1
|
Pastok MW, Tomlinson CWE, Turberville S, Butler AM, Baslé A, Noble MEM, Endicott JA, Pohl E, Tatum NJ. Structural requirements for the specific binding of CRABP2 to cyclin D3. Structure 2024; 32:2301-2315.e6. [PMID: 39419021 DOI: 10.1016/j.str.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/31/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
Cellular retinoic acid binding protein 2 (CRABP2) transports retinoic acid from the cytoplasm to the nucleus where it then transfers its cargo to retinoic acid receptor-containing complexes leading to activation of gene transcription. We demonstrate using purified proteins that CRABP2 is also a cyclin D3-specific binding protein and that the CRABP2 cyclin D3 binding site and the proposed CRABP2 nuclear localization sequence overlap. Both sequences are within the helix-loop-helix motif that forms a lid to the retinoic acid binding pocket. Mutations within this sequence that block both cyclin D3 and retinoic acid binding promote formation of a CRABP2 structure in which the retinoic acid binding pocket is occupied by an alternative lid conformation. Structural and functional analysis of CRABP2 and cyclin D3 mutants combined with AlphaFold models of the ternary CDK4/6-cyclin D3-CRABP2 complex supports the identification of an α-helical protein binding site on the cyclin D3 C-terminal cyclin box fold.
Collapse
Affiliation(s)
- Martyna W Pastok
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Charles W E Tomlinson
- Department of Chemistry, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK
| | - Shannon Turberville
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Abbey M Butler
- Department of Chemistry, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK
| | - Arnaud Baslé
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Martin E M Noble
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jane A Endicott
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Ehmke Pohl
- Department of Chemistry, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK; Department of Biosciences, Durham University, Upper Mountjoy, South Road, Durham DH1 3LE, UK
| | - Natalie J Tatum
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
2
|
Abstract
Multiple binding and transport proteins facilitate many aspects of retinoid biology through effects on retinoid transport, cellular uptake, metabolism, and nuclear delivery. These include the serum retinol binding protein sRBP (aka Rbp4), the plasma membrane sRBP receptor Stra6, and the intracellular retinoid binding-proteins such as cellular retinol-binding proteins (CRBP) and cellular retinoic acid binding-proteins (CRABP). sRBP transports the highly lipophilic retinol through an aqueous medium. The major intracellular retinol-binding protein, CRBP1, likely enhances efficient retinoid use by providing a sink to facilitate retinol uptake from sRBP through the plasma membrane or via Stra6, delivering retinol or retinal to select enzymes that generate retinyl esters or retinoic acid, and protecting retinol/retinal from excess catabolism or opportunistic metabolism. Intracellular retinoic acid binding-proteins (CRABP1 and 2, and FABP5) seem to have more diverse functions distinctive to each, such as directing retinoic acid to catabolism, delivering retinoic acid to specific nuclear receptors, and generating non-canonical actions. Gene ablation of intracellular retinoid binding-proteins does not cause embryonic lethality or gross morphological defects. Metabolic and functional defects manifested in knockouts of CRBP1, CRBP2 and CRBP3, however, illustrate their essentiality to health, and in the case of CRBP2, to survival during limited dietary vitamin A. Future studies should continue to address the specific molecular interactions that occur between retinoid binding-proteins and their targets and their precise physiologic contributions to retinoid homeostasis and function.
Collapse
Affiliation(s)
- Joseph L Napoli
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, 119 Morgan Hall, 94720, Berkeley, CA, USA.
