 106 91, Stockholm, Sweden.
| | - Thomas Baumgarten
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 106 91, Stockholm, Sweden.
| | - Dirk Jan Slotboom
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| | - Jan-Willem de Gier
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 106 91, Stockholm, Sweden.
| | - Anna Hjelm
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 106 91, Stockholm, Sweden.
| |
Collapse
|
3
|
Frain KM, Gangl D, Jones A, Zedler JAZ, Robinson C. Protein translocation and thylakoid biogenesis in cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:266-73. [PMID: 26341016 DOI: 10.1016/j.bbabio.2015.08.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/17/2015] [Accepted: 08/31/2015] [Indexed: 10/23/2022]
Abstract
Cyanobacteria exhibit a complex form of membrane differentiation that sets them apart from most bacteria. Many processes take place in the plasma membrane, but photosynthetic light capture, electron transport and ATP synthesis take place in an abundant internal thylakoid membrane. This review considers how this system of subcellular compartmentalisation is maintained, and how proteins are directed towards the various subcompartments--specifically the plasma membrane, periplasm, thylakoid membrane and thylakoid lumen. The involvement of Sec-, Tat- and signal recognition particle- (SRP)-dependent protein targeting pathways is discussed, together with the possible involvement of a so-called 'spontaneous' pathway for the insertion of membrane proteins, previously characterised for chloroplast thylakoid membrane proteins. An intriguing aspect of cyanobacterial cell biology is that most contain only a single set of genes encoding Sec, Tat and SRP components, yet the proteomes of the plasma and thylakoid membranes are very different. The implications for protein sorting mechanisms are considered. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof Conrad Mullineaux.
Collapse
Affiliation(s)
- Kelly M Frain
- Centre for Molecular Processing, School of Biosciences, University of Kent, Ingram Building, Canterbury, CT2 7NJ, United Kingdom
| | - Doris Gangl
- Centre for Molecular Processing, School of Biosciences, University of Kent, Ingram Building, Canterbury, CT2 7NJ, United Kingdom
| | - Alexander Jones
- Centre for Molecular Processing, School of Biosciences, University of Kent, Ingram Building, Canterbury, CT2 7NJ, United Kingdom
| | - Julie A Z Zedler
- Centre for Molecular Processing, School of Biosciences, University of Kent, Ingram Building, Canterbury, CT2 7NJ, United Kingdom
| | - Colin Robinson
- Centre for Molecular Processing, School of Biosciences, University of Kent, Ingram Building, Canterbury, CT2 7NJ, United Kingdom.
| |
Collapse
|
4
|
Abstract
Bacterial ghosts are empty cell envelopes of Gram-negative bacteria that can be used as vehicles for antigen delivery. Ghosts are generated by releasing the bacterial cytoplasmic contents through a channel in the cell envelope that is created by the controlled production of the bacteriophage ϕX174 lysis protein E. While ghosts possess all the immunostimulatory surface properties of the original host strain, they do not pose any of the infectious threats associated with live vaccines. Recently, we have engineered the Escherichia coli autotransporter hemoglobin protease (Hbp) into a platform for the efficient surface display of heterologous proteins in Gram-negative bacteria, HbpD. Using the Mycobacterium tuberculosis vaccine target ESAT6 (early secreted antigenic target of 6 kDa), we have explored the application of HbpD to decorate E. coli and Salmonella ghosts with antigens. The use of different promoter systems enabled the concerted production of HbpD-ESAT6 and lysis protein E. Ghost formation was monitored by determining lysis efficiency based on CFU, the localization of a set of cellular markers, fluorescence microscopy, flow cytometry, and electron microscopy. Hbp-mediated surface display of ESAT6 was monitored using a combination of a protease accessibility assay, fluorescence microscopy, flow cytometry and (immuno-)electron microscopy. Here, we show that the concerted production of HbpD and lysis protein E in E. coli and Salmonella can be used to produce ghosts that efficiently display antigens on their surface. This system holds promise for the development of safe and cost-effective vaccines with optimal intrinsic adjuvant activity and exposure of heterologous antigens to the immune system.
