1
|
Dow LF, Case AM, Paustian MP, Pinkerton BR, Simeon P, Trippier PC. The evolution of small molecule enzyme activators. RSC Med Chem 2023; 14:2206-2230. [PMID: 37974956 PMCID: PMC10650962 DOI: 10.1039/d3md00399j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
There is a myriad of enzymes within the body responsible for maintaining homeostasis by providing the means to convert substrates to products as and when required. Physiological enzymes are tightly controlled by many signaling pathways and their products subsequently control other pathways. Traditionally, most drug discovery efforts focus on identifying enzyme inhibitors, due to upregulation being prevalent in many diseases and the existence of endogenous substrates that can be modified to afford inhibitor compounds. As enzyme downregulation and reduction of endogenous activators are observed in multiple diseases, the identification of small molecules with the ability to activate enzymes has recently entered the medicinal chemistry toolbox to afford chemical probes and potential therapeutics as an alternative means to intervene in diseases. In this review we highlight the progress made in the identification and advancement of non-kinase enzyme activators and their potential in treating various disease states.
Collapse
Affiliation(s)
- Louise F Dow
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Alfie M Case
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Megan P Paustian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Braeden R Pinkerton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Princess Simeon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center Omaha NE 68106 USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center Omaha NE 68106 USA
| |
Collapse
|
2
|
Caprioli B, Eichler RAS, Silva RNO, Martucci LF, Reckziegel P, Ferro ES. Neurolysin Knockout Mice in a Diet-Induced Obesity Model. Int J Mol Sci 2023; 24:15190. [PMID: 37894869 PMCID: PMC10607720 DOI: 10.3390/ijms242015190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Neurolysin oligopeptidase (E.C.3.4.24.16; Nln), a member of the zinc metallopeptidase M3 family, was first identified in rat brain synaptic membranes hydrolyzing neurotensin at the Pro-Tyr peptide bond. The previous development of C57BL6/N mice with suppression of Nln gene expression (Nln-/-), demonstrated the biological relevance of this oligopeptidase for insulin signaling and glucose uptake. Here, several metabolic parameters were investigated in Nln-/- and wild-type C57BL6/N animals (WT; n = 5-8), male and female, fed either a standard (SD) or a hypercaloric diet (HD), for seven weeks. Higher food intake and body mass gain was observed for Nln-/- animals fed HD, compared to both male and female WT control animals fed HD. Leptin gene expression was higher in Nln-/- male and female animals fed HD, compared to WT controls. Both WT and Nln-/- females fed HD showed similar gene expression increase of dipeptidyl peptidase 4 (DPP4), a peptidase related to glucagon-like peptide-1 (GLP-1) metabolism. The present data suggest that Nln participates in the physiological mechanisms related to diet-induced obesity. Further studies will be necessary to better understand the molecular mechanism responsible for the higher body mass gain observed in Nln-/- animals fed HD.
Collapse
Affiliation(s)
- Bruna Caprioli
- Pharmacology Department, Biomedical Sciences Institute (ICB), São Paulo 05508-000, SP, Brazil; (B.C.); (R.A.S.E.); (R.N.O.S.); (L.F.M.)
| | - Rosangela A. S. Eichler
- Pharmacology Department, Biomedical Sciences Institute (ICB), São Paulo 05508-000, SP, Brazil; (B.C.); (R.A.S.E.); (R.N.O.S.); (L.F.M.)
| | - Renée N. O. Silva
- Pharmacology Department, Biomedical Sciences Institute (ICB), São Paulo 05508-000, SP, Brazil; (B.C.); (R.A.S.E.); (R.N.O.S.); (L.F.M.)
| | - Luiz Felipe Martucci
- Pharmacology Department, Biomedical Sciences Institute (ICB), São Paulo 05508-000, SP, Brazil; (B.C.); (R.A.S.E.); (R.N.O.S.); (L.F.M.)
| | - Patricia Reckziegel
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences (FCF), University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
| | - Emer S. Ferro
- Pharmacology Department, Biomedical Sciences Institute (ICB), São Paulo 05508-000, SP, Brazil; (B.C.); (R.A.S.E.); (R.N.O.S.); (L.F.M.)
