1
|
Das S, Konwar BK. Influence of connatural factors in shaping vaginal microflora and ensuring its health. Arch Gynecol Obstet 2024; 309:871-886. [PMID: 37676318 DOI: 10.1007/s00404-023-07200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
Vaginal canal (VC) is exposed to the external environment affected by habitual factors like hygiene and sexual behaviour as well as physiological factors like puberty, menstrual cycle, pregnancy, child birth and menopause. Healthy VC harbours beneficial microflora supported by vaginal epithelium and cervical fluid. Connatural antimicrobial peptide (AMPs) of female reproductive tract (FRT) conjunctly with these beneficial microbes provide protection from a large number of infectious diseases. Such infections may either be caused by native microbes of the VC or transitory microbes like bacteria or virus which are not a part of VC microflora. This review highlight's the role of hormones, enzymes, innate immunological factors, epithelial cells and vaginal mucus that support beneficial microbes over infectious ones thus, helping to maintain homeostasis in VC and further protect the FRT. We also discuss the prospective use of vaginal probiotics and AMPs against pathogens which can serve as a potential cure for vaginal infections.
Collapse
Affiliation(s)
- Shreaya Das
- Department of MBBT, Tezpur University, Napaam, Assam, 784028, India.
| | - Bolin K Konwar
- Department of MBBT, Tezpur University, Napaam, Assam, 784028, India
| |
Collapse
|
2
|
Wang X, van Beekveld RAM, Xu Y, Parmar A, Das S, Singh I, Breukink E. Analyzing mechanisms of action of antimicrobial peptides on bacterial membranes requires multiple complimentary assays and different bacterial strains. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184160. [PMID: 37100361 DOI: 10.1016/j.bbamem.2023.184160] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 04/28/2023]
Abstract
Antimicrobial peptides (AMPs) commonly target bacterial membranes and show broad-spectrum activity against microorganisms. In this research we used three AMPs (nisin, epilancin 15×, [R4L10]-teixobactin) and tested their membrane effects towards three strains (Staphylococcus simulans, Micrococcus flavus, Bacillus megaterium) in relation with their antibacterial activity. We describe fluorescence and luminescence-based assays to measure effects on membrane potential, intracellular pH, membrane permeabilization and intracellular ATP levels. The results show that our control peptide, nisin, performed mostly as expected in view of its targeted pore-forming activity, with fast killing kinetics that coincided with severe membrane permeabilization in all three strains. However, the mechanisms of action of both Epilancin 15× as well as [R4L10]-teixobactin appeared to depend strongly on the bacterium tested. In certain specific combinations of assay, peptide and bacterium, deviations from the general picture were observed. This was even the case for nisin, indicating the importance of using multiple assays and bacteria for mode of action studies to be able to draw proper conclusions on the mode of action of AMPs.
Collapse
Affiliation(s)
- Xiaoqi Wang
- Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Roy A M van Beekveld
- Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Yang Xu
- Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Anish Parmar
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, William Henry Duncan Building, 6 West Derby St, Liverpool L7 8TX, UK; Antimicrobial Drug Discovery and Development, Department of Chemistry, The Robert Robinson Laboratories, University of Liverpool, L69 3BX Liverpool, UK
| | - Sanjit Das
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, William Henry Duncan Building, 6 West Derby St, Liverpool L7 8TX, UK; Antimicrobial Drug Discovery and Development, Department of Chemistry, The Robert Robinson Laboratories, University of Liverpool, L69 3BX Liverpool, UK
| | - Ishwar Singh
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, William Henry Duncan Building, 6 West Derby St, Liverpool L7 8TX, UK
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands; Zhejiang Provincial Key Laboratory of Food Microbiotechnology Research of China, the Zhejiang Gongshang University of China, Hangzhou, China.
| |
Collapse
|
3
|
Olvera-Rosales LB, Cruz-Guerrero AE, García-Garibay JM, Gómez-Ruíz LC, Contreras-López E, Guzmán-Rodríguez F, González-Olivares LG. Bioactive peptides of whey: obtaining, activity, mechanism of action, and further applications. Crit Rev Food Sci Nutr 2022; 63:10351-10381. [PMID: 35612490 DOI: 10.1080/10408398.2022.2079113] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bioactive peptides derived from diverse food proteins have been part of diverse investigations. Whey is a rich source of proteins and components related to biological activity. It is known that proteins have effects that promote health benefits. Peptides derived from whey proteins are currently widely studied. These bioactive peptides are amino acid sequences that are encrypted within the first structure of proteins, which required hydrolysis for their release. The hydrolysis could be through in vitro or in vivo enzymatic digestion and using microorganisms in fermented systems. The biological activities associated with bio-peptides include immunomodulatory properties, antibacterial, antihypertensive, antioxidant and opioid, etc. These functions are related to general conditions of health or reduced risk of certain chronic illnesses. To determine the suitability of these peptides/ingredients for applications in food technology, clinical studies are required to evaluate their bioavailability, health claims, and safety of them. This review aimed to describe the biological importance of whey proteins according to the incidence in human health, their role as bioactive peptides source, describing methods, and obtaining technics. In addition, the paper exposes biochemical mechanisms during the activity exerted by biopeptides of whey, and their application trends.
Collapse
Affiliation(s)
- L B Olvera-Rosales
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, México
| | - A E Cruz-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
| | - J M García-Garibay
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
- Departamento de Ciencias de la Alimentación Lerma de Villada, Universidad Autónoma Metropolitana-Lerma, Edo. de México, México
| | - L C Gómez-Ruíz
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
| | - E Contreras-López
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, México
| | - F Guzmán-Rodríguez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
| | - L G González-Olivares
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, México
| |
Collapse
|
4
|
Escobar‐Salom M, Torrens G, Jordana‐Lluch E, Oliver A, Juan C. Mammals' humoral immune proteins and peptides targeting the bacterial envelope: from natural protection to therapeutic applications against multidrug‐resistant
Gram
‐negatives. Biol Rev Camb Philos Soc 2022; 97:1005-1037. [PMID: 35043558 PMCID: PMC9304279 DOI: 10.1111/brv.12830] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
Mammalian innate immunity employs several humoral ‘weapons’ that target the bacterial envelope. The threats posed by the multidrug‐resistant ‘ESKAPE’ Gram‐negative pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) are forcing researchers to explore new therapeutic options, including the use of these immune elements. Here we review bacterial envelope‐targeting (peptidoglycan and/or membrane‐targeting) proteins/peptides of the mammalian immune system that are most likely to have therapeutic applications. Firstly we discuss their general features and protective activity against ESKAPE Gram‐negatives in the host. We then gather, integrate, and discuss recent research on experimental therapeutics harnessing their bactericidal power, based on their exogenous administration and also on the discovery of bacterial and/or host targets that improve the performance of this endogenous immunity, as a novel therapeutic concept. We identify weak points and knowledge gaps in current research in this field and suggest areas for future work to obtain successful envelope‐targeting therapeutic options to tackle the challenge of antimicrobial resistance.
Collapse
Affiliation(s)
- María Escobar‐Salom
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Gabriel Torrens
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Elena Jordana‐Lluch
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Antonio Oliver
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Carlos Juan
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| |
Collapse
|
5
|
Gruden Š, Poklar Ulrih N. Diverse Mechanisms of Antimicrobial Activities of Lactoferrins, Lactoferricins, and Other Lactoferrin-Derived Peptides. Int J Mol Sci 2021; 22:ijms222011264. [PMID: 34681923 PMCID: PMC8541349 DOI: 10.3390/ijms222011264] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/22/2022] Open
Abstract
Lactoferrins are an iron-binding glycoprotein that have important protective roles in the mammalian body through their numerous functions, which include antimicrobial, antitumor, anti-inflammatory, immunomodulatory, and antioxidant activities. Among these, their antimicrobial activity has been the most studied, although the mechanism behind antimicrobial activities remains to be elucidated. Thirty years ago, the first lactoferrin-derived peptide was isolated and showed higher antimicrobial activity than the native lactoferrin lactoferricin. Since then, numerous studies have investigated the antimicrobial potencies of lactoferrins, lactoferricins, and other lactoferrin-derived peptides to better understand their antimicrobial activities at the molecular level. This review defines the current antibacterial, antiviral, antifungal, and antiparasitic activities of lactoferrins, lactoferricins, and lactoferrin-derived peptides. The primary focus is on their different mechanisms of activity against bacteria, viruses, fungi, and parasites. The role of their structure, amino-acid composition, conformation, charge, hydrophobicity, and other factors that affect their mechanisms of antimicrobial activity are also reviewed.
Collapse
|
6
|
Gu QQ, He SW, Liu LH, Wang GH, Hao DF, Liu HM, Wang CB, Li C, Zhang M, Li NQ. A teleost bactericidal permeability-increasing protein-derived peptide that possesses a broad antibacterial spectrum and inhibits bacterial infection as well as human colon cancer cells growth. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103995. [PMID: 33412232 DOI: 10.1016/j.dci.2021.103995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
The bactericidal permeability-increasing protein (BPI) is a multifunctional cationic protein produced by neutrophils with antibacterial, antitumor, and LPS-neutralizing properties. In teleost, a number of BPIs have been reported, but their functions are very limited. In this study, an N-terminal peptide, BO18 (with 18 amino acids), derived from rock bream (Oplegnathus fasciatus) BPI, was synthesized and investigated for its antibacterial spectrum, action mechanism, immunoregulatory property as well as the inhibition effects on bacterial invasion and human colon cancer cells growth. The results showed that BO18 was active against Gram-positive bacteria Bscillus subiilis, Micrococcus luteus, and Staphylococcus aureus, as well as Gram-negative bacteria Vibrio alginolyticus, Vibrio litoralis, Vibrio parahaemolyticus and Vibrio vulnificus. BO18 treatment facilitated the bactericidal process of erythromycin and rifampicin by enhancing the permeability of the outer membrane. During its interaction with V. alginolyticus, BO18 exerted its antibacterial activity by destroying cell membrane integrity, penetrating into the cytoplasm and binding to genomic DNA and total RNA. In vitro analysis indicated BO18 could enhance the respiratory burst ability and regulate the expression of immune related genes of macrophages. In vivo detection showed the administration of fish with BO18 before bacterial infection significantly reduced pathogen dissemination and replication in tissues. In addition, BO18 exerted a cytotoxic effect on the growth of human colon cancer cells HT-29. Together, these results add new insights into the function of teleost BPIs, and support that BO18 is a novel and broad-spectrum antibacterial peptide with potential to apply in fighting pathogenic infection in aquaculture.