Collapse
|
5
|
Characterization of the consequences of YidC depletion on the inner membrane proteome of E. coli using 2D blue native/SDS-PAGE. J Mol Biol 2011; 409:124-35. [PMID: 21497606 DOI: 10.1016/j.jmb.2011.03.068] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 11/20/2022]
Abstract
In the bacterium Escherichia coli, the essential inner membrane protein (IMP) YidC assists in the biogenesis of IMPs and IMP complexes. Our current ideas about the function of YidC are based on targeted approaches using only a handful of model IMPs. Proteome-wide approaches are required to further our understanding of the significance of YidC and to find new YidC substrates. Here, using two-dimensional blue native/SDS-PAGE methodology that is suitable for comparative analysis, we have characterized the consequences of YidC depletion for the steady-state levels and oligomeric state of the constituents of the inner membrane proteome. Our analysis showed that (i) YidC depletion reduces the levels of a variety of complexes without changing their composition, (ii) the levels of IMPs containing only soluble domains smaller than 100 amino acids are likely to be reduced upon YidC depletion, whereas the levels of IMPs with at least one soluble domain larger than 100 amino acids do not, and (iii) the levels of a number of proteins with established or putative chaperone activity (HflC, HflK, PpiD, OppA, GroEL and DnaK) are strongly increased in the inner membrane fraction upon YidC depletion. In the absence of YidC, these proteins may assist the folding of sizeable soluble domains of IMPs, thereby supporting their folding and oligomeric assembly. In conclusion, our analysis identifies many new IMPs/IMP complexes that depend on YidC for their biogenesis, responses that accompany depletion of YidC and an IMP characteristic that is associated with YidC dependence.
Collapse
|
6
|
Skalitzky CA, Martin JR, Harwood JH, Beirne JJ, Adamczyk BJ, Heck GR, Cline K, Fernandez DE. Plastids contain a second sec translocase system with essential functions. PLANT PHYSIOLOGY 2011; 155:354-69. [PMID: 21051552 PMCID: PMC3075773 DOI: 10.1104/pp.110.166546] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 11/04/2010] [Indexed: 05/20/2023]
Abstract
Proteins that are synthesized on cytoplasmic ribosomes but function within plastids must be imported and then targeted to one of six plastid locations. Although multiple systems that target proteins to the thylakoid membranes or thylakoid lumen have been identified, a system that can direct the integration of inner envelope membrane proteins from the stroma has not been previously described. Genetics and localization studies were used to show that plastids contain two different Sec systems with distinct functions. Loss-of-function mutations in components of the previously described thylakoid-localized Sec system, designated as SCY1 (At2g18710), SECA1 (At4g01800), and SECE1 (At4g14870) in Arabidopsis (Arabidopsis thaliana), result in albino seedlings and sucrose-dependent heterotrophic growth. Loss-of-function mutations in components of the second Sec system, designated as SCY2 (At2g31530) and SECA2 (At1g21650) in Arabidopsis, result in arrest at the globular stage and embryo lethality. Promoter-swap experiments provided evidence that SCY1 and SCY2 are functionally nonredundant and perform different roles in the cell. Finally, chloroplast import and fractionation assays and immunogold localization of SCY2-green fluorescent protein fusion proteins in root tissues indicated that SCY2 is part of an envelope-localized Sec system. Our data suggest that SCY2 and SECA2 function in Sec-mediated integration and translocation processes at the inner envelope membrane.
Collapse
|
7
|
Wickström D, Wagner S, Baars L, Ytterberg AJ, Klepsch M, van Wijk KJ, Luirink J, de Gier JW. Consequences of depletion of the signal recognition particle in Escherichia coli. J Biol Chem 2010; 286:4598-609. [PMID: 20923772 DOI: 10.1074/jbc.m109.081935] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thus far, the role of the Escherichia coli signal recognition particle (SRP) has only been studied using targeted approaches. It has been shown for a handful of cytoplasmic membrane proteins that their insertion into the cytoplasmic membrane is at least partially SRP-dependent. Furthermore, it has been proposed that the SRP plays a role in preventing toxic accumulation of mistargeted cytoplasmic membrane proteins in the cytoplasm. To complement the targeted studies on SRP, we have studied the consequences of the depletion of the SRP component Fifty-four homologue (Ffh) in E. coli using a global approach. The steady-state proteomes and the proteome dynamics were evaluated using one- and two-dimensional gel analysis, followed by mass spectrometry-based protein identification and immunoblotting. Our analysis showed that depletion of Ffh led to the following: (i) impaired kinetics of the biogenesis of the cytoplasmic membrane proteome; (ii) lowered steady-state levels of the respiratory complexes NADH dehydrogenase, succinate dehydrogenase, and cytochrome bo(3) oxidase and lowered oxygen consumption rates; (iii) increased levels of the chaperones DnaK and GroEL at the cytoplasmic membrane; (iv) a σ(32) stress response and protein aggregation in the cytoplasm; and (v) impaired protein synthesis. Our study shows that in E. coli SRP-mediated protein targeting is directly linked to maintaining protein homeostasis and the general fitness of the cell.