| |
Collapse
|
3
|
Qi J, Yao L. Modulators of neurolysin: promising agents for the treatment of tumor and neurological diseases. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02761-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Thimet Oligopeptidase (EC 3.4.24.15) Key Functions Suggested by Knockout Mice Phenotype Characterization. Biomolecules 2019; 9:biom9080382. [PMID: 31431000 PMCID: PMC6722639 DOI: 10.3390/biom9080382] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022] Open
Abstract
Thimet oligopeptidase (THOP1) is thought to be involved in neuropeptide metabolism, antigen presentation, neurodegeneration, and cancer. Herein, the generation of THOP1 C57BL/6 knockout mice (THOP1−/−) is described showing that they are viable, have estrus cycle, fertility, and a number of puppies per litter similar to C57BL/6 wild type mice (WT). In specific brain regions, THOP1-/- exhibit altered mRNA expression of proteasome beta5, serotonin 5HT2a receptor and dopamine D2 receptor, but not of neurolysin (NLN). Peptidomic analysis identifies differences in intracellular peptide ratios between THOP1-/- and WT mice, which may affect normal cellular functioning. In an experimental model of multiple sclerosis THOP1-/- mice present worse clinical behavior scores compared to WT mice, corroborating its possible involvement in neurodegenerative diseases. THOP1-/- mice also exhibit better survival and improved behavior in a sepsis model, but also a greater peripheral pain sensitivity measured in the hot plate test after bradykinin administration in the paw. THOP1-/- mice show depressive-like behavior, as well as attention and memory retention deficits. Altogether, these results reveal a role of THOP1 on specific behaviors, immune-stimulated neurodegeneration, and infection-induced inflammation.
Collapse
|
5
|
Icimoto MY, Ferreira JC, Yokomizo CH, Bim LV, Marem A, Gilio JM, Oliveira V, Nantes IL. Redox modulation of thimet oligopeptidase activity by hydrogen peroxide. FEBS Open Bio 2017; 7:1037-1050. [PMID: 28680816 PMCID: PMC5494303 DOI: 10.1002/2211-5463.12245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/15/2017] [Indexed: 11/09/2022] Open
Abstract
Thimet oligopeptidase (EC 3.4.24.15, TOP) is a cytosolic mammalian zinc protease that can process a diversity of bioactive peptides. TOP has been pointed out as one of the main postproteasomal enzymes that process peptide antigens in the MHC class I presentation route. In the present study, we describe a fine regulation of TOP activity by hydrogen peroxide (H2O2). Cells from a human embryonic kidney cell line (HEK293) underwent an ischemia/reoxygenation-like condition known to increase H2O2 production. Immediately after reoxygenation, HEK293 cells exhibited a 32% increase in TOP activity, but no TOP activity was observed 2 h after reoxygenation. In another model, recombinant rat TOP (rTOP) was challenged by H2O2 produced by rat liver mitoplasts (RLMt) alone, and in combination with antimycin A, succinate, and antimycin A plus succinate. In these conditions, rTOP activity increased 17, 30, 32 and 38%, respectively. Determination of H2O2 concentration generated in reoxygenated cells and mitoplasts suggested a possible modulation of rTOP activity dependent on the concentration of H2O2. The measure of pure rTOP activity as a function of H2O2 concentration corroborated this hypothesis. The data fitted to an asymmetrical bell-shaped curve in which the optimal activating H2O2 concentration was 1.2 nM, and the maximal inhibition (75% about the control) was 1 μm. Contrary to the oxidation produced by aging associated with enzyme oligomerization and inhibition, H2O2 oxidation produced sulfenic acid and maintained rTOP in the monomeric form. Consistent with the involvement of rTOP in a signaling redox cascade, the H2O2-oxidized rTOP reacted with dimeric thioredoxin-1 (TRx-1) and remained covalently bound to one subunit of TRx-1.