Collapse
Affiliation(s)
- Qin-Qin Gu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Shu-Wen He
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Li-Hui Liu
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, 510380, PR China
| | - Guang-Hua Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Dong-Fang Hao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Hong-Mei Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Chang-Biao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, China.
| | - Ning-Qiu Li
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, 510380, PR China.
| |
Collapse
|
7
|
Tyagi A, Mishra A. Methacrylamide based antibiotic polymers with no detectable bacterial resistance. SOFT MATTER 2021; 17:3404-3416. [PMID: 33645619 DOI: 10.1039/d0sm02176h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The growing number of multidrug-resistant pathogens is a major healthcare concern. In search of alternatives to antibiotics, synthetic mimics of antimicrobial peptides (SMAMPs) in the form of antimicrobial polymers have gained tremendous attention. Here, we report the synthesis of a set of 7 amphiphilic water-soluble cationic copolymers using aminopropyl methacrylamide and benzyl methacrylamide repeat units that show significant antibacterial activity. The antibacterial activity was evaluated using a broth microdilution assay against S. aureus and E. coli, while toxicity to mammalian cells was quantified by hemolysis assay with human red blood cells (RBCs). We find that the antibacterial activity and selectivity of the polymers depends on the mole fraction of aromatic benzyl units (fbenzyl) and the average molecular weight (Mn). Polymers with fbenzyl of 0.10 and 0.19, named AB-10 and AB-19 respectively, exhibited the highest antibacterial efficacy without inducing hemolysis and were chosen for further study. Liposome dye leakage study and observations from confocal and scanning electron microscopy indicate that the AB polymers killed bacterial cells primarily by disrupting the cytoplasmic membrane. No resistant mutants of E. coli and S. aureus were obtained with AB-19 in a 30 day serial passage study.
Collapse
Affiliation(s)
- Anju Tyagi
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | | |
Collapse
|
8
|
Wei YS, Feng K, Li SF, Hu TG, Linhardt RJ, Zong MH, Wu H. Oral fate and stabilization technologies of lactoferrin: a systematic review. Crit Rev Food Sci Nutr 2021; 62:6341-6358. [PMID: 33749401 DOI: 10.1080/10408398.2021.1900774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lactoferrin (Lf), a bioactive protein initially found in many biological secretions including milk, is regarded as the nutritional supplement or therapeutic ligand due to its multiple functions. Research on its mode of action reveals that intact Lf or its active peptide (i.e., lactoferricin) shows an important multifunctional performance. Oral delivery is considered as the most convenient administration route for this bioactive protein. Unfortunately, Lf is sensitive to the gastrointestinal (GI) physicochemical stresses and lactoferricin is undetectable in GI digesta. This review introduces the functionality of Lf at the molecular level and its degradation behavior in GI tract is discussed in detail. Subsequently, the absorption and transport of Lf from intestine into the blood circulation, which is pivotal to its health promoting effects in various tissues, and some assisting labeling methods are discussed. Stabilization technologies aiming at preserving the structural integrity and functional properties of orally administrated Lf are summarized and compared. Altogether, this work comprehensively reviews the structure-function relationship of Lf, its oral fate and the development of stabilization technologies for the enhancement of the oral bioavailability of Lf. The existing limitations and scope for future research are also discussed.
Collapse
Affiliation(s)
- Yun-Shan Wei
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Kun Feng
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Shu-Fang Li
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| |
Collapse
|
9
|
Ligtenberg AJM, Bikker FJ, Bolscher JGM. LFchimera: a synthetic mimic of the two antimicrobial domains of bovine lactoferrin. Biochem Cell Biol 2021; 99:128-137. [PMID: 33560169 DOI: 10.1139/bcb-2020-0285] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Saliva is essential for the maintenance of oral health. When salivary flow is impaired, the risk of various oral diseases such as caries and candidiasis increases drastically. Under healthy conditions, saliva provides effective protection against microbial colonization by the collaborative action of numerous host-defense molecules. This review describes how saliva has been the guideline for the design and characterization of a heterodimeric antimicrobial construct called LFchimera. This construct mimics the helical parts of two antimicrobial domains in the crystal structure of bovine lactoferrin. It shows high antimicrobial activity against a broad spectrum of Gram-positive and Gram-negative bacteria, fungi, and parasites including biowarfare agents such as Bacillus anthracis, Burkholderia pseudomallei, and Yersinia pestis. Further, sublethal concentrations of LFchimera inhibited biofilm formation, the invasiveness of HeLa cells by Yersinia spp., and prevented haemolysis of enteropathogenic Escherichia coli, demonstrating the versatility of these peptides.
Collapse
Affiliation(s)
- A J M Ligtenberg
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, G. Mahlerlaan 3004, 1081LA Amsterdam, the Netherlands.,Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, G. Mahlerlaan 3004, 1081LA Amsterdam, the Netherlands
| | - F J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, G. Mahlerlaan 3004, 1081LA Amsterdam, the Netherlands.,Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, G. Mahlerlaan 3004, 1081LA Amsterdam, the Netherlands
| | - J G M Bolscher
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, G. Mahlerlaan 3004, 1081LA Amsterdam, the Netherlands.,Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, G. Mahlerlaan 3004, 1081LA Amsterdam, the Netherlands
| |
Collapse
|
10
|
Han X, Kou Z, Jiang F, Sun X, Shang D. Interactions of Designed Trp-Containing Antimicrobial Peptides with DNA of Multidrug-Resistant Pseudomonas aeruginosa. DNA Cell Biol 2020; 40:414-424. [PMID: 32023094 DOI: 10.1089/dna.2019.4874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To investigate the intracellular mechanisms of seven Trp-containing peptides in clinically isolated multidrug-resistant Pseudomonas aeruginosa (MRPA0108). The results showed that the Trp-containing peptides had high antibacterial activity against the MRPA0108 strain, with minimal inhibitory concentration (MIC) values ranging from 6.25 to 25 μM. The peptides rapidly and completely killed the MRPA0108 at a concentration of 16 × MIC at 60-90 min. The Trp-containing peptides were found to penetrate the bacterial cell membrane and accumulate in the cells. A DNA gel retardation assay indicated that the peptides were able to bind with the genomic DNA of MRPA0108 cells; L5W exhibited a stronger DNA binding ability than that of the other peptides, and the ratio of peptide to DNA was 0.62/1. Next, the UV absorption spectrum of the DNA indicated that L5W interacted with the MRPA0108 genomic DNA and intercalated into the groove of the DNA molecule, resulting in loosening of the double-helical structure of the originally contracted DNA and leading to the occurrence of a hyperchromic effect. The circular dichroism spectrum suggested that I1W and L5W associated with the DNA via a trench combination mode resulting from the compact structure of the DNA double helix and reduction in ππ accumulation between base pairs. Furthermore, real-time quantitative PCR demonstrated that the Trp-containing peptides could downregulate the expression of DNA replication-initiating genes in MRPA0108 cells. MRPA0108 DNA may be a potential active target for the antimicrobial activity of Trp-containing peptides.
Collapse
Affiliation(s)
- Xue Han
- School of Life Science, Liaoning Normal University, Dalian, China
| | - Zhiru Kou
- School of Life Science, Liaoning Normal University, Dalian, China
| | - Fengquan Jiang
- Department of Clinical Laboratory, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaomi Sun
- School of Life Science, Liaoning Normal University, Dalian, China
| | - Dejing Shang
- School of Life Science, Liaoning Normal University, Dalian, China.,Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| |
Collapse
|
11
|
Ardila-Chantré N, Hernández-Cardona AK, Pineda-Castañeda HM, Estupiñan-Torres SM, Leal-Castro AL, Fierro-Medina R, Rivera-Monroy ZJ, García-Castañeda JE. Short peptides conjugated to non-peptidic motifs exhibit antibacterial activity. RSC Adv 2020; 10:29580-29586. [PMID: 35521126 PMCID: PMC9055962 DOI: 10.1039/d0ra05937d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/30/2020] [Indexed: 11/21/2022] Open
Abstract
Short peptides derived from buforin and lactoferricin B were conjugated with other antimicrobial molecules of different chemical natures.
Collapse
|
12
|
Guerra JR, Cárdenas AB, Ochoa-Zarzosa A, Meza JL, Umaña Pérez A, Fierro-Medina R, Rivera Monroy ZJ, García Castañeda JE. The tetrameric peptide LfcinB (20-25) 4 derived from bovine lactoferricin induces apoptosis in the MCF-7 breast cancer cell line. RSC Adv 2019; 9:20497-20504. [PMID: 35515557 PMCID: PMC9065741 DOI: 10.1039/c9ra04145a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 06/26/2019] [Indexed: 12/29/2022] Open
Abstract
The cytotoxic effect of the tetrameric peptide LfcinB (20-25)4 against breast cancer cell line ATCC® HTB-22™ (MCF-7) was evaluated. The tetrameric peptide exhibited a concentration-dependent cytotoxic effect against MCF-7 cancer cells. The peptide at 22 µM had the maximum cytotoxic effect against MCF-7 cancer cells, reducing their cell viability to ∼20%. The cytotoxic effect of the tetrameric peptide against MCF-7 cells was sustained for 24 hours. Furthermore, the tetrameric peptide did not exhibit a significant cytotoxic effect against the non-tumorogenic trophoblastic cell line, which confirms their selectivity for breast cancer cell lines. The MCF-7 cells treated at 12.2 µM for 1 h exhibited morphological changes characteristic of apoptosis, such as rounded forms and cellular shrinkage. Furthermore, this peptide induces severe cellular damage to MCF-7 cells, mitochondrial membrane depolarization, and increase of cytoplasmic calcium concentration. Our results suggest that it has a significant selective cytotoxic effect against MCF-7 cells, which may be mainly associated with the apoptotic pathway. This peptide, which contains the RRWQWR motif, could be considered to be a promising candidate for developing therapeutic agents for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jorge Rodríguez Guerra
- Pharmacy Department, Universidad Nacional de Colombia Carrera 45 No. 26-85, Building 450, Office 213 11321 Bogotá Colombia +57-1-316-5000 ext. 14436
| | - Andrea Barragán Cárdenas
- Chemistry Department, Universidad Nacional de Colombia Carrera 45 No. 26-85, Building 451, Office 409 11321 Bogotá Colombia
| | - Alejandra Ochoa-Zarzosa
- Multidisciplinary Center for Studies in Biotechnology, Faculty of Veterinary Medicine and Zootechnics, Universidad Michoacana de San Nicolás de Hidalgo Km 9.5 Carretera Morelia-Zinapécuaro Mexico
| | - Joel López Meza
- Multidisciplinary Center for Studies in Biotechnology, Faculty of Veterinary Medicine and Zootechnics, Universidad Michoacana de San Nicolás de Hidalgo Km 9.5 Carretera Morelia-Zinapécuaro Mexico
| | - Adriana Umaña Pérez
- Chemistry Department, Universidad Nacional de Colombia Carrera 45 No. 26-85, Building 451, Office 409 11321 Bogotá Colombia
| | - Ricardo Fierro-Medina
- Chemistry Department, Universidad Nacional de Colombia Carrera 45 No. 26-85, Building 451, Office 409 11321 Bogotá Colombia
| | - Zuly Jenny Rivera Monroy
- Chemistry Department, Universidad Nacional de Colombia Carrera 45 No. 26-85, Building 451, Office 409 11321 Bogotá Colombia
| | - Javier Eduardo García Castañeda
- Pharmacy Department, Universidad Nacional de Colombia Carrera 45 No. 26-85, Building 450, Office 213 11321 Bogotá Colombia +57-1-316-5000 ext. 14436
| |
Collapse
|
13
|
Vargas-Casanova Y, Rodríguez-Mayor AV, Cardenas KJ, Leal-Castro AL, Muñoz-Molina LC, Fierro-Medina R, Rivera-Monroy ZJ, García-Castañeda JE. Synergistic bactericide and antibiotic effects of dimeric, tetrameric, or palindromic peptides containing the RWQWR motif against Gram-positive and Gram-negative strains. RSC Adv 2019; 9:7239-7245. [PMID: 35519960 PMCID: PMC9061098 DOI: 10.1039/c9ra00708c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 02/21/2019] [Indexed: 01/12/2023] Open
Abstract
Dimeric and tetrameric peptides derived from LfcinB (20-25): RRWQWR, LfcinB (20-30): RRWQWRMKKLG, LfcinB (17-31): FKARRWQWRMKKLGA, or the palindromic sequence LfcinB (21-25)Pal: RWQWRWQWR were obtained by means of the SPPS-Fmoc/tBu methodology. The antibacterial activity of these molecules was evaluated against Escherichia coli (ATCC 25922 and ATCC 11775), Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212), and Pseudomonas aeruginosa (ATCC 27853). The dimer LfcinB (20-25)2: (RRWQWR)2K-Ahx, the tetramer LfcinB (20-25)4: (RRWQWR)4K2-Ahx2-C2, and the palindromic sequence LfcinB (21-25)Pal exhibited the highest antibacterial activity against the tested bacterial strains. In all cases, the antibacterial activity was dependent on peptide concentration. The polyvalent molecules LfcinB (20-25)2 and LfcinB (20-25)4 exhibited bacteriostatic and bactericidal activity against E. coli, P. aeruginosa, and S. aureus strains; additionally, this dimer and this tetramer combined with ciprofloxacin exhibited a synergistic antibacterial effect against E. coli ATCC 25922 and P. aeruginosa, respectively. Furthermore, the peptides LfcinB (20-30)4, LfcinB (20-25)4, and LfcinB (21-25)Pal combined with vancomycin exhibited a synergistic antibacterial effect against S. aureus and E. faecalis, respectively. This study showed that polyvalent peptides derived from LfcinB exhibit significant antibacterial activity, suggesting that these peptides could have a therapeutic application. Furthermore, our results suggest that polyvalent peptide synthesis could be considered as an innovative and viable strategy for obtaining promising antimicrobial molecules.