Collapse
Affiliation(s)
- David Wickström
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Williams-Carrier R, Stiffler N, Belcher S, Kroeger T, Stern DB, Monde RA, Coalter R, Barkan A. Use of Illumina sequencing to identify transposon insertions underlying mutant phenotypes in high-copy Mutator lines of maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:167-77. [PMID: 20409008 DOI: 10.1111/j.1365-313x.2010.04231.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
High-copy transposons have been effectively exploited as mutagens in a variety of organisms. However, their utility for phenotype-driven forward genetics has been hampered by the difficulty of identifying the specific insertions responsible for phenotypes of interest. We describe a new method that can substantially increase the throughput of linking a disrupted gene to a known phenotype in high-copy Mutator (Mu) transposon lines in maize. The approach uses the Illumina platform to obtain sequences flanking Mu elements in pooled, bar-coded DNA samples. Insertion sites are compared among individuals of suitable genotype to identify those that are linked to the mutation of interest. DNA is prepared for sequencing by mechanical shearing, adapter ligation, and selection of DNA fragments harboring Mu flanking sequences by hybridization to a biotinylated oligonucleotide corresponding to the Mu terminal inverted repeat. This method yields dense clusters of sequence reads that tile approximately 400 bp flanking each side of each heritable insertion. The utility of the approach is demonstrated by identifying the causal insertions in four genes whose disruption blocks chloroplast biogenesis at various steps: thylakoid protein targeting (cpSecE), chloroplast gene expression (polynucleotide phosphorylase and PTAC12), and prosthetic group attachment (HCF208/CCB2). This method adds to the tools available for phenotype-driven Mu tagging in maize, and could be adapted for use with other high-copy transposons. A by-product of the approach is the identification of numerous heritable insertions that are unrelated to the targeted phenotype, which can contribute to community insertion resources.
Collapse
|
9
|
Aldridge C, Cain P, Robinson C. Protein transport in organelles: Protein transport into and across the thylakoid membrane. FEBS J 2009; 276:1177-86. [PMID: 19187234 DOI: 10.1111/j.1742-4658.2009.06875.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The chloroplast thylakoid is the most abundant membrane system in nature, and is responsible for the critical processes of light capture, electron transport and photophosphorylation. Most of the resident proteins are imported from the cytosol and then transported into or across the thylakoid membrane. This minireview describes the multitude of pathways used for these proteins. We discuss the huge differences in the mechanisms involved in the secretory and twin-arginine translocase pathways used for the transport of proteins into the lumen, with an emphasis on the differing substrate conformations and energy requirements. We also discuss the rationale for the use of two different systems for membrane protein insertion: the signal recognition particle pathway and the so-called spontaneous pathway. The recent crystallization of a key chloroplast signal recognition particle component provides new insights into this rather unique form of signal recognition particle.
Collapse
Affiliation(s)
- Cassie Aldridge
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | | | |
Collapse
|
10
|
Rutschow H, Ytterberg AJ, Friso G, Nilsson R, van Wijk KJ. Quantitative proteomics of a chloroplast SRP54 sorting mutant and its genetic interactions with CLPC1 in Arabidopsis. PLANT PHYSIOLOGY 2008; 148:156-75. [PMID: 18633119 PMCID: PMC2528104 DOI: 10.1104/pp.108.124545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
cpSRP54 (for chloroplast SIGNAL RECOGNITION PARTICLE54) is involved in cotranslational and posttranslational sorting of thylakoid proteins. The Arabidopsis (Arabidopsis thaliana) cpSRP54 null mutant, ffc1-2, is pale green with delayed development. Western-blot analysis of individual leaves showed that the SRP sorting pathway, but not the SecY/E translocon, was strongly down-regulated with progressive leaf development in both wild-type and ffc1-2 plants. To further understand the impact of cpSRP54 deletion, a quantitative comparison of ffc2-1 was carried out for total leaf proteomes of young seedlings and for chloroplast proteomes of fully developed leaves using stable isotope labeling (isobaric stable isotope labeling and isotope-coded affinity tags) and two-dimensional gels. This showed that cpSRP54 deletion led to a change in light-harvesting complex composition, an increase of PsbS, and a decreased photosystem I/II ratio. Moreover, the cpSRP54 deletion led in young leaves to up-regulation of thylakoid proteases and stromal chaperones, including ClpC. In contrast, the stromal protein homeostasis machinery returned to wild-type levels in mature leaves, consistent with the developmental down-regulation of the SRP pathway. A differential response between young and mature leaves was also found in carbon metabolism, with an up-regulation of the Calvin cycle and the photorespiratory pathway in peroxisomes and mitochondria in young leaves but not in old leaves. The Calvin cycle was down-regulated in mature leaves to adjust to the reduced capacity of the light reaction, while reactive oxygen species defense proteins were up-regulated. The significance of ClpC up-regulation was confirmed through the generation of an ffc2-1 clpc1 double mutant. This mutant was seedling lethal under autotrophic conditions but could be partially rescued under heterotrophic conditions.