| |
Collapse
|
3
|
Passeri D, Doldo E, Tarquini C, Costanza G, Mazzaglia D, Agostinelli S, Campione E, Di Stefani A, Giunta A, Bianchi L, Orlandi A. Loss of CRABP-II Characterizes Human Skin Poorly Differentiated Squamous Cell Carcinomas and Favors DMBA/TPA-Induced Carcinogenesis. J Invest Dermatol 2016; 136:1255-1266. [DOI: 10.1016/j.jid.2016.01.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 01/21/2016] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
|
4
|
Kato S, Matsukawa T, Koriyama Y, Sugitani K, Ogai K. A molecular mechanism of optic nerve regeneration in fish: the retinoid signaling pathway. Prog Retin Eye Res 2013; 37:13-30. [PMID: 23994437 DOI: 10.1016/j.preteyeres.2013.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/30/2013] [Accepted: 07/30/2013] [Indexed: 12/20/2022]
Abstract
The fish optic nerve regeneration process takes more than 100 days after axotomy and comprises four stages: neurite sprouting (1-4 days), axonal elongation (5-30 days), synaptic refinement (35-80 days) and functional recovery (100-120 days). We screened genes specifically upregulated in each stage from axotomized fish retina. The mRNAs for heat shock protein 70 and insulin-like growth factor-1 rapidly increased in the retinal ganglion cells soon after axotomy and function as cell-survival factors. Purpurin mRNA rapidly and transiently increased in the photoreceptors and purpurin protein diffusely increased in all nuclear layers at 1-4 days after injury. The purpurin gene has an active retinol-binding site and a signal peptide. Purpurin with retinol functions as a sprouting factor for thin neurites. This neurite-sprouting effect was closely mimicked by retinoic acid and blocked by its inhibitor. We propose that purpurin works as a retinol transporter to supply retinoic acid to damaged RGCs which in turn activates target genes. We also searched for genes involved in the second stage of regeneration. The mRNA of retinoid-signaling molecules increased in retinal ganglion cells at 7-14 days after injury and tissue transglutaminase and neuronal nitric oxide synthase mRNAs, RA-target genes, increased in retinal ganglion cells at 10-30 days after injury. They function as factors for the outgrowth of thick, long neurites. Here we present a retinoid-signaling hypothesis to explain molecular events during the early stages of optic nerve regeneration in fish.
Collapse
Affiliation(s)
- Satoru Kato
- Department of Molecular Neurobiology, Graduate School of Medicine, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Japan.
| | | | | | | | | |
Collapse
|
5
|
Lin Y, Jones BW, Liu A, Tucker JF, Rapp K, Luo L, Baehr W, Bernstein PS, Watt CB, Yang JH, Shaw MV, Marc RE. Retinoid receptors trigger neuritogenesis in retinal degenerations. FASEB J 2012; 26:81-92. [PMID: 21940995 PMCID: PMC3250249 DOI: 10.1096/fj.11-192914] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 09/01/2011] [Indexed: 12/25/2022]
Abstract
Anomalous neuritogenesis is a hallmark of neurodegenerative disorders, including retinal degenerations, epilepsy, and Alzheimer's disease. The neuritogenesis processes result in a partial reinnervation, new circuitry, and functional changes within the deafferented retina and brain regions. Using the light-induced retinal degeneration (LIRD) mouse model, which provides a unique platform for exploring the mechanisms underlying neuritogenesis, we found that retinoid X receptors (RXRs) control neuritogenesis. LIRD rapidly triggered retinal neuron neuritogenesis and up-regulated several key elements of retinoic acid (RA) signaling, including retinoid X receptors (RXRs). Exogenous RA initiated neuritogenesis in normal adult retinas and primary retinal cultures and exacerbated it in LIRD retinas. However, LIRD-induced neuritogenesis was partly attenuated in retinol dehydrogenase knockout (Rdh12(-/-)) mice and by aldehyde dehydrogenase inhibitors. We further found that LIRD rapidly increased the expression of glutamate receptor 2 and β Ca(2+)/calmodulin-dependent protein kinase II (βCaMKII). Pulldown assays demonstrated interaction between βCaMKII and RXRs, suggesting that CaMKII pathway regulates the activities of RXRs. RXR antagonists completely prevented and RXR agonists were more effective than RA in inducing neuritogenesis. Thus, RXRs are in the final common path and may be therapeutic targets to attenuate retinal remodeling and facilitate global intervention methods in blinding diseases and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yanhua Lin
- Department of Ophthalmology, John A. Moran Eye Center, School of Medicine
| | - Bryan W. Jones
- Department of Ophthalmology, John A. Moran Eye Center, School of Medicine
| | - Aihua Liu
- Department of Ophthalmology, John A. Moran Eye Center, School of Medicine
| | - James F. Tucker
- Department of Ophthalmology, John A. Moran Eye Center, School of Medicine
| | - Kevin Rapp
- Department of Ophthalmology, John A. Moran Eye Center, School of Medicine