Collapse
Affiliation(s)
- Yerly Vargas-Casanova
- Biotechnology Institute, Universidad Nacional de Colombia Carrera 45 No 26-85 Bogotá 11321 Colombia
| | | | - Karen Johanna Cardenas
- Pharmacy Department, Universidad Nacional de Colombia Carrera 45 No 26-85, Building 450, Office 213 Bogotá 11321 Colombia
| | - Aura Lucía Leal-Castro
- Medicine Faculty, Universidad Nacional de Colombia Carrera 45 No 26-85, Building 450, Office 213 Bogotá 11321 Colombia
| | | | - Ricardo Fierro-Medina
- Chemistry Department, Universidad Nacional de Colombia Carrera 45 No 26-85, Building 450, Office 213 Bogotá 11321 Colombia
| | - Zuly Jenny Rivera-Monroy
- Chemistry Department, Universidad Nacional de Colombia Carrera 45 No 26-85, Building 450, Office 213 Bogotá 11321 Colombia
| | | |
Collapse
|
14
|
Chen RB, Zhang K, Zhang H, Gao CY, Li CL. Analysis of the antimicrobial mechanism of porcine beta defensin 2 against E. coli by electron microscopy and differentially expressed genes. Sci Rep 2018; 8:14711. [PMID: 30279556 PMCID: PMC6168601 DOI: 10.1038/s41598-018-32822-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022] Open
Abstract
Porcine beta defensin 2 (pBD2) is a cationic antimicrobial peptide with broad spectrum antibacterial activity, which makes it a potential alternative to antibiotics to prevent and cure diseases of pigs. However, development of pBD2 as an effective antibiotic agent requires molecular understanding of its functional mechanism against pathogens. In this study, we investigated the functional mechanism of pBD2 antibacterial activity. Escherichia coli was incubated with different pBD2 concentrations for different times. Electron microscopy was used to analyze the locations of pBD2 and its induced morphological changes in E. coli. Gene expression analysis was also performed to further understand the molecular changes of E. coli in response to pBD2 incubation. The results demonstrated that E. coli membranes were broken, holed, and wrinkled after treatment with pBD2, and pBD2 was located on the cell membranes and manly in the cytoplasm. Furthermore, 38 differentially expressed genes (DEGs) were detected, successfully sequenced and confirmed by quantitative real-time PCR (qRT-PCR). Most of the known functional DEGs were associated with DNA transcription and translation and located in the cytoplasm. Collectively, the results suggest that pBD2 could have multiple modes of action and the main mechanism for killing E. coli might be influence on DNA transcription and translation by targeting intracellular molecules after membrane damage, although transport and metabolism proteins were also affected.
Collapse
Affiliation(s)
- Rui-Bo Chen
- Department of Animal and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, Henan, The People's Republic of China
| | - Kun Zhang
- Department of Animal and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, Henan, The People's Republic of China
| | - Heng Zhang
- Department of Animal and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, Henan, The People's Republic of China
| | - Chun-Yu Gao
- Department of Animal and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, Henan, The People's Republic of China
| | - Chun-Li Li
- Department of Animal and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, Henan, The People's Republic of China.
| |
Collapse
|
15
|
Chongsiriwatana NP, Lin JS, Kapoor R, Wetzler M, Rea JAC, Didwania MK, Contag CH, Barron AE. Intracellular biomass flocculation as a key mechanism of rapid bacterial killing by cationic, amphipathic antimicrobial peptides and peptoids. Sci Rep 2017; 7:16718. [PMID: 29196622 PMCID: PMC5711933 DOI: 10.1038/s41598-017-16180-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022] Open
Abstract
Many organisms rely on antimicrobial peptides (AMPs) as a first line of defense against pathogens. In general, most AMPs are thought to kill bacteria by binding to and disrupting cell membranes. However, certain AMPs instead appear to inhibit biomacromolecule synthesis, while causing less membrane damage. Despite an unclear understanding of mechanism(s), there is considerable interest in mimicking AMPs with stable, synthetic molecules. Antimicrobial N-substituted glycine (peptoid) oligomers ("ampetoids") are structural, functional and mechanistic analogs of helical, cationic AMPs, which offer broad-spectrum antibacterial activity and better therapeutic potential than peptides. Here, we show through quantitative studies of membrane permeabilization, electron microscopy, and soft X-ray tomography that both AMPs and ampetoids trigger extensive and rapid non-specific aggregation of intracellular biomacromolecules that correlates with microbial death. We present data demonstrating that ampetoids are "fast killers", which rapidly aggregate bacterial ribosomes in vitro and in vivo. We suggest intracellular biomass flocculation is a key mechanism of killing for cationic, amphipathic AMPs, which may explain why most AMPs require micromolar concentrations for activity, show significant selectivity for killing bacteria over mammalian cells, and finally, why development of resistance to AMPs is less prevalent than developed resistance to conventional antibiotics.
Collapse
Affiliation(s)
- Nathaniel P Chongsiriwatana
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States
| | - Jennifer S Lin
- Department of Bioengineering, Stanford University, Stanford, California, United States
| | - Rinki Kapoor
- Biophysics Program, Stanford University, Stanford, California, United States
| | - Modi Wetzler
- Department of Bioengineering, Stanford University, Stanford, California, United States
| | - Jennifer A C Rea
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States
| | - Maruti K Didwania
- Department of Bioengineering, Stanford University, Stanford, California, United States
| | - Christopher H Contag
- Departments of Microbiology and Immunology, Pediatrics, and Radiology, Stanford University, Stanford, California, United States
| | - Annelise E Barron
- Department of Bioengineering, Stanford University, Stanford, California, United States.
| |
Collapse
|
16
|
Almahboub SA, Narancic T, Devocelle M, Kenny ST, Palmer-Brown W, Murphy C, Nikodinovic-Runic J, O'Connor KE. Biosynthesis of 2-aminooctanoic acid and its use to terminally modify a lactoferricin B peptide derivative for improved antimicrobial activity. Appl Microbiol Biotechnol 2017; 102:789-799. [PMID: 29177937 DOI: 10.1007/s00253-017-8655-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022]
Abstract
Terminal modification of peptides is frequently used to improve their hydrophobicity. While N-terminal modification with fatty acids (lipidation) has been reported previously, C-terminal lipidation is limited as it requires the use of linkers. Here we report the use of a biocatalyst for the production of an unnatural fatty amino acid, (S)-2-aminooctanoic acid (2-AOA) with enantiomeric excess > 98% ee and the subsequent use of 2-AOA to modify and improve the activity of an antimicrobial peptide. A transaminase originating from Chromobacterium violaceum was employed with a conversion efficiency 52-80% depending on the ratio of amino group donor to acceptor. 2-AOA is a fatty acid with amino functionality, which allowed direct C- and N-terminal conjugation respectively to an antimicrobial peptide (AMP) derived from lactoferricin B. The antibacterial activity of the modified peptides was improved by up to 16-fold. Furthermore, minimal inhibitory concentrations (MIC) of C-terminally modified peptide were always lower than N-terminally conjugated peptides. The C-terminally modified peptide exhibited MIC values of 25 μg/ml for Escherichia coli, 50 μg/ml for Bacillus subtilis, 100 μg/ml for Salmonella typhimurium, 200 μg/ml for Pseudomonas aeruginosa and 400 μg/ml for Staphylococcus aureus. The C-terminally modified peptide was the only peptide tested that showed complete inhibition of growth of S. aureus.
Collapse
Affiliation(s)
- Sarah A Almahboub
- UCD Earth Institute and School of Biomolecular and Biomedical Science, O'Brien Centre for Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tanja Narancic
- UCD Earth Institute and School of Biomolecular and Biomedical Science, O'Brien Centre for Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Marc Devocelle
- Centre for Synthesis and Chemical Biology, Department of Pharmaceutical & Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland
| | - Shane T Kenny
- Bioplastech Ltd., Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin 4, Ireland
| | - William Palmer-Brown
- UCD Earth Institute and School of Biomolecular and Biomedical Science, O'Brien Centre for Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac Murphy
- UCD Earth Institute and School of Biomolecular and Biomedical Science, O'Brien Centre for Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, Belgrade, Serbia
| | - Kevin E O'Connor
- UCD Earth Institute and School of Biomolecular and Biomedical Science, O'Brien Centre for Science, University College Dublin, Belfield, Dublin 4, Ireland. .,BEACON - Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
17
|
Huertas NDJ, Monroy ZJR, Medina RF, Castañeda JEG. Antimicrobial Activity of Truncated and Polyvalent Peptides Derived from the FKCRRQWQWRMKKGLA Sequence against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Molecules 2017; 22:molecules22060987. [PMID: 28613262 PMCID: PMC6152618 DOI: 10.3390/molecules22060987] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 12/29/2022] Open
Abstract
Peptides derived from LfcinB were designed and synthesized, and their antibacterial activity was tested against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Specifically, a peptide library was constructed by systemically removing the flanking residues (N or C-terminal) of Lfcin 17–31 (17FKCRRWQWRMKKLGA31), maintaining in all peptides the 20RRWQWR25 sequence that corresponds to the minimal antimicrobial motif. For this research, also included were (i) a peptide containing an Ala instead of Cys ([Ala19]-LfcinB 17–31) and (ii) polyvalent peptides containing the RRWQWR sequence and a non-natural amino acid (aminocaproic acid). We established that the lineal peptides LfcinB 17–25 and LfcinB 17–26 exhibited the greatest activity against E. coli ATCC 25922 and S. aureus ATCC 25923, respectively. On the other hand, polyvalent peptides, a dimer and a tetramer, exhibited the greatest antibacterial activity, indicating that multiple copies of the sequence increase the activity. Our results suggest that the dimeric and tetrameric sequence forms potentiate the antibacterial activity of lineal sequences that have exhibited moderate antibacterial activity.
