1
|
Chao MN, Chezal JM, Debiton E, Canitrot D, Witkowski T, Levesque S, Degoul F, Tarrit S, Wenzel B, Miot-Noirault E, Serre A, Maisonial-Besset A. A Convenient Route to New (Radio)Fluorinated and (Radio)Iodinated Cyclic Tyrosine Analogs. Pharmaceuticals (Basel) 2022; 15:ph15020162. [PMID: 35215275 PMCID: PMC8877694 DOI: 10.3390/ph15020162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
The use of radiolabeled non-natural amino acids can provide high contrast SPECT/PET metabolic imaging of solid tumors. Among them, radiohalogenated tyrosine analogs (i.e., [123I]IMT, [18F]FET, [18F]FDOPA, [123I]8-iodo-L-TIC(OH), etc.) are of particular interest. While radioiodinated derivatives, such as [123I]IMT, are easily available via electrophilic aromatic substitutions, the production of radiofluorinated aryl tyrosine analogs was a long-standing challenge for radiochemists before the development of innovative radiofluorination processes using arylboronate, arylstannane or iodoniums salts as precursors. Surprisingly, despite these methodological advances, no radiofluorinated analogs have been reported for [123I]8-iodo-L-TIC(OH), a very promising radiotracer for SPECT imaging of prostatic tumors. This work describes a convenient synthetic pathway to obtain new radioiodinated and radiofluorinated derivatives of TIC(OH), as well as their non-radiolabeled counterparts. Using organotin compounds as key intermediates, [125I]5-iodo-L-TIC(OH), [125I]6-iodo-L-TIC(OH) and [125I]8-iodo-L-TIC(OH) were efficiently prepared with good radiochemical yield (RCY, 51–78%), high radiochemical purity (RCP, >98%), molar activity (Am, >1.5–2.9 GBq/µmol) and enantiomeric excess (e.e. >99%). The corresponding [18F]fluoro-L-TIC(OH) derivatives were also successfully obtained by radiofluorination of the organotin precursors in the presence of tetrakis(pyridine)copper(II) triflate and nucleophilic [18F]F− with 19–28% RCY d.c., high RCP (>98.9%), Am (20–107 GBq/µmol) and e.e. (>99%).
Collapse
Affiliation(s)
- Maria Noelia Chao
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Jean-Michel Chezal
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Eric Debiton
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Damien Canitrot
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Tiffany Witkowski
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Sophie Levesque
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
- Department of Nuclear Medicine, Jean Perrin Comprehensive Cancer Centre, F-63000 Clermont-Ferrand, France
| | - Françoise Degoul
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Sébastien Tarrit
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Barbara Wenzel
- Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Institute of Radiopharmaceutical Cancer Research, 04318 Leipzig, Germany;
| | - Elisabeth Miot-Noirault
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Audrey Serre
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Aurélie Maisonial-Besset
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
- Correspondence:
| |
Collapse
|
2
|
Moulin S, Roisnel T, Dérien S. One-Step Ruthenium-Catalysed Transformation of 1,7-Enynes into Strained Bicyclic Amino Esters. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Solenne Moulin
- Institut des Sciences Chimiques de Rennes - UMR 6226; CNRS - Université de Rennes 1; Campus de Beaulieu 35042 Rennes France
| | - Thierry Roisnel
- Institut des Sciences Chimiques de Rennes - UMR 6226; CNRS - Université de Rennes 1; Campus de Beaulieu 35042 Rennes France
| | - Sylvie Dérien
- Institut des Sciences Chimiques de Rennes - UMR 6226; CNRS - Université de Rennes 1; Campus de Beaulieu 35042 Rennes France
| |
Collapse
|
3
|
Turner AH, Lebhar MS, Proctor A, Wang Q, Lawrence DS, Allbritton NL. Rational Design of a Dephosphorylation-Resistant Reporter Enables Single-Cell Measurement of Tyrosine Kinase Activity. ACS Chem Biol 2016; 11:355-62. [PMID: 26587880 DOI: 10.1021/acschembio.5b00667] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although peptide-based reporters of protein tyrosine kinase (PTK) activity have been used to study PTK enzymology in vitro, the application of these reporters to intracellular conditions is compromised by their dephosphorylation, preventing PTK activity measurements. Nonproteinogenic amino acids may be utilized to rationally design selective peptidic ligands by accessing greater chemical and structural diversity than is available using the native amino acids. We describe a peptidic reporter that, upon phosphorylation by the epidermal growth factor receptor (EGFR), is resistant to dephosphorylation both in vitro and in cellulo. The reporter contains a conformationally constrained phosphorylatable moiety (7-(S)-hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) in the place of L-tyrosine and is efficiently phosphorylated in A431 epidermoid carcinoma cells. Dephosphorylation of the reporter occurs 3 orders of magnitude more slowly compared with that of the conventional tyrosine-containing reporter.