| | - Ling Luo
- Department of Ophthalmology, John A. Moran Eye Center, School of Medicine
| | - Wolfgang Baehr
- Department of Ophthalmology, John A. Moran Eye Center, School of Medicine
- Department of Neurobiology and Anatomy, Health Science Center, and
- Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - Paul S. Bernstein
- Department of Ophthalmology, John A. Moran Eye Center, School of Medicine
| | - Carl B. Watt
- Department of Ophthalmology, John A. Moran Eye Center, School of Medicine
| | - Jia-Hui Yang
- Department of Ophthalmology, John A. Moran Eye Center, School of Medicine
| | - Marguerite V. Shaw
- Department of Ophthalmology, John A. Moran Eye Center, School of Medicine
| | - Robert E. Marc
- Department of Ophthalmology, John A. Moran Eye Center, School of Medicine
| |
Collapse
|
6
|
Manolescu DC, El-Kares R, Lakhal-Chaieb L, Montpetit A, Bhat PV, Goodyer P. Newborn serum retinoic acid level is associated with variants of genes in the retinol metabolism pathway. Pediatr Res 2010; 67:598-602. [PMID: 20308937 DOI: 10.1203/pdr.0b013e3181dcf18a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Retinoic acid (RA) is a critical regulator of gene expression during embryonic development. In rodents, moderate maternal vitamin A deficiency leads to subtle morphogenetic defects and inactivation of RA pathway genes causes major disturbances of embryogenesis. In this study, we quantified RA in umbilical cord blood of 145 healthy full-term Caucasian infants from Montreal. Sixty seven percent of values were <10 nmol/L (84 were <0.07 nmol/L) and 33% had moderate or high levels. Variation in RA could not be explained by parallel variation in its precursor, retinol (ROL). However, we found that the (A) allele of the rs12591551 single nucleotide polymorphism (SNP) in the ALDH1A2 gene (ALDH1A2rs12591551(A)), occurring in 19% of newborns, was associated with 2.5-fold higher serum RA levels. ALDH1A2 encodes retinaldehyde dehydrogenase (RALDH) 2, which synthesizes RA in fetal tissues. We also found that homozygosity for the (A) allele of the rs12724719 SNP in the CRABP2 gene (CRABP2rs12724719(A/A)) was associated with 4.4-fold increase in umbilical cord serum RA. CRABP2 facilitates RA binding to its cognate receptor complex and transfer to the nucleus. We hypothesize that individual variation in RA pathway genes may account for subtle variations in RA-dependent human embryogenesis.
Collapse
Affiliation(s)
- Daniel C Manolescu
- Department of Medicine, University of Montreal, and Department of Pediatrics, Montreal Children's Hospital Research Institute, Montreal, Quebec H3Z 2Z3, Canada
| | | | | | | | | | | |
Collapse
|
7
|
Nagashima M, Sakurai H, Mawatari K, Koriyama Y, Matsukawa T, Kato S. Involvement of retinoic acid signaling in goldfish optic nerve regeneration. Neurochem Int 2009; 54:229-36. [PMID: 19114071 DOI: 10.1016/j.neuint.2008.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 11/11/2008] [Accepted: 11/27/2008] [Indexed: 12/21/2022]
Abstract
Recently, we identified a retina-specific retinol-binding protein, purpurin, as a trigger molecule in the early stage of goldfish optic nerve regeneration. Purpurin protein was secreted by photoreceptors to injured ganglion cells, at 2-5 days after optic nerve injury. Purpurin bound to retinol induced neurite outgrowth in retinal explant cultures and retinoic acid (RA) had a comparable effect on neurite outgrowth. These results indicate that purpurin acts as a retinol transporter and facilitates conversion of retinol to RA. Intracellularly, RA is transported into the nucleus with cellular retinoic acid-binding protein IIb (CRABPIIb) and binds with retinoic acid receptor alpha (RARalpha) as a transcriptional regulator of target genes. Here, we investigated the RA signaling through RA synthesis to RARalpha in the goldfish retina during optic nerve regeneration by RT-PCR. Retinaldehyde dehydrogenase 2 (RALDH2; an RA synthetic enzyme) mRNA was increased by 2.7-fold in the retina at 7-10 days and then gradually decreased until 40 days after nerve injury. In contrast, cytochrome P450 26a1 (CYP26a1; an RA degradative enzyme) mRNA was decreased to less than half in the retina at 5-20 days and then gradually returned to the control level by 40 days after nerve injury. CRABPIIb mRNA was increased by 1.5-fold in the retina at 10 days after axotomy, RARalphaa mRNA was increased by 1.8-fold in the retina at 10 days after axotomy. The cellular changes in the RA signaling molecules after optic nerve injury were almost all located in the ganglion cells, as evaluated by in situ hybridization. The present data described for the first time that RA signaling through RALDH2 and CRABPIIb to RARalpha was serially upregulated in the ganglion cells at 7-10 days just after the purpurin induction. Therefore, we conclude that the triggering action of purpurin on optic nerve regeneration is mediated by RA signaling pathway.