Collapse
Affiliation(s)
- Nataly de Jesús Huertas
- Chemistry Department, Universidad Nacional de Colombia, Bogotá Carrera 45 No. 26-85, Building 451, Office 409, Laboratory 334, Bogotá 11321, Colombia.
| | - Zuly Jenny Rivera Monroy
- Chemistry Department, Universidad Nacional de Colombia, Bogotá Carrera 45 No. 26-85, Building 451, Office 409, Laboratory 334, Bogotá 11321, Colombia.
| | - Ricardo Fierro Medina
- Chemistry Department, Universidad Nacional de Colombia, Bogotá Carrera 45 No. 26-85, Building 451, Office 409, Laboratory 334, Bogotá 11321, Colombia.
| | - Javier Eduardo García Castañeda
- Pharmacy Department, Universidad Nacional de Colombia, Bogotá Carrera 45 No. 26-85, Building 450, office 203, Bogotá 11321, Colombia.
| |
Collapse
|
18
|
Huertas Méndez NDJ, Vargas Casanova Y, Gómez Chimbi AK, Hernández E, Leal Castro AL, Melo Diaz JM, Rivera Monroy ZJ, García Castañeda JE. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076. Molecules 2017; 22:molecules22030452. [PMID: 28287494 PMCID: PMC6155255 DOI: 10.3390/molecules22030452] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/01/2017] [Accepted: 03/08/2017] [Indexed: 12/14/2022] Open
Abstract
Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B–containing non-natural amino acids and the RWQWR motif were synthesized, purified, and characterized using RP-HPLC, MALDI-TOF mass spectrometry, and circular dichroism. The antibacterial activity of peptides against Escherichia coli ATCC 11775, Stenotrophomonas maltophilia ATCC 13636, and Salmonella enteritidis ATCC 13076 was evaluated. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The synthetic bovine lactoferricin exhibited antibacterial activity against E. coli ATCC 11775 and S. enteritidis ATCC 13076. The dimeric peptide (RRWQWR)2K-Ahx exhibited the highest antibacterial activity against the tested bacterial strain. The monomeric, cyclic, tetrameric, and palindromic peptides containing the RWQWR motif exhibited high and specific activity against E. coli ATCC 11775. The results suggest that short peptides derived from lactoferricin B could be considered as potential candidates for the development of antibacterial agents against infections caused by E. coli.
Collapse
Affiliation(s)
- Nataly De Jesús Huertas Méndez
- Chemistry Department, Universidad Nacional de Colombia, Bogotá Carrera 45 No 26-85, Building 451, office 409, Bogotá 11321, Colombia.
| | - Yerly Vargas Casanova
- Bacteriology Department, Universidad Colegio Mayor de Cundinamarca, Bogotá Calle 28 No. 5B-02, Bogotá 110311; Colombia.
| | | | - Edith Hernández
- Bacteriology Department, Universidad Colegio Mayor de Cundinamarca, Bogotá Calle 28 No. 5B-02, Bogotá 110311; Colombia.
| | - Aura Lucia Leal Castro
- Medicine Faculty, Universidad Nacional de Colombia, Bogotá Carrera 45 No 26-85, Building 471, Bogotá 11321, Colombia.
| | - Javier Mauricio Melo Diaz
- Chemistry Department, Universidad Nacional de Colombia, Bogotá Carrera 45 No 26-85, Building 451, office 409, Bogotá 11321, Colombia.
| | - Zuly Jenny Rivera Monroy
- Chemistry Department, Universidad Nacional de Colombia, Bogotá Carrera 45 No 26-85, Building 451, office 409, Bogotá 11321, Colombia.
| | - Javier Eduardo García Castañeda
- Pharmacy Department, Universidad Nacional de Colombia, Bogotá Carrera 45 No 26-85, Building 450, office 203, Bogotá 11321, Colombia.
| |
Collapse
|
19
|
Reyes-Cortes R, Acosta-Smith E, Mondragón-Flores R, Nazmi K, Bolscher JGM, Canizalez-Roman A, Leon-Sicairos N. Antibacterial and cell penetrating effects of LFcin17-30, LFampin265-284, and LF chimera on enteroaggregative Escherichia coli. Biochem Cell Biol 2016; 95:76-81. [PMID: 28165291 DOI: 10.1139/bcb-2016-0088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lactoferrin (LF) is a protein with antimicrobial activity, which is conferred in part by 2 regions contained in its N-terminal lobe. These regions have been used to develop the following synthetic peptides: lactoferricin17-30, lactoferrampin265-284, and LF chimera (a fusion of lactoferricin17-30 and lactoferrampin265-284). We have reported that these LF peptides have antibacterial activity against several pathogenic bacteria; however, the exact mechanism of action has not been established. Here, we report the effects of LF peptides on the viability of enteroaggregative Escherichia coli (EAEC) and the ability of these peptides to penetrate into the bacteria cytoplasm. The viability of EAEC treated with LF peptides was determined via enumeration of colony-forming units, and the binding and internalization of the LF peptides was followed via immunogold labeling and electron microscopy. Treatment of EAEC with 20 and 40 μmol/L LF peptides reduced bacterial growth compared with untreated bacteria. Initially the peptides associated with the plasma membrane, but after 5 to 30 min of incubation, the peptides were found in the cytoplasm. Remarkably, bacteria treated with LF chimera developed cytosolic electron-dense structures that contained the antimicrobial peptide. Our results suggest that the antibacterial mechanism of LF peptides on EAEC involves their interaction with and penetration into the bacteria.
Collapse
Affiliation(s)
- Ruth Reyes-Cortes
- a CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa, Cedros y Sauces, Fracc. Fresnos C.P. 80246, Culiacán, Sinaloa, Mexico
| | - Erika Acosta-Smith
- a CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa, Cedros y Sauces, Fracc. Fresnos C.P. 80246, Culiacán, Sinaloa, Mexico
| | - Ricardo Mondragón-Flores
- b Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Avenida IPN #2508, Del. G.A. Madero, Ciudad de México, Mexico
| | - Kamran Nazmi
- c Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, 1081 LA, Amsterdam, the Netherlands
| | - Jan G M Bolscher
- c Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, 1081 LA, Amsterdam, the Netherlands
| | - Adrian Canizalez-Roman
- a CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa, Cedros y Sauces, Fracc. Fresnos C.P. 80246, Culiacán, Sinaloa, Mexico.,d Departamento de Investigación, Hospital de la Mujer, Boulevard Miguel Tamayo Espinoza de los Monteros S/N, Col. Desarrollo Urbano Tres Ríos, Culiacán 80020, Sinaloa, Mexico
| | - Nidia Leon-Sicairos
- a CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa, Cedros y Sauces, Fracc. Fresnos C.P. 80246, Culiacán, Sinaloa, Mexico.,e Departamento de Investigación, Hospital Pediátrico de Sinaloa, Boulevard Constitución S/N, col. Jorge Almada, Culiacan 80200, Sinaloa, Mexico
| |
Collapse
|
20
|
Ho YH, Shah P, Chen YW, Chen CS. Systematic Analysis of Intracellular-targeting Antimicrobial Peptides, Bactenecin 7, Hybrid of Pleurocidin and Dermaseptin, Proline-Arginine-rich Peptide, and Lactoferricin B, by Using Escherichia coli Proteome Microarrays. Mol Cell Proteomics 2016; 15:1837-47. [PMID: 26902206 DOI: 10.1074/mcp.m115.054999] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Indexed: 01/12/2023] Open
Abstract
Antimicrobial peptides (AMPs) act either through membrane lysis or by attacking intracellular targets. Intracellular targeting AMPs are a resource for antimicrobial agent development. Several AMPs have been identified as intracellular targeting peptides; however, the intracellular targets of many of these peptides remain unknown. In the present study, we used an Escherichia coli proteome microarray to systematically identify the protein targets of three intracellular targeting AMPs: bactenecin 7 (Bac7), a hybrid of pleurocidin and dermaseptin (P-Der), and proline-arginine-rich peptide (PR-39). In addition, we also included the data of lactoferricin B (LfcinB) from our previous study for a more comprehensive analysis. We analyzed the unique protein hits of each AMP in the Kyoto Encyclopedia of Genes and Genomes. The results indicated that Bac7 targets purine metabolism and histidine kinase, LfcinB attacks the transcription-related activities and several cellular carbohydrate biosynthetic processes, P-Der affects several catabolic processes of small molecules, and PR-39 preferentially recognizes proteins involved in RNA- and folate-metabolism-related cellular processes. Moreover, both Bac7 and LfcinB target purine metabolism, whereas LfcinB and PR-39 target lipopolysaccharide biosynthesis. This suggested that LfcinB and Bac7 as well as LfcinB and PR-39 have a synergistic effect on antimicrobial activity, which was validated through antimicrobial assays. Furthermore, common hits of all four AMPs indicated that all of them target arginine decarboxylase, which is a crucial enzyme for Escherichia coli survival in extremely acidic environments. Thus, these AMPs may display greater inhibition to bacterial growth in extremely acidic environments. We have also confirmed this finding in bacterial growth inhibition assays. In conclusion, this comprehensive identification and systematic analysis of intracellular targeting AMPs reveals crucial insights into the intracellular mechanisms of the action of AMPs.
Collapse
Affiliation(s)
- Yu-Hsuan Ho
- From the ‡Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli 32001, Taiwan; §Department of Biomedical Science and Engineering, National Central University, Jhongli 32001, Taiwan
| | - Pramod Shah
- From the ‡Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli 32001, Taiwan; §Department of Biomedical Science and Engineering, National Central University, Jhongli 32001, Taiwan
| | - Yi-Wen Chen
- From the ‡Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli 32001, Taiwan; §Department of Biomedical Science and Engineering, National Central University, Jhongli 32001, Taiwan
| | - Chien-Sheng Chen
- From the ‡Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli 32001, Taiwan; §Department of Biomedical Science and Engineering, National Central University, Jhongli 32001, Taiwan
| |
Collapse
|
21
|
Murdock C, Chikindas ML, Matthews KR. The Pepsin Hydrolysate of Bovine Lactoferrin Causes a Collapse of the Membrane Potential in Escherichia coli O157:H7. Probiotics Antimicrob Proteins 2016; 2:112-9. [PMID: 26781120 DOI: 10.1007/s12602-010-9039-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the present study, the ability of bovine lactoferrin hydrolysate (LfH) to disrupt the cytoplasmic membrane of Escherichia coli O157:H7 was investigated. Lactoferrin and LfH antimicrobial activities were compared against E. coli O157:H7 and E. coli O157:H7 spheroplasts. The effect of LfH on the cytoplasmic membrane of E. coli O157:H7 cells was determined by evaluating potassium efflux (K(+)), dissipation of ATP and membrane potential (ΔΨ). LfH produced a rapid efflux of potassium ions, a decrease in intracellular levels of ATP coupled with a substantial increase in extracellular ATP levels and a complete dissipation of the ΔΨ. The results suggest that LfH causes a collapse of the membrane integrity by pore formation in the inner membrane, leading to the death of the cell. Moreover, the mechanism of action of LfH on E. coli O157:H7 appears to involve an interference with the inner membrane integrity based on experiments using E. coli O157:H7 spheroplasts.