Collapse
Affiliation(s)
- Heidi Rutschow
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
11
|
Effects of SecE depletion on the inner and outer membrane proteomes of Escherichia coli. J Bacteriol 2008; 190:3505-25. [PMID: 18296516 DOI: 10.1128/jb.01631-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sec translocon is a protein-conducting channel that allows polypeptides to be transferred across or integrated into a membrane. Although protein translocation and insertion in Escherichia coli have been studied using only a small set of specific model substrates, it is generally assumed that most secretory proteins and inner membrane proteins use the Sec translocon. Therefore, we have studied the role of the Sec translocon using subproteome analysis of cells depleted of the essential translocon component SecE. The steady-state proteomes and the proteome dynamics were evaluated using one- and two-dimensional gel analysis, followed by mass spectrometry-based protein identification and extensive immunoblotting. The analysis showed that upon SecE depletion (i) secretory proteins aggregated in the cytoplasm and the cytoplasmic sigma(32) stress response was induced, (ii) the accumulation of outer membrane proteins was reduced, with the exception of OmpA, Pal, and FadL, and (iii) the accumulation of a surprisingly large number of inner membrane proteins appeared to be unaffected or increased. These proteins lacked large translocated domains and/or consisted of only one or two transmembrane segments. Our study suggests that several secretory and inner membrane proteins can use Sec translocon-independent pathways or have superior access to the remaining Sec translocons present in SecE-depleted cells.
Collapse
|
12
|
Sun C, Rusch SL, Kim J, Kendall DA. Chloroplast SecA and Escherichia coli SecA have distinct lipid and signal peptide preferences. J Bacteriol 2006; 189:1171-5. [PMID: 17142391 PMCID: PMC1797313 DOI: 10.1128/jb.01589-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Like prokaryotic Sec-dependent protein transport, chloroplasts utilize SecA. However, we observe distinctive requirements for the stimulation of chloroplast SecA ATPase activity; it is optimally stimulated in the presence of galactolipid and only a small fraction of anionic lipid and by Sec-dependent thylakoid signal peptides but not Escherichia coli signal peptides.
Collapse
Affiliation(s)
- Changqi Sun
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125, USA
| | | | | | | |
Collapse
|
13
|
Baars L, Ytterberg AJ, Drew D, Wagner S, Thilo C, van Wijk KJ, de Gier JW. Defining the role of the Escherichia coli chaperone SecB using comparative proteomics. J Biol Chem 2005; 281:10024-34. [PMID: 16352602 DOI: 10.1074/jbc.m509929200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To improve understanding and identify novel substrates of the cytoplasmic chaperone SecB in Escherichia coli, we analyzed a secB null mutant using comparative proteomics. The secB null mutation did not affect cell growth but caused significant differences at the proteome level. In the absence of SecB, dynamic protein aggregates containing predominantly secretory proteins accumulated in the cytoplasm. Unprocessed secretory proteins were detected in radiolabeled whole cell lysates. Furthermore, the assembly of a large fraction of the outer membrane proteome was slowed down, whereas its steady state composition was hardly affected. In response to aggregation and delayed sorting of secretory proteins, cytoplasmic chaperones DnaK, GroEL/ES, ClpB, IbpA/B, and HslU were up-regulated severalfold, most likely to stabilize secretory proteins during their delayed translocation and/or rescue aggregated secretory proteins. The SecB/A dependence of 12 secretory proteins affected by the secB null mutation (DegP, FhuA, FkpA, OmpT, OmpX, OppA, TolB, TolC, YbgF, YcgK, YgiW, and YncE) was confirmed by "classical" pulse-labeling experiments. Our study more than triples the number of known SecB-dependent secretory proteins and shows that the primary role of SecB is to facilitate the targeting of secretory proteins to the Sec-translocase.