Collapse
|
8
|
Vaezeslami S, Jia X, Vasileiou C, Borhan B, Geiger JH. Structural analysis of site-directed mutants of cellular retinoic acid-binding protein II addresses the relationship between structural integrity and ligand binding. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2008; 64:1228-39. [PMID: 19018099 PMCID: PMC2631107 DOI: 10.1107/s0907444908032216] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 10/06/2008] [Indexed: 11/10/2022]
Abstract
The structural integrity of cellular retinoic acid-binding protein II (CRABPII) has been investigated using the crystal structures of CRABPII mutants. The overall fold was well maintained by these CRABPII mutants, each of which carried multiple different mutations. A water-mediated network is found to be present across the large binding cavity, extending from Arg111 deep inside the cavity to the alpha2 helix at its entrance. This chain of interactions acts as a ;pillar' that maintains the integrity of the protein. The disruption of the water network upon loss of Arg111 leads to decreased structural integrity of the protein. A water-mediated network can be re-established by introducing the hydrophilic Glu121 inside the cavity, which results in a rigid protein with the alpha2 helix adopting an altered conformation compared with wild-type CRABPII.
Collapse
Affiliation(s)
- Soheila Vaezeslami
- Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX 77381, USA
| | - Xiaofei Jia
- Chemistry Department, Michigan State University, East Lansing, MI 48824-1322, USA
| | - Chrysoula Vasileiou
- Chemistry Department, Michigan State University, East Lansing, MI 48824-1322, USA
| | - Babak Borhan
- Chemistry Department, Michigan State University, East Lansing, MI 48824-1322, USA
| | - James H. Geiger
- Chemistry Department, Michigan State University, East Lansing, MI 48824-1322, USA
| |
Collapse
|
9
|
Salazar J, Guardiola M, Ferré R, Coll B, Alonso-Villaverde C, Winklhofer-Roob BM, Rock E, Fernández-Ballart JD, Civeira F, Pocoví M, Masana L, Ribalta J. Association of a polymorphism in the promoter of the cellular retinoic acid-binding protein II gene (CRABP2) with increased circulating low-density lipoprotein cholesterol. Clin Chem Lab Med 2007; 45:615-20. [PMID: 17484622 DOI: 10.1515/cclm.2007.131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The cellular retinoic acid-binding protein II (CRABP-II), together with nuclear receptors such as the retinoid X receptor (RXR) and retinoic acid receptor (RAR), is involved in the transcriptional regulation of genes that control lipid metabolism via the retinoid signaling pathway and, as such, may be associated with disorders of lipid metabolism. Interestingly, the gene for CRABP-II is located on chromosome 1q21-23, which is a region that has been linked with disorders such as familial combined hyperlipidemia (FCHL), type 2 diabetes mellitus, and partial lipodystrophy, all of which are characterized by dyslipidemia. METHODS We investigated the hypothesis that the CRABP2 gene is involved in the regulation of lipid metabolism. Using the promoter -394T>C polymorphism of the CRABP2 gene, we performed association studies in three different cohorts: 299 healthy males, 182 HIV-infected patients and 151 patients with familial hypercholesterolemia (FH). All cholesterol measurements were performed in the absence of any lipid-lowering agents. ANOVA was performed on data adjusted for age, body mass index (BMI), gender, and use of protease inhibitors. RESULTS The frequency of the C allele was 0.03 in the three groups. Among healthy males, carriers of the C allele had 9% higher total plasma cholesterol (p=0.027) and 13% higher low-density lipoprotein cholesterol (LDL-C) concentrations (p=0.020). In HIV-infected patients, multivariate analysis of four measures over a 1-year period showed that carriers of the C allele had significantly higher LDL-C of between 10% and 31% (p=0.001) compared with non-carriers of the allele. FH patients who were carriers of the C allele had 16% higher LDL-C (p=0.038). The C allele was significantly over-represented among hypercholesterolemic patients (p=0.001). CONCLUSIONS Our results show that the CRABP2 gene, a member of the retinoid signaling pathway, is associated with increased plasma LDL-C concentrations.