Collapse
Affiliation(s)
| | - Juliana C Ferreira
- Laboratório de Nanoestruturas para Biologia e Materiais Avançados Centro de Ciências Naturais e Humanas Universidade Federal do ABC Santo André Brazil.,Present address: Structural Biology and Biophysical Chemistry Lab New York University Abu Dhabi Saadiyat Marina District, Abu Dhabi United Arab Emirates
| | - César H Yokomizo
- Laboratório de Nanoestruturas para Biologia e Materiais Avançados Centro de Ciências Naturais e Humanas Universidade Federal do ABC Santo André Brazil
| | - Larissa V Bim
- Departamento de Biofísica Universidade Federal de São Paulo Brazil
| | - Alyne Marem
- Departamento de Biofísica Universidade Federal de São Paulo Brazil
| | - Joyce M Gilio
- Departamento de Biofísica Universidade Federal de São Paulo Brazil.,Present address: Departamento de Neurologia Centro de Degeneração Universidade de São Paulo - Escola de Medicina São Paulo SP Brazil
| | - Vitor Oliveira
- Departamento de Biofísica Universidade Federal de São Paulo Brazil
| | - Iseli L Nantes
- Laboratório de Nanoestruturas para Biologia e Materiais Avançados Centro de Ciências Naturais e Humanas Universidade Federal do ABC Santo André Brazil
| |
Collapse
|
6
|
Prajapati SC, Singh R, Chauhan SS. Human dipeptidyl peptidase III regulates G-protein coupled receptor-dependent Ca2+ concentration in human embryonic kidney 293T cells. Biol Chem 2017; 397:563-9. [PMID: 26887037 DOI: 10.1515/hsz-2016-0117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/15/2016] [Indexed: 01/08/2023]
Abstract
The precise biological function of human dipeptidyl peptidase III (hDPP III) is poorly understood. Using luciferase reporter constructs responsive to change in Ca2+ and/or cAMP and Fura 2-AM fluorometric assay, we show a significant decrease in intracellular Ca2+ following hDPP III overexpression and angiotensin II stimulation in angiotensin II type 1 receptor (G-protein coupled receptor, GPCR) expressing HEK293T cells. Silencing the expression of hDPP III by siRNA reversed the effect of hDPP III overexpression with a concomitant increase in Ca2+. These results, for the first time, show involvement of hDPP III in GPCR dependent Ca2+ regulation in HEK293T cells.
Collapse
|
7
|
Lorenzon RZ, Cunha CE, Marcondes MF, Machado MF, Juliano MA, Oliveira V, Travassos LR, Paschoalin T, Carmona AK. Kinetic characterization of the Escherichia coli oligopeptidase A (OpdA) and the role of the Tyr607 residue. Arch Biochem Biophys 2010; 500:131-6. [PMID: 20513640 DOI: 10.1016/j.abb.2010.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 05/19/2010] [Accepted: 05/24/2010] [Indexed: 10/19/2022]
|
8
|
Machado MFM, Marcondes MF, Rioli V, Ferro ES, Juliano MA, Juliano L, Oliveira V. Catalytic properties of thimet oligopeptidase H600A mutant. Biochem Biophys Res Commun 2010; 394:429-33. [PMID: 20226173 DOI: 10.1016/j.bbrc.2010.03.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 03/07/2010] [Indexed: 10/19/2022]
Abstract
Thimet oligopeptidase (EC 3.4.24.15, TOP) is a metallo-oligopeptidase that participates in the intracellular metabolism of peptides. Predictions based on structurally analogous peptidases (Dcp and ACE-2) show that TOP can present a hinge-bend movement during substrate hydrolysis, what brings some residues closer to the substrate. One of these residues that in TOP crystallographic structure are far from the catalytic residues, but, moves toward the substrate considering this possible structural reorganization is His(600). In the present work, the role of His(600) of TOP was investigated by site-directed mutagenesis. TOP H600A mutant was characterized through analysis of S(1) and S(1)' specificity, pH-activity profile and inhibition by JA-2. Results showed that TOP His(600) residue makes important interactions with the substrate, supporting the prediction that His(600) moves toward the substrate due to a hinge movement similar to the Dcp and ACE-2. Furthermore, the mutation H600A affected both K(m) and k(cat), showing the importance of His(600) for both substrate binding and/or product release from active site. Changes in the pH-profile may indicate also the participation of His(600) in TOP catalysis, transferring a proton to the newly generated NH2-terminus or helping Tyr(605) and/or Tyr(612) in the intermediate oxyanion stabilization.