Collapse
Affiliation(s)
- Louise Baars
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
14
|
Veenendaal AKJ, van der Does C, Driessen AJM. The protein-conducting channel SecYEG. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1694:81-95. [PMID: 15546659 DOI: 10.1016/j.bbamcr.2004.02.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 01/30/2004] [Accepted: 02/02/2004] [Indexed: 10/26/2022]
Abstract
In bacteria, the translocase mediates the translocation of proteins into or across the cytosolic membrane. It consists of a membrane embedded protein-conducting channel and a peripherally associated motor domain, the ATPase SecA. The channel is formed by SecYEG, a multimeric protein complex that assembles into oligomeric forms. The structure and subunit composition of this protein-conducting channel is evolutionary conserved and a similar system is found in the endoplasmic reticulum of eukaryotes and the cytoplasmic membrane of archaea. The ribosome and other membrane proteins can associate with the protein-conducting channel complex and affect its activity or functionality.
Collapse
Affiliation(s)
- Andreas K J Veenendaal
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9750 AA Haren, The Netherlands
| | | | | |
Collapse
|
15
|
Yi L, Jiang F, Chen M, Cain B, Bolhuis A, Dalbey RE. YidC is strictly required for membrane insertion of subunits a and c of the F(1)F(0)ATP synthase and SecE of the SecYEG translocase. Biochemistry 2003; 42:10537-44. [PMID: 12950181 DOI: 10.1021/bi034309h] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
YidC was previously discovered to play a critical role for the insertion of the Sec-independent M13 procoat and Pf3 coat phage proteins into the Escherichia coli inner membrane. To determine whether there is an absolute requirement of YidC for membrane protein insertion of any endogenous E. coli proteins, we investigated a few representative membrane proteins. We found that membrane subunits of the F(0) sector of the F(1)F(0)ATP synthase and the SecE protein of the SecYEG translocase are highly dependent on YidC for membrane insertion, based on protease mapping and immunoblot analysis. We found that the SecE dependency on YidC for membrane insertion does not contradict the observation that depletion of YidC does not block SecYEG-dependent protein export at 37 degrees C. YidC depletion does not decrease the SecE level low enough to block export at 37 degrees C. In contrast, we found that protein export of OmpA is severely blocked at 25 degrees C when YidC is depleted, which may be due to the decreased SecE level, as a 50% decrease in the SecE levels drastically affects protein export at the cold temperature [Schatz, P. J., Bieker, K. L., Ottemann, K. M., Silhavy, T. J., and Beckwith, J. (1991) EMBO J. 10, 1749-57]. These studies reported here establish that physiological substrates of YidC include subunits of the ATP synthase and the SecYEG translocase, demonstrating that YidC plays a vital role for insertion of endogenous membrane proteins in bacteria.
Collapse
Affiliation(s)
- Liang Yi
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
16
|
Vothknecht UC, Soll J. Chloroplast quest: a journey from the cytosol into the chloroplast and beyond. Rev Physiol Biochem Pharmacol 2002; 145:181-222. [PMID: 12224527 DOI: 10.1007/bfb0116432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Chloroplasts are characteristic organelles of plants and algae and the site of oxygenic photosynthesis. They are surrounded by a double membrane and possess an internal membrane system, the thylakoids, on which the photosynthetic machinery is located. They originated more than 1.2 billion years ago from an endosymbiotic event between an already photosynthetic ancestor of present day cyanobacteria and a mitochondriate host cell. During the transformation of the internalized cyanobacterium into a cell organelle most of the genetic information of the endosymbiot got lost or was transferred into the nucleus of the host. Chloroplast proteins encoded by nuclear genes are synthesized on cytoplasmic ribosomes and have to be relocated into the organelle. This is achieved by a proteinaceous import machinery in the outer and inner envelope of the chloroplasts. Proteins destined for the thylakoid membrane and the thylakoid lumen are further translocated by several different pathways into or across this membrane. The subject of this review is the quest of nuclear encoded chloroplast proteins into the organelle and to their final suborganellar location.