Collapse
Affiliation(s)
| | - Michael S. Lebhar
- Joint
Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and North Carolina State University,
Raleigh, North Carolina 27695, United States
| | | | | | | | - Nancy L. Allbritton
- Joint
Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and North Carolina State University,
Raleigh, North Carolina 27695, United States
| |
Collapse
|
4
|
Lipchik AM, Killins RL, Geahlen RL, Parker LL. A peptide-based biosensor assay to detect intracellular Syk kinase activation and inhibition. Biochemistry 2012; 51:7515-24. [PMID: 22920457 DOI: 10.1021/bi300970h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Spleen tyrosine kinase (Syk) has been implicated in a number of pathologies including cancer and rheumatoid arthritis and thus has been pursued as a novel therapeutic target. Because of the complex relationship between Syk's auto- and other internal phosphorylation sites, scaffolding proteins, enzymatic activation state and sites of phosphorylation on its known substrates, the role of Syk's activity in these diseases has not been completely clear. To approach such analyses, we developed a Syk-specific artificial peptide biosensor (SAStide) to use in a cell-based assay for direct detection of intracellular Syk activity and inhibition in response to physiologically relevant stimuli in both laboratory cell lines and primary splenic B cells. This peptide contains a sequence derived from known Syk substrate preference motifs linked to a cell permeable peptide, resulting in a biosensor that is phosphorylated in live cells in a Syk-dependent manner, thus serving as a reporter of Syk catalytic activity in intact cells. Because the assay is compatible with live, primary cells and can report pharmacodynamics for drug action on an intended target, this methodology could be used to facilitate a better understanding of Syk's function and the effect of its inhibition in disease.
Collapse
Affiliation(s)
- Andrew M Lipchik
- Department of Medicinal Chemistry and Molecular Pharmacology and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
5
|
Bray CVL, Klein H, Dixneuf PH, Macé A, Berrée F, Carboni B, Dérien S. One-Step Synthesis of Strained Bicyclic Carboxylic and Boronic Amino Esters via Ruthenium-Catalysed Tandem Carbene Addition/Cyclopropanation of Enynes. Adv Synth Catal 2012. [DOI: 10.1002/adsc.201200117] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Ruzza P, Cesaro L, Tourwé D, Calderan A, Biondi B, Maes V, Menegazzo I, Osler A, Rubini C, Guiotto A, Pinna LA, Borin G, Donella-Deana A. Spatial Conformation and Topography of the Tyrosine Aromatic Ring in Substrate Recognition by Protein Tyrosine Kinases. J Med Chem 2006; 49:1916-24. [PMID: 16539378 DOI: 10.1021/jm051080q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The side chain orientation of the tyrosine residue included in a peptide, which is an excellent substrate of Syk tyrosine kinase, was fixed in different conformations by either incorporating the tyrosine in cyclic structures (6-OH-Tic, 5-OH-Aic, and Hat derivatives) or adding a sterically bulky substituent in the tyrosine side chain moiety (beta-MeTyr). Synthetic peptides containing tyrosine analogues displaying different side chain orientations were analyzed by NMR techniques and tested as potential substrates of the nonreceptor tyrosine kinases Syk, Csk, Lyn, and Fyn. The "rotamer scan" of the phosphorylatable residue generated optimal substrates in terms of both phosphorylation efficiency and selectivity for Syk tyrosine kinase, while the peptidomimetics were not recognized by the other tyrosine kinases. In particular, l-beta-MeTyr and d-Hat containing peptides resulted to be both suitable substrates for the specific monitoring of Syk and consensus sequence scaffolds for the design of potential inhibitors highly selective for this tyrosine kinase.