Collapse
Affiliation(s)
- Juliana Salazar
- Institut de Recerca en Ciències de la Salut, Hospital Universitari Sant Joan, Universitat Rovira i Virgili, Reus, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
McPherson LA, Woodfield GW, Weigel RJ. AP2 transcription factors regulate expression of CRABPII in hormone responsive breast carcinoma. J Surg Res 2006; 138:71-8. [PMID: 17187826 DOI: 10.1016/j.jss.2006.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 06/12/2006] [Accepted: 07/05/2006] [Indexed: 11/29/2022]
Abstract
BACKGROUND The AP2 transcription factor family is a set of developmentally regulated, retinoic acid (RA) inducible genes, which regulate expression of estrogen receptor-alpha (ERalpha) in breast carcinoma. We hypothesized that AP2 factors regulate a set of genes characteristic of the hormone responsive breast cancer phenotype. To better understand the role of AP2 factors in hormone responsive breast cancer, we sought to identify AP2-target genes in breast epithelial cells. MATERIALS AND METHODS Overexpression of AP2 factors was achieved in human mammary epithelial cells (HMECs) using adenoviral vectors. AP2 target genes were identified by comparative hybridization to cDNA microarrays containing 30,000 human genes. Expression patterns were confirmed by Northern and Western blot and by elimination of AP2 using siRNA. Potential regulatory elements in promoters of target genes were identified by DNase I hypersensitive site mapping. RESULTS Comparative cDNA microarray hybridization identified a set of genes induced by overexpression of AP2alpha and AP2gamma in HMECs. The up-regulation of cellular retinoic acid-binding protein 2 (CRABPII), EST-1, and ECM1 was induced by overexpression of AP2alpha, AP2gamma, or a chimeric AP2 factor in which the activation domain of AP2alpha was replaced by the activation domain of herpesvirus VP16. Interestingly, hormone unresponsive MDA-MB-231 cells were resistant to CRABPII induction by any of the AP2 factors. Elimination of AP2gamma in MCF7 cells resulted in a significant reduction in CRABPII expression. AP2alpha induced DNase I hypersensitive sites in the promoter of the CRABPII gene at -5000 bp, which corresponds to the site of action of RAR/RXR factors. CONCLUSIONS AP2 factors regulate CRABPII expression in HMECs and breast cancer cells and accounts for the associated expression of ERalpha and CRABPII in hormone responsive breast cancer. Because CRABPII mediates growth suppressive effects of RA in breast cancer, the data suggest that AP2 factors have the ability to mediate RA responsiveness through the regulation of CRABP II expression.