Collapse
Affiliation(s)
- Christopher Murdock
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ, 08901-8520, USA
| | - Michael L Chikindas
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ, 08901-8520, USA
| | - Karl R Matthews
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ, 08901-8520, USA.
| |
Collapse
|
22
|
Chilton CH, Crowther GS, Śpiewak K, Brindell M, Singh G, Wilcox MH, Monaghan TM. Potential of lactoferrin to prevent antibiotic-induced Clostridium difficile infection. J Antimicrob Chemother 2016; 71:975-85. [PMID: 26759363 PMCID: PMC4790624 DOI: 10.1093/jac/dkv452] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/24/2015] [Indexed: 12/15/2022] Open
Abstract
Objectives Clostridium difficile infection (CDI) is a global healthcare problem. Recent evidence suggests that the availability of iron may be important for C. difficile growth. This study evaluated the comparative effects of iron-depleted (1% Fe3+ saturated) bovine apo-lactoferrin (apo-bLf) and iron-saturated (85% Fe3+ saturated) bovine holo-lactoferrin (holo-bLf) in a human in vitro gut model that simulates CDI. Methods Two parallel triple-stage chemostat gut models were inoculated with pooled human faeces and spiked with C. difficile spores (strain 027 210, PCR ribotype 027). Holo- or apo-bLf was instilled (5 mg/mL, once daily) for 35 days. After 7 days, clindamycin was instilled (33.9 mg/L, four times daily) to induce simulated CDI. Indigenous microflora populations, C. difficile total counts and spores, cytotoxin titres, short chain fatty acid concentrations, biometal concentrations, lactoferrin concentration and iron content of lactoferrin were monitored daily. Results In the apo-bLf model, germination of C. difficile spores occurred 6 days post instillation of clindamycin, followed by rapid vegetative cell proliferation and detectable toxin production. By contrast, in the holo-bLf model, only a modest vegetative cell population was observed until 16 days post antibiotic administration. Notably, no toxin was detected in this model. In separate batch culture experiments, holo-bLf prevented C. difficile vegetative cell growth and toxin production, whereas apo-bLf and iron alone did not. Conclusions Holo-bLf, but not apo-bLf, delayed C. difficile growth and prevented toxin production in a human gut model of CDI. This inhibitory effect may be iron independent. These observations suggest that bLf in its iron-saturated state could be used as a novel preventative or treatment strategy for CDI.
Collapse
Affiliation(s)
- C H Chilton
- Leeds Institute for Molecular Medicine, University of Leeds, Leeds, UK
| | - G S Crowther
- Leeds Institute for Molecular Medicine, University of Leeds, Leeds, UK
| | - K Śpiewak
- Department of Inorganic Chemistry, Jagiellonian University, Krakow, Poland
| | - M Brindell
- Department of Inorganic Chemistry, Jagiellonian University, Krakow, Poland
| | - G Singh
- NIHR Biomedical Research Unit in Gastrointestinal and Liver Diseases at Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, UK
| | - M H Wilcox
- Leeds Institute for Molecular Medicine, University of Leeds, Leeds, UK
| | - T M Monaghan
- NIHR Biomedical Research Unit in Gastrointestinal and Liver Diseases at Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, UK
| |
Collapse
|
23
|
Ultrastructural effects and antibiofilm activity of LFchimera against Burkholderia pseudomallei. World J Microbiol Biotechnol 2016; 32:33. [DOI: 10.1007/s11274-015-1988-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/28/2015] [Indexed: 01/28/2023]
|
24
|
Brannan AM, Whelan WA, Cole E, Booth V. Differential scanning calorimetry of whole Escherichia coli treated with the antimicrobial peptide MSI-78 indicate a multi-hit mechanism with ribosomes as a novel target. PeerJ 2015; 3:e1516. [PMID: 26713257 PMCID: PMC4690349 DOI: 10.7717/peerj.1516] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/27/2015] [Indexed: 11/20/2022] Open
Abstract
Differential Scanning Calorimetry (DSC) of intact Escherichia coli (E. coli) was used to identify non-lipidic targets of the antimicrobial peptide (AMP) MSI-78. The DSC thermograms revealed that, in addition to its known lytic properties, MSI-78 also has a striking effect on ribosomes. MSI-78’s effect on DSC scans of bacteria was similar to that of kanamycin, an antibiotic drug known to target the 30S small ribosomal subunit. An in vitro transcription/translation assay helped confirm MSI-78’s targeting of ribosomes. The scrambled version of MSI-78 also affected the ribosome peak of the DSC scans, but required greater amounts of peptide to cause a similar effect to the unscrambled peptide. Furthermore, the effect of the scrambled peptide was not specific to the ribosomes; other regions of the DSC thermogram were also affected. These results suggest that MSI-78’s effects on E. coli are at least somewhat dependent on its particular structural features, rather than a sole function of its overall charge and hydrophobicity. When considered along with earlier work detailing MSI-78’s membrane lytic properties, it appears that MSI-78 operates via a multi-hit mechanism with multiple targets.
Collapse
Affiliation(s)
- Alexander M Brannan
- Department of Biochemistry, Memorial University of Newfoundland , St. John's Newfoundland and Labrador , Canada
| | - William A Whelan
- Department of Biochemistry, Memorial University of Newfoundland , St. John's Newfoundland and Labrador , Canada
| | - Emma Cole
- Department of Biochemistry, Memorial University of Newfoundland , St. John's Newfoundland and Labrador , Canada
| | - Valerie Booth
- Department of Biochemistry, Memorial University of Newfoundland , St. John's Newfoundland and Labrador , Canada ; Department of Physics and Physical Oceanography, Memorial University of Newfoundland , St. John's Newfoundland and Labrador , Canada
| |
Collapse
|
25
|
Godoy-Gallardo M, Mas-Moruno C, Yu K, Manero JM, Gil FJ, Kizhakkedathu JN, Rodriguez D. Antibacterial Properties of hLf1–11 Peptide onto Titanium Surfaces: A Comparison Study Between Silanization and Surface Initiated Polymerization. Biomacromolecules 2015; 16:483-96. [DOI: 10.1021/bm501528x] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Maria Godoy-Gallardo
- Biomaterials,
Biomechanics and Tissue Engineering Group, Department of Materials
Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Avenida Diagonal 647, 08028-Barcelona, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus Río Ebro,
Edificio I+D Bloque 5, 1a planta, c/Poeta Mariano Esquillor
s/n, 50018-Zaragoza, Spain
- Centre for Research in NanoEngineering (CRNE) - UPC, C/Pascual i Vila 15, 08028-Barcelona, Spain
| | - Carlos Mas-Moruno
- Biomaterials,
Biomechanics and Tissue Engineering Group, Department of Materials
Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Avenida Diagonal 647, 08028-Barcelona, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus Río Ebro,
Edificio I+D Bloque 5, 1a planta, c/Poeta Mariano Esquillor
s/n, 50018-Zaragoza, Spain
- Centre for Research in NanoEngineering (CRNE) - UPC, C/Pascual i Vila 15, 08028-Barcelona, Spain
| | - Kai Yu
- Centre
for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, British Columbia Canada, V6T 1Z3
| | - José M. Manero
- Biomaterials,
Biomechanics and Tissue Engineering Group, Department of Materials
Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Avenida Diagonal 647, 08028-Barcelona, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus Río Ebro,
Edificio I+D Bloque 5, 1a planta, c/Poeta Mariano Esquillor
s/n, 50018-Zaragoza, Spain
- Centre for Research in NanoEngineering (CRNE) - UPC, C/Pascual i Vila 15, 08028-Barcelona, Spain
| | - Francisco J. Gil
- Biomaterials,
Biomechanics and Tissue Engineering Group, Department of Materials
Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Avenida Diagonal 647, 08028-Barcelona, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus Río Ebro,
Edificio I+D Bloque 5, 1a planta, c/Poeta Mariano Esquillor
s/n, 50018-Zaragoza, Spain
- Centre for Research in NanoEngineering (CRNE) - UPC, C/Pascual i Vila 15, 08028-Barcelona, Spain
| | - Jayachandran N. Kizhakkedathu
- Centre
for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, British Columbia Canada, V6T 1Z3
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia Canada, V6T 1Z1
| | - Daniel Rodriguez
- Biomaterials,
Biomechanics and Tissue Engineering Group, Department of Materials
Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Avenida Diagonal 647, 08028-Barcelona, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus Río Ebro,
Edificio I+D Bloque 5, 1a planta, c/Poeta Mariano Esquillor
s/n, 50018-Zaragoza, Spain
- Centre for Research in NanoEngineering (CRNE) - UPC, C/Pascual i Vila 15, 08028-Barcelona, Spain
| |
Collapse
|
26
|
León-Sicairos N, Angulo-Zamudio UA, Vidal JE, López-Torres CA, Bolscher JGM, Nazmi K, Reyes-Cortes R, Reyes-López M, de la Garza M, Canizalez-Román A. Bactericidal effect of bovine lactoferrin and synthetic peptide lactoferrin chimera in Streptococcus pneumoniae and the decrease in luxS gene expression by lactoferrin. Biometals 2014; 27:969-80. [PMID: 25053107 DOI: 10.1007/s10534-014-9775-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/05/2014] [Indexed: 11/28/2022]
Abstract
Streptococcus pneumoniae (pneumococcus) is responsible for nearly one million child deaths annually. Pneumococcus causes infections such as pneumonia, otitis media, meningitis, and sepsis. The human immune system includes antibacterial peptides and proteins such as lactoferrin (LF), but its activity against pneumococcus is not fully understood. The aim of this work was to evaluate the bactericidal effect of bovine lactoferrin (bLF) and the synthetic LF-peptides lactoferricin (LFcin17-30), lactoferrampin (LFampin265-284), and LFchimera against S. pneumoniae planktonic cells. The mechanism of damage was also investigated, as well as the impact of these peptides on the transcription levels of genes known to encode important virulence factors. S. pneumoniae planktonic cells were treated with bLF, LFcin17-30, LFampin265-284 and LFchimera at different time points. The viability of treated planktonic cells was assessed by dilution and plating (in CFU/ml). The interaction between LF and LF-peptides coupled to fluorescein was visualized using a confocal microscope and flow cytometry, whereas the damage at structural levels was observed by electron microscopy. Damage to bacterial membranes was further evaluated by membrane permeabilization by use of propidium iodide and flow cytometry, and finally, the expression of pneumococcal genes was evaluated by qRT-PCR. bLF and LFchimera were the best bactericidal agents. bLF and peptides interacted with bacteria causing changes in the shape and size of the cell and membrane permeabilization. Moreover, the luxS gene was down-regulated in bacteria treated with LF. In conclusion, LF and LFchimera have a bactericidal effect, and LF down-regulates genes involved in the pathogenicity of pneumococcus, thus demonstrating potential as new agents for the treatment of pneumococcal infections.