Collapse
Affiliation(s)
- Paolo Ruzza
- Institute of Biomolecular Chemistry of CNR, Padova Unit, via F. Marzolo 1, 35131 Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Eckert M, Monnier F, Shchetnikov GT, Titanyuk ID, Osipov SN, Toupet L, Dérien S, Dixneuf PH. Tandem Catalytic Carbene Addition/Bicyclization of Enynes. One-Step Synthesis of Fluorinated Bicyclic Amino Esters by Ruthenium Catalysis. Org Lett 2005; 7:3741-3. [PMID: 16092864 DOI: 10.1021/ol051393f] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of diazo compounds with enynes, containing a fluorinated amino acid moiety, in the presence of the precatalyst Cp(Cl)Ru(COD) leads to fluorinated alkenyl bicyclo[3.1.0]hexane and [4.1.0]heptane amino acid derivatives. It is remarkable that the catalyst, in situ generated from ruthenium complex and diazo compound, completely inhibits the ring closing metathesis of enyne to the profit of tandem alkenylation/cyclopropanation with high stereoselectivity. The study shows that the Cp(Cl)Ru moiety in ruthenacyclobutane favors reductive elimination versus expected alkene metathesis. [reaction: see text]
Collapse
Affiliation(s)
- Matthieu Eckert
- Institut de Chimie de Rennes, UMR 6509 CNRS-Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Ruzza P, Calderan A, Donella-Deana A, Biondi B, Cesaro L, Osler A, Elardo S, Guiotto A, Pinna LA, Borin G. Conformational constraints of tyrosine in protein tyrosine kinase substrates: Information about preferred bioactive side-chain orientation. Biopolymers 2003; 71:478-88. [PMID: 14517899 DOI: 10.1002/bip.10469] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The side-chain orientation of a tyrosine residue located in a peptide, which is an excellent substrate of Syk tyrosine kinase (A. M. Brunati, A. Donella-Deana, M. Ruzzene, O. Marin, L. A. Pinna, FEBS Letters, 1995, Vol. 367, pp. 149-152), was fixed in the gauche (+) or gauche (-) conformation by using the 7-hydroxy-1,2,3,4-tetrahydro isoquinoline-3-carboxylic (Htc) structure. The tyrosine trans conformation was blocked by using an aminobenzazepine-type (Hba) structure. The proposed side-chain orientations were confirmed by the analysis of the (1)H-NMR parameters: chemical shifts, coupling constants, and nuclear Overhauser effects to the tyrosine constraints in the different analogs. This "rotamer scan" of the phosphorylatable residue allowed us to generate optimal substrates in terms of both phosphorylation efficiency and selectivity for Syk tyrosine kinase. In contrast, these conformationally restricted tyrosine analogs were not tolerated by the Src-related tyrosine kinases Lyn and c-Fgr.
Collapse
Affiliation(s)
- Paolo Ruzza
- Institute of Biomolecular Chemistry, Padova Unit, CNR, via Marzolo 1, 35131 Padua, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yamamoto N, Hasegawa H, Seki H, Ziegelbauer K, Yasuda T. Development of a high-throughput fluoroimmunoassay for Syk kinase and Syk kinase inhibitors. Anal Biochem 2003; 315:256-61. [PMID: 12689835 DOI: 10.1016/s0003-2697(03)00026-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Syk is a tyrosine kinase which is indispensable in immunoglobulin Fc receptor- and B cell receptor-mediated signal transduction in various immune cells. This pathway is important in the pathophysiology of allergy. In this study we established a quantitative nonradioactive kinase assay to identify inhibitors of Syk. We used recombinant GST-tagged Syk purified from baculovirus-infected insect cells. As a substrate, biotinylated peptide corresponding to the activation loop domain of Syk, whose tyrosine residues are autophosphorylated upon activation, was employed to screen both ATP- and substrate-competitive inhibitors. After the kinase reaction in solution phase, substrate was trapped on a streptavidin-coated plate, followed by detection of the phosphorylated tyrosine with europium-labeled anti-phosphotyrosine antibody. The kinase reaction in solution phase greatly enhanced phosphorylation of substrate compared to that of plate-coated substrate. High signal-to-background ratio and low data scattering were obtained in the optimized high-throughput screening (HTS) format. Further, several kinase inhibitors showed concentration-dependent inhibition of recombinant Syk kinase activity with almost the same efficacy for immunoprecipitated Syk from a human cell line. These data suggest that this assay is useful to screen Syk kinase inhibitors in HTS.
Collapse
Affiliation(s)
- Noriyuki Yamamoto
- Research Center Kyoto, Bayer Yakuhin, Ltd, 6-5-1-3, Kunimidai, Kizu-cho, Soraku-gun, Kyoto 619-0216, Japan.
| | | | | | | | | |
Collapse
|