Collapse
Affiliation(s)
- Lisa A McPherson
- Department of Surgery, Stanford University, Stanford, California, USA
| | | | | |
Collapse
|
11
|
Njar VCO, Gediya L, Purushottamachar P, Chopra P, Vasaitis TS, Khandelwal A, Mehta J, Huynh C, Belosay A, Patel J. Retinoic acid metabolism blocking agents (RAMBAs) for treatment of cancer and dermatological diseases. Bioorg Med Chem 2006; 14:4323-40. [PMID: 16530416 DOI: 10.1016/j.bmc.2006.02.041] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2006] [Revised: 02/21/2006] [Accepted: 02/22/2006] [Indexed: 11/23/2022]
Abstract
The naturally occurring retinoids and their synthetic analogs play a key role in differentiation, proliferation, and apoptosis, and their use/potential in oncology, dermatology and a variety of diseases are well documented. This review focuses on the role of all-trans-retinoic acid (ATRA), the principal endogenous metabolite of vitamin A (retinol) and its metabolism in oncology and dermatology. ATRA has been used successfully in differentiated therapy of acute promyelocytic leukemia, skin cancer, Kaposi's sarcoma, and cutaneous T-cell lymphoma, and also in the treatment of acne and psoriasis. However, its usefulness is limited by the rapid emergence of acquired ATRA resistance involving multifactoral mechanisms. A key mechanism of resistance involves ATRA-induced catabolism of ATRA. Thus, a novel strategy to overcome the limitation associated with exogenous ATRA therapy has been to modulate and/or increase the levels of endogenous ATRA by inhibiting the cytochrome P450-dependent ATRA-4-hydroxylase enzymes (particularly CYP26s) responsible for ATRA metabolism. These inhibitors are also referred to as retinoic acid metabolism blocking agents (RAMBAs). This review highlights development in the design, synthesis, and evaluation of RAMBAs. Major emphasis is given to liarozole, the most studied and only RAMBA in clinical use and also the new RAMBAs in development and with clinical potential.
Collapse
Affiliation(s)
- Vincent C O Njar
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, 21201-1559, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mey J. New therapeutic target for CNS injury? The role of retinoic acid signaling after nerve lesions. ACTA ACUST UNITED AC 2006; 66:757-79. [PMID: 16688771 DOI: 10.1002/neu.20238] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Experiments with sciatic nerve lesions and spinal cord contusion injury demonstrate that the retinoic acid (RA) signaling cascade is activated by these traumatic events. In both cases the RA-synthesizing enzyme is RALDH-2. In the PNS, lesions cause RA-induced gene transcription, intracellular translocation of retinoid receptors, and increased transcription of CRBP-I, CRABP-II, and retinoid receptors. The activation of RARbeta appears to be responsible for neurotrophic and neuritogenic effects of RA on dorsal root ganglia and embryonic spinal cord. While the physiological role of RA in the injured nervous system is still under investigation three domains of functions are suggested: (1) neuroprotection and support of axonal growth, (2) modulation of the inflammatory reaction by microglia/macrophages, and (3) regulation of glial differentiation. Few studies have been performed to support nerve regeneration with RA signals in vivo, but a large number of experiments with neuronal and glial cell cultures and spinal cord explants point to beneficial effects of RA, so that future therapeutic approaches will likely focus on the activation of RA signaling.
Collapse
Affiliation(s)
- Jörg Mey
- Institut für Biologie II, RWTH Aachen, Germany.
| |
Collapse
|
13
|
Lefebvre P, Martin PJ, Flajollet S, Dedieu S, Billaut X, Lefebvre B. Transcriptional activities of retinoic acid receptors. VITAMINS AND HORMONES 2005; 70:199-264. [PMID: 15727806 DOI: 10.1016/s0083-6729(05)70007-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vitamin A derivatives plays a crucial role in embryonic development, as demonstrated by the teratogenic effect of either an excess or a deficiency in vitamin A. Retinoid effects extend however beyond embryonic development, and tissue homeostasis, lipid metabolism, cellular differentiation and proliferation are in part controlled through the retinoid signaling pathway. Retinoids are also therapeutically effective in the treatment of skin diseases (acne, psoriasis and photoaging) and of some cancers. Most of these effects are the consequences of retinoic acid receptors activation, which triggers transcriptional events leading either to transcriptional activation or repression of retinoid-controlled genes. Synthetic molecules are able to mimic part of the biological effects of the natural retinoic acid receptors, all-trans retinoic acid. Therefore, retinoic acid receptors are considered as highly valuable therapeutic targets and limiting unwanted secondary effects due to retinoid treatment requires a molecular knowledge of retinoic acid receptors biology. In this review, we will examine experimental evidence which provide a molecular basis for the pleiotropic effects of retinoids, and emphasize the crucial roles of coregulators of retinoic acid receptors, providing a conceptual framework to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Philippe Lefebvre
- INSERM U459 and Ligue Nationale Contre le Cancer, Faculté de Médecine de Lille, 59045 Lille cedex, France
| | | | | | | | | | | |