Collapse
Affiliation(s)
- Nidia León-Sicairos
- Unidad de Investigación, Facultad de Medicina, Universidad Autónoma de Sinaloa, Cedros y Sauces, Fracc. Fresnos., C.P. 80246, Culiacán, Sinaloa, Mexico,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Arias M, McDonald LJ, Haney EF, Nazmi K, Bolscher JGM, Vogel HJ. Bovine and human lactoferricin peptides: chimeras and new cyclic analogs. Biometals 2014; 27:935-48. [DOI: 10.1007/s10534-014-9753-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
|
28
|
Wada Y, Lönnerdal B. Bioactive peptides derived from human milk proteins — mechanisms of action. J Nutr Biochem 2014; 25:503-14. [DOI: 10.1016/j.jnutbio.2013.10.012] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/03/2013] [Accepted: 10/23/2013] [Indexed: 01/14/2023]
|
29
|
Killing of Mycobacterium avium by lactoferricin peptides: improved activity of arginine- and D-amino-acid-containing molecules. Antimicrob Agents Chemother 2014; 58:3461-7. [PMID: 24709266 DOI: 10.1128/aac.02728-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mycobacterium avium causes respiratory disease in susceptible individuals, as well as disseminated infections in immunocompromised hosts, being an important cause of morbidity and mortality among these populations. Current therapies consist of a combination of antibiotics taken for at least 6 months, with no more than 60% overall clinical success. Furthermore, mycobacterial antibiotic resistance is increasing worldwide, urging the need to develop novel classes of antimicrobial drugs. One potential and interesting alternative strategy is the use of antimicrobial peptides (AMP). These are present in almost all living organisms as part of their immune system, acting as a first barrier against invading pathogens. In this context, we investigated the effect of several lactoferrin-derived AMP against M. avium. Short peptide sequences from both human and bovine lactoferricins, namely, hLFcin1-11 and LFcin17-30, as well as variants obtained by specific amino acid substitutions, were evaluated. All tested peptides significantly inhibited the axenic growth of M. avium, the bovine peptides being more active than the human. Arginine residues were found to be crucial for the display of antimycobacterial activity, whereas the all-d-amino-acid analogue of the bovine sequence displayed the highest mycobactericidal activity. These findings reveal the promising potential of lactoferricins against mycobacteria, thus opening the way for further research on their development and use as a new weapon against mycobacterial infections.
Collapse
|
30
|
Zweytick D, Japelj B, Mileykovskaya E, Zorko M, Dowhan W, Blondelle SE, Riedl S, Jerala R, Lohner K. N-acylated peptides derived from human lactoferricin perturb organization of cardiolipin and phosphatidylethanolamine in cell membranes and induce defects in Escherichia coli cell division. PLoS One 2014; 9:e90228. [PMID: 24595074 PMCID: PMC3940911 DOI: 10.1371/journal.pone.0090228] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/31/2014] [Indexed: 11/18/2022] Open
Abstract
Two types of recently described antibacterial peptides derived from human lactoferricin, either nonacylated or N-acylated, were studied for their different interaction with membranes of Escherichia coli in vivo and in model systems. Electron microscopy revealed striking effects on the bacterial membrane as both peptide types induced formation of large membrane blebs. Electron and fluorescence microscopy, however demonstrated that only the N-acylated peptides partially induced the generation of oversized cells, which might reflect defects in cell-division. Further a different distribution of cardiolipin domains on the E. coli membrane was shown only in the presence of the N-acylated peptides. The lipid was distributed over the whole bacterial cell surface, whereas cardiolipin in untreated and nonacylated peptide-treated cells was mainly located at the septum and poles. Studies with bacterial membrane mimics, such as cardiolipin or phosphatidylethanolamine revealed that both types of peptides interacted with the negatively charged lipid cardiolipin. The nonacylated peptides however induced segregation of cardiolipin into peptide-enriched and peptide-poor lipid domains, while the N-acylated peptides promoted formation of many small heterogeneous domains. Only N-acylated peptides caused additional severe effects on the main phase transition of liposomes composed of pure phosphatidylethanolamine, while both peptide types inhibited the lamellar to hexagonal phase transition. Lipid mixtures of phosphatidylethanolamine and cardiolipin revealed anionic clustering by all peptide types. However additional strong perturbation of the neutral lipids was only seen with the N-acylated peptides. Nuclear magnetic resonance demonstrated different conformational arrangement of the N-acylated peptide in anionic and zwitterionic micelles revealing possible mechanistic differences in their action on different membrane lipids. We hypothesized that both peptides kill bacteria by interacting with bacterial membrane lipids but only N-acylated peptides interact with both charged cardiolipin and zwitterionic phosphatidylethanolamine resulting in remodeling of the natural phospholipid domains in the E. coli membrane that leads to defects in cell division.
Collapse
Affiliation(s)
- Dagmar Zweytick
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Graz, Austria
- * E-mail:
| | - Bostjan Japelj
- Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Eugenia Mileykovskaya
- Department of Biochemistry and Molecular Biology, University of Texas Medical School-Houston, Houston, Texas, United States of America
| | - Mateja Zorko
- Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - William Dowhan
- Department of Biochemistry and Molecular Biology, University of Texas Medical School-Houston, Houston, Texas, United States of America
| | - Sylvie E. Blondelle
- Department of Biochemistry, Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Sabrina Riedl
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Graz, Austria
| | - Roman Jerala
- Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia
- Centre of Excellence EN-FIST, Ljubljana, Slovenia
| | - Karl Lohner
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Graz, Austria
| |
Collapse
|
31
|
Lichtenecker RJ, Ellinger B, Han HM, Jadhav KB, Baumann S, Makarewicz O, Grabenbauer M, Arndt HD. Iterative antimicrobial candidate selection from informed d-/l-Peptide dimer libraries. Chembiochem 2013; 14:2492-9. [PMID: 24151156 DOI: 10.1002/cbic.201300243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Indexed: 11/11/2022]
Abstract
Growing resistance to antibiotics, as well as newly emerging pathogens, stimulate the investigation of antimicrobial peptides (AMPs) as therapeutic agents. Here, we report a new library design concept based on a stochastic distribution of natural AMP amino acid sequences onto half-length synthetic peptides. For these compounds, a non-natural motif of alternating D- and L-backbone stereochemistry of the peptide chain predisposed for β-helix formation was explored. Synthetic D-/L-peptides with permuted half-length sequences were delineated from a full-length starter sequence and covalently recombined to create two-dimensional compound arrays for antibacterial screening. Using the natural AMP magainin as a seed sequence, we identified and iteratively optimized hit compounds showing high antimicrobial activity against Gram-positive and Gram-negative bacteria with low hemolytic activity. Cryo-electron microscopy characterized the membrane-associated mechanism of action of the new D-/L-peptide antibiotics.
Collapse
Affiliation(s)
- Roman J Lichtenecker
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund (Germany); Current address: Institute of Organic Chemistry, University of Vienna, Währingerstrasse 38, 1090 Wien (Austria)
| | | | | | | | | | | | | | | |
Collapse
|
32
|
van der Weerden NL, Bleackley MR, Anderson MA. Properties and mechanisms of action of naturally occurring antifungal peptides. Cell Mol Life Sci 2013; 70:3545-70. [PMID: 23381653 PMCID: PMC11114075 DOI: 10.1007/s00018-013-1260-1] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/11/2012] [Accepted: 01/03/2013] [Indexed: 01/06/2023]
Abstract
Antimicrobial peptides are a vital component of the innate immune system of all eukaryotic organisms and many of these peptides have potent antifungal activity. They have potential application in the control of fungal pathogens that are a serious threat to both human health and food security. Development of antifungal peptides as therapeutics requires an understanding of their mechanism of action on fungal cells. To date, most research on antimicrobial peptides has focused on their activity against bacteria. Several antimicrobial peptides specifically target fungal cells and are not active against bacteria. Others with broader specificity often have different mechanisms of action against bacteria and fungi. This review focuses on the mechanism of action of naturally occurring antifungal peptides from a diverse range of sources including plants, mammals, amphibians, insects, crabs, spiders, and fungi. While antimicrobial peptides were originally proposed to act via membrane permeabilization, the mechanism of antifungal activity for these peptides is generally more complex and often involves entry of the peptide into the cell.
Collapse
|
33
|
Holton TA, Pollastri G, Shields DC, Mooney C. CPPpred: prediction of cell penetrating peptides. ACTA ACUST UNITED AC 2013; 29:3094-6. [PMID: 24064418 DOI: 10.1093/bioinformatics/btt518] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cell penetrating peptides (CPPs) are attracting much attention as a means of overcoming the inherently poor cellular uptake of various bioactive molecules. Here, we introduce CPPpred, a web server for the prediction of CPPs using a N-to-1 neural network. The server takes one or more peptide sequences, between 5 and 30 amino acids in length, as input and returns a prediction of how likely each peptide is to be cell penetrating. CPPpred was developed with redundancy reduced training and test sets, offering an advantage over the only other currently available CPP prediction method.
Collapse
Affiliation(s)
- Thérèse A Holton
- Complex and Adaptive Systems Laboratory, Conway Institute of Biomolecular and Biomedical Science, School of Medicine and Medical Science, Food For Health Ireland and School of Computer Science and Informatics, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
34
|
Haney EF, Petersen AP, Lau CK, Jing W, Storey DG, Vogel HJ. Mechanism of action of puroindoline derived tryptophan-rich antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1802-13. [DOI: 10.1016/j.bbamem.2013.03.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/24/2013] [Accepted: 03/25/2013] [Indexed: 02/06/2023]
|
35
|
Silva T, Adão R, Nazmi K, Bolscher JG, Funari SS, Uhríková D, Bastos M. Structural diversity and mode of action on lipid membranes of three lactoferrin candidacidal peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1329-39. [DOI: 10.1016/j.bbamem.2013.01.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
|
36
|
Antimicrobial lactoferrin peptides: the hidden players in the protective function of a multifunctional protein. INTERNATIONAL JOURNAL OF PEPTIDES 2013; 2013:390230. [PMID: 23554820 PMCID: PMC3608178 DOI: 10.1155/2013/390230] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/22/2013] [Indexed: 11/17/2022]
Abstract
Lactoferrin is a multifunctional, iron-binding glycoprotein which displays a wide array of modes of action to execute its primary antimicrobial function. It contains various antimicrobial peptides which are released upon its hydrolysis by proteases. These peptides display a similarity with the antimicrobial cationic peptides found in nature. In the current scenario of increasing resistance to antibiotics, there is a need for the discovery of novel antimicrobial drugs. In this context, the structural and functional perspectives on some of the antimicrobial peptides found in N-lobe of lactoferrin have been reviewed. This paper provides the comparison of lactoferrin peptides with other antimicrobial peptides found in nature as well as interspecies comparison of the structural properties of these peptides within the native lactoferrin.