Collapse
Affiliation(s)
- Ute C Vothknecht
- Botanisches Institut, Ludwig-Maximilian-Universität München, Menzinger Str. 67, D-80638 München, Germany
| | | |
Collapse
|
17
|
Gordon B, Ko K. The plastid translocon component TOC36 exhibits an affinity for the bacterial protein translocation process. Arch Biochem Biophys 2002; 404:147-57. [PMID: 12127079 DOI: 10.1016/s0003-9861(02)00281-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The 44-kDa envelope polypeptides are active components of the plastid translocon, but their role in plastid protein import remains elusive. One form from Brassica napus (bnToc36B) was previously observed to exert a significant overall effect on bacterial protein translocation, but the nature of the influence requires further characterization. The experimental strategies employed in this study thus focus specifically on the nature of the bnToc36B-bacterial Sec translocon relationship to gain an understanding of Toc36's function. BnToc36B's presence in bacteria created a number of effects related to the protein transport process that together point to functional interactions with the bacterial Sec translocon. These effects are (1) reduced sensitivity to azide impairment as measured by a higher recovery rate from azide treatment, (2) reduced sensitivity to suboptimal temperatures manifesting as sustained levels of protein synthesis and translocation, (3) sustained levels of growth and beta-lactamase transport in high ampicillin concentrations, and (4) evidence for a physical affinity for the bacterial translocon. A reduction in overall SecA levels and a more stable SecA profile, when subjected to azide treatment, was observed in bnToc36B-containing bacteria. The implications of the bacterial data are discussed.
Collapse
Affiliation(s)
- Bruce Gordon
- Department of Biology, Queen's University, Kingston, Ont., Canada
| | | |
Collapse
|
18
|
Jiang F, Yi L, Moore M, Chen M, Rohl T, Van Wijk KJ, De Gier JWL, Henry R, Dalbey RE. Chloroplast YidC homolog Albino3 can functionally complement the bacterial YidC depletion strain and promote membrane insertion of both bacterial and chloroplast thylakoid proteins. J Biol Chem 2002; 277:19281-8. [PMID: 11891220 DOI: 10.1074/jbc.m110857200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A new component of the bacterial translocation machinery, YidC, has been identified that specializes in the integration of membrane proteins. YidC is homologous to the mitochondrial Oxa1p and the chloroplast Alb3, which functions in a novel pathway for the insertion of membrane proteins from the mitochondrial matrix and chloroplast stroma, respectively. We find that Alb3 can functionally complement the Escherichia coli YidC depletion strain and promote the membrane insertion of the M13 procoat and leader peptidase that were previously shown to depend on the bacterial YidC for membrane translocation. In addition, the chloroplast Alb3 that is expressed in bacteria is essential for the insertion of chloroplast cpSecE protein into the bacterial inner membrane. Surprisingly, Alb3 is not required for the insertion of cpSecE into the thylakoid membrane. These results underscore the importance of Oxa1p homologs for membrane protein insertion in bacteria and demonstrate that the requirement for Oxa1p homologs is different in the bacterial and thylakoid membrane systems.
Collapse
Affiliation(s)
- Fenglei Jiang
- Department of Chemistry, Molecular Cellular Developmental Biology Program and Protein Research Group, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Steiner JM, Köcher T, Nagy C, Löffelhardt W. Chloroplast SecE: evidence for spontaneous insertion into the thylakoid membrane. Biochem Biophys Res Commun 2002; 293:747-52. [PMID: 12054533 DOI: 10.1016/s0006-291x(02)00285-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
SecE, an essential component of the bacterial SecAYEG translocase, mediates protein translocation across the cytoplasmic membrane. In the thylakoid membranes of chloroplasts an SecE homologue, cpSecE, has recently been identified. In this report we show that insertion of cpSecE does not require stromal extract, indicating that signal recognition particle is not involved. Removal of nucleoside triphosphates has apparently no effect on the integration, again ruling out an involvement of SRP or its partner protein, FtsY. The use of well-known inhibitors of the Sec- and Tat pathways, sodium azide and nigericin, respectively, also had no influence on membrane insertion. The data presented here point towards cpSecE as another passenger of a wholly spontaneous import/insertion pathway in the thylakoids of chloroplasts.
Collapse
Affiliation(s)
- Jürgen M Steiner
- Institut für Biochemie und Molekulare Zellbiologie der Universität Wien, Ludwig-Boltzmann-Forschungsstelle für Biochemie, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | | | | | | |
Collapse
|