Collapse
|
14
|
Li XH, Kakkad B, Ong DE. Estrogen directly induces expression of retinoic acid biosynthetic enzymes, compartmentalized between the epithelium and underlying stromal cells in rat uterus. Endocrinology 2004; 145:4756-62. [PMID: 15205379 DOI: 10.1210/en.2004-0514] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogen (E2) has been shown to induce the biosynthesis of retinoic acid (RA) in rat uterus. Here we examined whether E2 could directly induce the enzymes involved in this process by using the ovariectomized rat. A retinol dehydrogenase that we have previously described, eRolDH, and the retinal dehydrogenase, RalDH II, were found to have markedly increased uterine mRNA levels within 4 h of E2 administration, independent of the prior administration of puromycin. eRolDH and RalDH II and their mRNAs were also increased in uteri of rats during estrus. This indicated that RA biosynthesis in rat uterus is directly controlled by E2 and provides a direct link between the action of a steroid hormone and retinoid action. We also examined the cell-specific localization of RalDH II by immunohistochemistry. The enzyme was observed in the stromal compartment, particularly in cells close to the uterine lumenal epithelium. eRolDH was observed only in the lining epithelial cells. Taken together with the previous observations of cellular retinol-binding protein and cellular retinoic acid-binding protein, type two also being expressed in the lumenal epithelium, we propose that RA production is compartmentalized, with retinol oxidation occurring in the lumenal epithelium and subsequent oxidation of retinal to RA occurring in the underlying stromal cells.
Collapse
Affiliation(s)
- Xiao-Hong Li
- Department of Biochemistry, Vanderbilt University, 23rd Avenue at Pierce, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
15
|
Li XH, Ong DE. Cellular retinoic acid-binding protein II gene expression is directly induced by estrogen, but not retinoic acid, in rat uterus. J Biol Chem 2003; 278:35819-25. [PMID: 12842898 DOI: 10.1074/jbc.m302551200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been suggested that cellular retinoic acid-binding protein (II) (CRABP(II)) may have a role in the movement of retinoic acid (RA) to its nuclear receptors, thereby enhancing the action of RA in the cells in which it is expressed. RA has also been shown to increase expression of CRABP(II). Previous work from our laboratory has shown that 17 beta-estradiol (E2) administration to prepubertal female rats leads to acquisition of the ability of the lining epithelium to synthesize RA as well as to express CRABP(II). To determine whether this appearance of CRABP(II) was dependent on the production of RA, both E2 and RA were administered to ovariectomized rats. E2 administration induced expression of the CRABP(II) gene in the uterus within 4 h, and this induction was not inhibited by prior administration of puromycin, indicating that the induction was direct. In contrast, RA caused no change in CRABP(II) message level, even at times as late as 48 h after administration. Isolation and analysis of 4.5 kb of the 5'-flanking region of the gene revealed no apparent E2-response element. Using this portion of the gene to drive expression of the luciferase gene in transfected cells allowed identification of a region containing an imperfect estrogen-response element and estrogen-response element half-site, necessary for E2-driven induction. A possible Sp1 binding site in the 5'-flanking region of the CRABP(II) gene was also required for this induction. The ability of E2 to induce expression of CRABP(II) suggests that it can enhance the activity of RA, directly affecting expression of retinoid-responsive genes.
Collapse
Affiliation(s)
- Xiao-Hong Li
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
16
|
Zhelyaznik N, Schrage K, McCaffery P, Mey J. Activation of retinoic acid signalling after sciatic nerve injury: up-regulation of cellular retinoid binding proteins. Eur J Neurosci 2003; 18:1033-40. [PMID: 12956703 DOI: 10.1046/j.1460-9568.2003.02834.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In mammalian peripheral nerves a crush lesion causes interactions between injured neurons, Schwann cells and haematogenous macrophages that can lead to successful axonal regeneration. We suggest that the transcriptional activator retinoic acid (RA), takes part in gene regulation after peripheral nerve injury and that RA signalling is activated via the cellular retinoic acid binding protein (CRABP)-II and cellular retinol binding protein (CRBP)-I. With RT-PCR and immunoblotting all necessary components of the RA signalling pathway were detected in the sciatic nerve of adult rats. These are retinoic acid receptors, retinoid X receptors, the retinoic acid synthesizing enzymes RALDH-1, RALDH-2, and RALDH-3, in addition, the cellular retinoid binding proteins CRBP-I, CRABP-I and CRABP-II. Enzyme activity of RALDH-2 was detectable in the nerve, and using a transgenic reporter mouse we found local activation of RA responsive elements in the regenerating nerve. Sciatic nerve crush as well as transection resulted in a more than 10-fold up-regulation of CRBP-I, which is thought to facilitate the synthesis of RA. Both kinds of injury also caused a 15-fold increase in transcript and protein concentration of CRABP-II, a possible mediator of RA transfer to its nuclear receptors.