Collapse
|
37
|
Olajuyigbe OO, Afolayan AJ. Synergistic interactions of methanolic extract of Acacia mearnsii De Wild. with antibiotics against bacteria of clinical relevance. Int J Mol Sci 2012; 13:8915-8932. [PMID: 22942742 PMCID: PMC3430273 DOI: 10.3390/ijms13078915] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/27/2012] [Accepted: 07/10/2012] [Indexed: 02/07/2023] Open
Abstract
With the emergence of multidrug-resistant organisms, combining medicinal plants with synthetic or orthodox medicines against resistant bacteria becomes necessary. In this study, interactions between methanolic extract of Acacia mearnsii and eight antibiotics were investigated by agar diffusion and checkerboard assays. The minimum inhibitory concentrations (MICs) of all the antibiotics ranged between 0.020 and 500 μg/mL while that of the crude extract varied between 0.156 and 1.25 mg/mL. The agar diffusion assay showed that extract-kanamycin combination had zones of inhibition ≥20 ± 1.0 mm in all the bacteria tested (100%), followed by extract-chloramphenicol (90%) > extract-ciprofloxacin = extract-tetracycline (70%) > extract-amoxicillin (60%) > extract-nalidixic acid (50%) > extract-erythromycin (40%) > extract-metronidazole (20%). The checkerboard showed synergistic interaction (61.25%), additivity/indifference (23.75%) and antagonistic (15%) effects. The synergistic interaction was most expressed by combining the extract with tetracycline, metronidazole, amoxicillin, ciprofloxacin, chloramphenicol and nalidixic acid against E. coli (ATCC 25922), erythromycin, metronidazole, amoxicillin, chloramphenicol and kanamycin against S. aureus (ATCC 6538), erythromycin, tetracycline, amoxicillin, nalidixic acid and chloramphenicol against B. subtilis KZN, erythromycin, metronidazole and amoxicillin against E. faecalis KZN, erythromycin, tetracycline, nalidixic acid and chloramphenicol against K. pneumoniae (ATCC 10031), erythromycin, tetracycline, metronidazole and chloramphenicol against P. vulgaris (ATCC 6830), erythromycin, tetracycline, amoxicillin and chloramphenicol against S. sonnei (ATCC 29930), metronidazole, amoxicillin and chloramphenicol against E. faecalis (ATCC 29212) and ciprofloxacin and chloramphenicol against Proteus vulgaris KZN. The synergistic interactions indicated that the bactericidal potentials of the antibacterial agents were improved and combining natural products with antibiotic could be potential sources for resistance-modifying agents useful against infectious multi-drug resistant bacteria.
Collapse
Affiliation(s)
- Olufunmiso O. Olajuyigbe
- Phytomedicine Research Centre, Department of Botany, University of Fort Hare, Alice 5700, South Africa; E-Mail:
| | - Anthony J. Afolayan
- Phytomedicine Research Centre, Department of Botany, University of Fort Hare, Alice 5700, South Africa; E-Mail:
| |
Collapse
|
38
|
Silva T, Abengózar MÁ, Fernández-Reyes M, Andreu D, Nazmi K, Bolscher JGM, Bastos M, Rivas L. Enhanced leishmanicidal activity of cryptopeptide chimeras from the active N1 domain of bovine lactoferrin. Amino Acids 2012; 43:2265-77. [PMID: 22543751 DOI: 10.1007/s00726-012-1304-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 04/17/2012] [Indexed: 11/28/2022]
Abstract
Two antimicrobial cryptopeptides from the N1 domain of bovine lactoferrin, lactoferricin (LFcin17-30) and lactoferrampin (LFampin265-284), together with a hybrid version (LFchimera), were tested against the protozoan parasite Leishmania. All peptides were leishmanicidal against Leishmania donovani promastigotes, and LFchimera showed a significantly higher activity over its two composing moieties. Besides, it was the only peptide active on Leishmania pifanoi axenic amastigotes, already showing activity below 10 μM. To investigate their leishmanicidal mechanism, promastigote membrane permeabilization was assessed by decrease of free ATP levels in living parasites, entrance of the vital dye SYTOX Green (MW = 600 Da) and confocal and transmission electron microscopy. The peptides induced plasma membrane permeabilization and bioenergetic collapse of the parasites. To further clarify the structural traits underlying the increased leishmanicidal activity of LFchimera, the activity of several analogues was assessed. Results revealed that the high activity of these hybrid peptides seems to be related to the order and sequence orientation of the two cryptopeptide moieties, rather than to their particular linkage through an additional lysine, as in the initial LFchimera. The incorporation of both antimicrobial cryptopeptide motifs into a single linear sequence facilitates chemical synthesis and should help in the potential clinical application of these optimized analogues.
Collapse
Affiliation(s)
- Tânia Silva
- Departamento de Química e Bioquímica, Faculdade de Ciências, Centro Investigação em Química CIQ(UP), Universidade do Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Deciphering the magainin resistance process of Escherichia coli strains in light of the cytosolic proteome. Antimicrob Agents Chemother 2012; 56:1714-24. [PMID: 22290970 DOI: 10.1128/aac.05558-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial peptides (AMPs) are effective antibiotic agents commonly found in plants, animals, and microorganisms, and they have been suggested as the future of antimicrobial chemotherapies. It is vital to understand the molecular details that define the mechanism of action of resistance to AMPs for a rational planning of the next antibiotic generation and also to shed some light on the complex AMP mechanism of action. Here, the antibiotic resistance of Escherichia coli ATCC 8739 to magainin I was evaluated in the cytosolic subproteome. Magainin-resistant strains were selected after 10 subsequent spreads at subinhibitory concentrations of magainin I (37.5 mg · liter⁻¹), and their cytosolic proteomes were further compared to those of magainin-susceptible strains through two-dimensional electrophoresis analysis. As a result, 41 differentially expressed proteins were detected by in silico analysis and further identified by tandem mass spectrometry de novo sequencing. Functional categorization indicated an intense metabolic response mainly in energy and nitrogen uptake, stress response, amino acid conversion, and cell wall thickness. Indeed, data reported here show that resistance to cationic antimicrobial peptides possesses a greater molecular complexity than previously supposed, resulting in cell commitment to several metabolic pathways.
Collapse
|
40
|
Haney EF, Nazmi K, Bolscher JGM, Vogel HJ. Structural and biophysical characterization of an antimicrobial peptide chimera comprised of lactoferricin and lactoferrampin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:762-75. [PMID: 22155682 DOI: 10.1016/j.bbamem.2011.11.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 12/17/2022]
Abstract
Lactoferricin and lactoferrampin are two antimicrobial peptides found in the N-terminal lobe of bovine lactoferrin with broad spectrum antimicrobial activity against a range of Gram-positive and Gram-negative bacteria as well as Candida albicans. A heterodimer comprised of lactoferrampin joined to a fragment of lactoferricin was recently reported in which these two peptides were joined at their C-termini through the two amino groups of a single Lys residue (Bolscher et al., 2009, Biochimie 91(1):123-132). This hybrid peptide, termed LFchimera, has significantly higher antimicrobial activity compared to the individual peptides or an equimolar mixture of the two. In this work, the underlying mechanism behind the increased antibacterial activity of LFchimera was investigated. Differential scanning calorimetry studies demonstrated that all the peptides influenced the thermotropic phase behaviour of anionic phospholipid suspensions. Calcein leakage and vesicle fusion experiments with anionic liposomes revealed that LFchimera had enhanced membrane perturbing properties compared to the individual peptides. Peptide structures were evaluated using circular dichroism and NMR spectroscopy to gain insight into the structural features of LFchimera that contribute to the increased antimicrobial activity. The NMR solution structure, determined in a miscible co-solvent mixture of chloroform, methanol and water, revealed that the Lys linkage increased the helical content in LFchimera compared to the individual peptides, but it did not fix the relative orientations of lactoferricin and lactoferrampin with respect to each other. The structure of LFchimera provides insight into the conformation of this peptide in a membranous environment and improves our understanding of its antimicrobial mechanism of action.
Collapse
Affiliation(s)
- Evan F Haney
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
41
|
Tu YH, Ho YH, Chuang YC, Chen PC, Chen CS. Identification of lactoferricin B intracellular targets using an Escherichia coli proteome chip. PLoS One 2011; 6:e28197. [PMID: 22164243 PMCID: PMC3229523 DOI: 10.1371/journal.pone.0028197] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 11/03/2011] [Indexed: 12/16/2022] Open
Abstract
Lactoferricin B (LfcinB) is a well-known antimicrobial peptide. Several studies have indicated that it can inhibit bacteria by affecting intracellular activities, but the intracellular targets of this antimicrobial peptide have not been identified. Therefore, we used E. coli proteome chips to identify the intracellular target proteins of LfcinB in a high-throughput manner. We probed LfcinB with E. coli proteome chips and further conducted normalization and Gene Ontology (GO) analyses. The results of the GO analyses showed that the identified proteins were associated with metabolic processes. Moreover, we validated the interactions between LfcinB and chip assay-identified proteins with fluorescence polarization (FP) assays. Sixteen proteins were identified, and an E. coli interaction database (EcID) analysis revealed that the majority of the proteins that interact with these 16 proteins affected the tricarboxylic acid (TCA) cycle. Knockout assays were conducted to further validate the FP assay results. These results showed that phosphoenolpyruvate carboxylase was a target of LfcinB, indicating that one of its mechanisms of action may be associated with pyruvate metabolism. Thus, we used pyruvate assays to conduct an in vivo validation of the relationship between LfcinB and pyruvate level in E. coli. These results showed that E. coli exposed to LfcinB had abnormal pyruvate amounts, indicating that LfcinB caused an accumulation of pyruvate. In conclusion, this study successfully revealed the intracellular targets of LfcinB using an E. coli proteome chip approach.
Collapse
Affiliation(s)
- Yu-Hsuan Tu
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli City, Taiwan
| | - Yu-Hsuan Ho
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli City, Taiwan
| | - Ying-Chih Chuang
- Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan
| | - Po-Chung Chen
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli City, Taiwan
| | - Chien-Sheng Chen
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli City, Taiwan
- * E-mail:
| |
Collapse
|
42
|
Ho YH, Sung TC, Chen CS. Lactoferricin B inhibits the phosphorylation of the two-component system response regulators BasR and CreB. Mol Cell Proteomics 2011; 11:M111.014720. [PMID: 22138548 DOI: 10.1074/mcp.m111.014720] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Natural antimicrobial peptides provide fundamental protection for multicellular organisms from microbes, such as Lactoferricin B (Lfcin B). Many studies have shown that Lfcin B penetrates the cell membrane and has intracellular activities. To elucidate the intracellular behavior of Lfcin B, we first used Escherichia coli K12 proteome chips to identify the intracellular targets of Lfcin B. The results showed that Lfcin B binds to two response regulators, BasR and CreB, of the two-component system. For further analysis, we conducted several in vitro and in vivo experiments and utilized bioinformatics methods. The electrophoretic mobility shift assays and kinase assays indicate that Lfcin B inhibits the phosphorylation of the response regulators (BasR and CreB) and their cognate sensor kinases (BasS and CreC). Antibacterial assays showed that Lfcin B reduced E. coli's tolerance to environmental stimuli, such as excessive ferric ions and minimal medium conditions. This is the first study to show that an antimicrobial peptide inhibits the growth of bacteria by influencing the phosphorylation of a two-component system directly.