Collapse
Affiliation(s)
- Nina Zhelyaznik
- Institut für Biologie II, RWTH Aachen, Kopernikusstr 16, 52074 Aachen, Germany
| | | | | | | |
Collapse
|
17
|
Despouy G, Bastie JN, Deshaies S, Balitrand N, Mazharian A, Rochette-Egly C, Chomienne C, Delva L. Cyclin D3 is a cofactor of retinoic acid receptors, modulating their activity in the presence of cellular retinoic acid-binding protein II. J Biol Chem 2003; 278:6355-62. [PMID: 12482873 DOI: 10.1074/jbc.m210697200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ligand-induced transcription activation of retinoic acid (RA) target genes by nuclear receptors (retinoic acid (RAR) and retinoid X (RXR) receptors) depends on the recruitment of coactivators. We have previously demonstrated that the small 15-kDa cellular RA-binding protein II (CRABPII) is a coactivator present in the RA-dependent nuclear complex. As identifying cell-specific partners of CRABPII might help to understand the novel control of RA signaling, we performed a yeast two-hybrid screen of a hematopoietic HL-60 cDNA library using human CRABPII as bait and have subsequently identified human cyclin D3 as a partner of CRABPII. Cyclin D3 interacted with CRABPII in a ligand-independent manner and equally bound RAR alpha, but not RXR alpha, and only in the presence of RA. We further show that cyclin D3 positively modulated RA-mediated transcription through CRABPII. Therefore, cyclin D3 may be part of a ternary complex with CRABPII and RAR. Finally, we show that cyclin D3 expression paralleled HL-60 differentiation and arrest of cell growth. These findings led us to speculate that control of cell proliferation during induction of differentiation may directly involve, at the transcriptional level, nuclear receptors, coactivators, and proteins of the cell cycle in a cell- and nuclear receptor-specific manner.
Collapse
Affiliation(s)
- Gilles Despouy
- Laboratoire de Biologie Cellulaire Hématopoiétique, Equipe Mixte Inserm 00-03, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, Paris 75010, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Gallagher RE. Retinoic acid resistance in acute promyelocytic leukemia. Leukemia 2002; 16:1940-58. [PMID: 12357346 DOI: 10.1038/sj.leu.2402719] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2002] [Accepted: 06/21/2002] [Indexed: 01/01/2023]
Abstract
Primary resistance of PML-RARalpha-positive acute promyelocytic leukemia (APL) to the induction of clinical remission (CR) by all-trans retinoic acid (ATRA) is rare but markedly increases in frequency after > or =2 relapses from chemotherapy-induced CRs. Nevertheless, even in de novo cases, the primary response of ATRA-naive cases is variable by several measures, suggesting involvement of heterogeneous molecular elements. Secondary, acquired ATRA resistance occurs in most patients treated with ATRA alone and in many patients who relapse from combination ATRA chemotherapy regimens despite limited ATRA exposure. Although early studies suggested that an adaptive hypercatabolic response to pharmacological ATRA levels is the principal mechanism of ATRA resistance, recent studies suggest that molecular disturbances in APL cells have a predominant role, particularly if disease relapse occurs a few months after discontinuing ATRA therapy. This review summarizes the systemic and APL cellular elements that have been linked to clinical ATRA resistance with emphasis on identifying areas of deficient information and important topics for further investigation. Overall, the subject review strongly supports the hypothesis that, although APL is an infrequent and nearly cured disease, much can be gained by understanding the complex relationship of ATRA resistance to the progression and relapse of APL, which has important implications for other leukemias and malignancies.
Collapse
Affiliation(s)
- R E Gallagher
- Department of Oncology, Montefiore Medical Center, New York 10467, USA
| |
Collapse
|