Collapse
Affiliation(s)
- Yu-Hsuan Ho
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli 32001, Taiwan
| | | | | |
Collapse
|
43
|
Morash MG, Douglas SE, Robotham A, Ridley CM, Gallant JW, Soanes KH. The zebrafish embryo as a tool for screening and characterizing pleurocidin host-defense peptides as anti-cancer agents. Dis Model Mech 2011; 4:622-33. [PMID: 21729875 PMCID: PMC3177944 DOI: 10.1242/dmm.007310] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The emergence of multidrug-resistant cancers and the lack of targeted therapies for many cancers underscore an unmet need for new therapeutics with novel modes of action towards cancer cells. Host-defense peptides often exhibit selective cytotoxicity towards cancer cells and show potential as anti-cancer therapeutics. Here, we screen 26 naturally occurring variants of the peptide pleurocidin for cytotoxic and anti-cancer activities, and investigate the underlying mechanism of action. Cytotoxicities were assessed in vitro using cell-based assays and in vivo using zebrafish embryos. Morphological changes were assessed by both transmission and scanning electron microscopy, and functional assays were performed on zebrafish embryos to investigate the mechanism of cell death. A total of 14 peptides were virtually inactive against HL60 human leukemia cells, whereas 12 caused >50% death at ≤32 μg/ml. Morphological changes characteristic of oncosis were evident by electron microscopy after only 1 minute of treatment with 32 μg/ml of variant NRC-03. Only two peptides were hemolytic. Four peptides showed no toxicity towards zebrafish embryos at the highest concentration tested (25 μM; ∼64 μg/ml) and one peptide was highly toxic, killing 4-hour-post-fertilization (hpf) embryos immediately after exposure to 1 μM peptide. Four other peptides killed embryos after 24 hours of exposure at 1 μM. Most peptides caused mortality at one or more developmental stages only after continuous exposure (24 hours) with higher lethal doses (≥5 μM). Pleurocidin NRC-03 bound to embryos and induced the release of superoxide, caused an increase in the number of TUNEL-positive nuclei, and caused membrane damage and the loss of embryonic epithelial integrity, marked by the exclusion of cells from the outer epithelium and the appearance of F-actin within the circumferential cells of the repair site. Our results indicate that specific pleurocidin variants are attractive cancer-selective agents that selectively induce cell death in target cells but leave non-target cells such as erythrocytes and non-transformed cells unaffected.
Collapse
Affiliation(s)
- Michael G Morash
- Institute for Marine Biosciences, National Research Council, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Liu Y, Han F, Xie Y, Wang Y. Comparative antimicrobial activity and mechanism of action of bovine lactoferricin-derived synthetic peptides. Biometals 2011; 24:1069-78. [DOI: 10.1007/s10534-011-9465-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 05/13/2011] [Indexed: 12/01/2022]
|
45
|
Han FF, Liu YF, Xie YG, Gao YH, Luan C, Wang YZ. Antimicrobial peptides derived from different animals: comparative studies of antimicrobial properties, cytotoxicity and mechanism of action. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-010-0643-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Rationale-based, de novo design of dehydrophenylalanine-containing antibiotic peptides and systematic modification in sequence for enhanced potency. Antimicrob Agents Chemother 2011; 55:2178-88. [PMID: 21321136 DOI: 10.1128/aac.01493-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increased microbial drug resistance has generated a global requirement for new anti-infective agents. As part of an effort to develop new, low-molecular-mass peptide antibiotics, we used a rationale-based minimalist approach to design short, nonhemolytic, potent, and broad-spectrum antibiotic peptides with increased serum stability. These peptides were designed to attain an amphipathic structure in helical conformations. VS1 was used as the lead compound, and its properties were compared with three series of derivates obtained by (i) N-terminal amino acid addition, (ii) systematic Trp substitution, and (iii) peptide dendrimerization. The Trp substitution approach underlined the optimized sequence of VS2 in terms of potency, faster membrane permeation, and cost-effectiveness. VS2 (a variant of VS1 with two Trp substitutions) was found to exhibit good antimicrobial activity against both the Gram-negative Escherichia coli and the Gram-positive bacterium Staphylococcus aureus. It was also found to have noncytolytic activity and the ability to permeate and depolarize the bacterial membrane. Lysis of the bacterial cell wall and inner membrane by the peptide was confirmed by transmission electron microscopy. A combination of small size, the presence of unnatural amino acids, high antimicrobial activity, insignificant hemolysis, and proteolytic resistance provides fundamental information for the de novo design of an antimicrobial peptide useful for the management of infectious disease.
Collapse
|
47
|
Xu G, Xiong W, Hu Q, Zuo P, Shao B, Lan F, Lu X, Xu Y, Xiong S. Lactoferrin-derived peptides and Lactoferricin chimera inhibit virulence factor production and biofilm formation in Pseudomonas aeruginosa. J Appl Microbiol 2010; 109:1311-8. [PMID: 20477900 DOI: 10.1111/j.1365-2672.2010.04751.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To investigate the bactericidal activity of lactoferrin-derived peptides and a new LF-derived peptides chimera (LFchimera) against P. aeruginosa and the influence on virulence factors of P. aeruginosa. METHODS AND RESULTS Lactoferricin (LFcin) and lactoferrampin (LFampin) are highly bioactive peptides isolated from the N-terminal region of lactoferrin (LF) by pepsin digestion. In this study, we designed LFchimera containing LFcin amino acids 17-30 and LFampin amino acids 268-284. Pseudomonas aeruginosa cells were incubated in medium with peptides at different concentrations, and then the assays of viability, pyocyanin, elastase activity and biofilm formation of P. aeruginosa were performed. We found that the concentration-dependent antibactericidal activity and down-regulating pyocyanin, elastase and biofilm formation of LFchimera were significantly stronger than those of LF, LFcin, LFampin or LFcin plus LFampin. CONCLUSIONS Our results indicated that LF, LFcin, LFampin and LFchimera were potential candidates to combat P. aeruginosa, and LFchimera was the most effective in them. SIGNIFICANCE AND IMPACT OF THE STUDY The new LFchimera has better activity against P. aeruginosa than LF, LFcin and LFampin and may be a promising new compound for treatment of P. aeruginosa infection.
Collapse
Affiliation(s)
- G Xu
- Department of Respiratory Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lipopolysaccharide interaction is decisive for the activity of the antimicrobial peptide NK-2 against Escherichia coli and Proteus mirabilis. Biochem J 2010; 427:477-88. [PMID: 20187872 DOI: 10.1042/bj20091607] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphatidylglycerol is a widely used mimetic to study the effects of AMPs (antimicrobial peptides) on the bacterial cytoplasmic membrane. However, the antibacterial activities of novel NK-2-derived AMPs could not be sufficiently explained by using this simple model system. Since the LPS (lipopolysaccharide)-containing outer membrane is the first barrier of Gram-negative bacteria, in the present study we investigated interactions of NK-2 and a shortened variant with viable Escherichia coli WBB01 and Proteus mirabilis R45, and with model membranes composed of LPS isolated from these two strains. Differences in net charge and charge distribution of the two LPS have been proposed to be responsible for the differential sensitivity of the respective bacteria to other AMPs. As imaged by TEM (transmission electron microscopy) and AFM (atomic force microscopy), NK-2-mediated killing of these bacteria was corroborated by structural alterations of the outer and inner membranes, the release of E. coli cytoplasma, and the formation of unique fibrous structures inside P. mirabilis, suggesting distinct and novel intracellular targets. NK-2 bound to and intercalated into LPS bilayers, and eventually induced the formation of transient heterogeneous lesions in planar lipid bilayers. However, the discriminative activity of NK-2 against the two bacterial strains was independent of membrane intercalation and lesion formation, which both were indistinguishable for the two LPS. Instead, differences in activity originated from the LPS-binding step, which could be demonstrated by NK-2 attachment to intact bacteria, and to solid-supported LPS bilayers on a surface acoustic wave biosensor.
Collapse
|
49
|
Arseneault M, Bédard S, Boulet-Audet M, Pézolet M. Study of the interaction of lactoferricin B with phospholipid monolayers and bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:3468-3478. [PMID: 20112931 DOI: 10.1021/la903014w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bovine lactoferricin (LfcinB) is an antimicrobial peptide obtained from the pepsin cleavage of lactoferrin. The activity of LfcinB has been extensively studied on diverse pathogens, but its mechanism of action still has to be elucidated. Because of its nonspecificity, its mode of action is assumed to be related to interactions with membranes. In this study, the interaction of LfcinB with a negatively charged monolayer of dipalmitoylphosphatidylglycerol has been investigated as a function of the surface pressure of the lipid film using in situ Brewster angle and polarization modulation infrared reflection absorption spectroscopy and on transferred monolayers by atomic force microscopy and polarized attenuated total reflection infrared spectroscopy. The data show clearly that LfcinB forms stable films at the air-water interface. They also reveal that the interaction of LfcinB with the lipid monolayer is modulated by the surface pressure. At low surface pressure, LfcinB inserts within the lipid film with its long molecular axis oriented mainly parallel to the acyl chains, while at high surface pressure, LfcinB is adsorbed under the lipid film, the hairpin being preferentially aligned parallel to the plane of the interface. The threshold for which the behavior changes is 20 mN/m. At this critical surface pressure, LfcinB interacts with the monolayer to form discoidal lipid-peptide assemblies. This structure may actually represent the mechanism of action of this peptide. The results obtained on monolayers are correlated by fluorescent probe release measurements of dye-containing vesicles made of lipids in different phases and support the important role of the lipid fluidity and packing on the activity of LfcinB.
Collapse
Affiliation(s)
- Marjolaine Arseneault
- Centre de recherche sur les matériaux avancés, Département de chimie, Université Laval, Québec, Québec Canada, G1V OA6
| | | | | | | |
Collapse
|
50
|
Magainin 2 revisited: a test of the quantitative model for the all-or-none permeabilization of phospholipid vesicles. Biophys J 2010; 96:116-31. [PMID: 19134472 DOI: 10.1016/j.bpj.2008.09.017] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 09/22/2008] [Indexed: 11/22/2022] Open
Abstract
The all-or-none kinetic model that we recently proposed for the antimicrobial peptide cecropin A is tested here for magainin 2. In mixtures of phosphatidylcholine (PC)/phosphatidylglycerol (PG) 50:50 and 70:30, release of contents from lipid vesicles occurs in an all-or-none fashion and the differences between PC/PG 50:50 and 70:30 can be ascribed mainly to differences in binding, which was determined independently and is approximately 20 times greater to PC/PG 50:50 than to 70:30. Only one variable parameter, beta, corresponding to the ratio of the rates of pore opening to pore closing, is used to fit dye release kinetics from these two mixtures, for several peptide/lipid ratios ranging from 1:25 to 1:200. However, unlike for cecropin A where it stays almost constant, beta increases five times as the PG content of the vesicles increases from 30 to 50%. Thus, magainin 2 is more sensitive to anionic lipid content than cecropin A. But overall, magainin follows the same all-or-none kinetic model as cecropin A in these lipid mixtures, with slightly different parameter values. When the PG content is reduced to 20 mol %, dye release becomes very low; the mechanism appears to change, and is consistent with a graded kinetic model. We suggest that the peptide may be inducing formation of PG domains. In either mechanism, no peptide oligomerization occurs and magainin catalyzes dye release in proportion to its concentration on the membrane in a peptide state that we call a pore. We envision this structure as a chaotic or stochastic type of pore, involving both lipids and peptides, not a well-defined, peptide-lined channel.
Collapse
|