Collapse
Affiliation(s)
- Maurício F M Machado
- Departamento de Biofísica, Universidade Federal de São Paulo, 04044-020 São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
9
|
Sigman J, Patwa T, Tablante A, Joseph C, Glucksman M, Wolfson A. Flexibility in substrate recognition by thimet oligopeptidase as revealed by denaturation studies. Biochem J 2009; 388:255-61. [PMID: 15647004 PMCID: PMC1186714 DOI: 10.1042/bj20041481] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thimet oligopeptidase (TOP) is a soluble metalloendopeptidase belonging to a family of enzymes including neurolysin and neprilysin that utilize the HEXXH metal-binding motif. TOP is widely distributed among cell types and is able to cleave a number of structurally unrelated peptides. A recent focus of interest has been on structure-function relationships in substrate selectivity by TOP. The enzyme's structural fold comprises two domains that are linked at the bottom of a deep substrate-binding cleft via several flexible loop structures. In the present study, fluorescence spectroscopy has been used to probe structural changes in TOP induced by the chemical denaturant urea. Fluorescence emission, anisotropy and collisional quenching data support a two-step unfolding process for the enzyme in which complete loss of the tertiary structure occurs in the second step. Complete loss of activity and loss of catalytic Zn(II) from the active site, monitored by absorption changes of the metal chelator 4-(2-pyridylazo)-resorcinol, are also connected with the second step. In contrast, the first unfolding event, which is linked to changes in the non-catalytic domain, leads to a sharp increase in kcat towards a 9-residue substrate and a sharp decrease in kcat for a 5-residue substrate. Thus a conformational change in TOP has been directly correlated with a change in substrate selectivity. These results provide insight into how the enzyme can process the range of structurally unrelated peptides necessary for its many physiological roles.
Collapse
Affiliation(s)
- Jeffrey A. Sigman
- *Chemistry Department, Saint Mary's College of California, 1928 St. Mary's Road, Moraga, CA 94556, U.S.A
| | - Tasneem H. Patwa
- †Chemistry Department, Wellesley College, 106 Central Street, Wellesley, MA 02841, U.S.A
| | - Ana V. Tablante
- †Chemistry Department, Wellesley College, 106 Central Street, Wellesley, MA 02841, U.S.A
| | - Calleen D. Joseph
- †Chemistry Department, Wellesley College, 106 Central Street, Wellesley, MA 02841, U.S.A
| | - Marc J. Glucksman
- ‡Midwest Proteome Center and Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, N. Chicago, IL 60064, U.S.A
| | - Adele J. Wolfson
- †Chemistry Department, Wellesley College, 106 Central Street, Wellesley, MA 02841, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
10
|
Bruce LA, Sigman JA, Randall D, Rodriguez S, Song MM, Dai Y, Elmore DE, Pabon A, Glucksman MJ, Wolfson AJ. Hydrogen bond residue positioning in the 599-611 loop of thimet oligopeptidase is required for substrate selection. FEBS J 2008; 275:5607-17. [PMID: 18959747 DOI: 10.1111/j.1742-4658.2008.06685.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Thimet oligopeptidase (EC 3.4.24.15) is a zinc(II) endopeptidase implicated in the processing of numerous physiological peptides. Although its role in selecting and processing peptides is not fully understood, it is believed that flexible loop regions lining the substrate-binding site allow the enzyme to conform to substrates of varying structure. This study describes mutant forms of thimet oligopeptidase in which Gly or Tyr residues in the 599-611 loop region were replaced, individually and in combination, to elucidate the mechanism of substrate selection by this enzyme. Decreases in k(cat) observed on mutation of Tyr605 and Tyr612 demonstrate that these residues contribute to the efficient cleavage of most substrates. Modeling studies showing that a hinge-bend movement brings both Tyr612 and Tyr605 within hydrogen bond distance of the cleaved peptide bond supports this role. Thus, molecular modeling studies support a key role in transition state stabilization of this enzyme by Tyr605. Interestingly, kinetic parameters show that a bradykinin derivative is processed distinctly from the other substrates tested, suggesting that an alternative catalytic mechanism may be employed for this particular substrate. The data demonstrate that neither Tyr605 nor Tyr612 is necessary for the hydrolysis of this substrate. Relative to other substrates, the bradykinin derivative is also unaffected by Gly mutations in the loop. This distinction suggests that the role of Gly residues in the loop is to properly orientate these Tyr residues in order to accommodate varying substrate structures. This also opens up the possibility that certain substrates may be cleaved by an open form of the enzyme.
Collapse
Affiliation(s)
- Lisa A Bruce
- Chemistry Department, Wellesley College, MA 02481-8203, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kadonosono T, Kato-Murai M, Ueda M. Alteration of substrate specificity of rat neurolysin from matrix metalloproteinase-2/9-type to -3-type specificity by comprehensive mutation. Protein Eng Des Sel 2008; 21:507-13. [DOI: 10.1093/protein/gzn026] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Salopek-Sondi B, Vukelić B, Spoljarić J, Simaga S, Vujaklija D, Makarević J, Jajcanin N, Abramić M. Functional tyrosine residue in the active center of human dipeptidyl peptidase III. Biol Chem 2008; 389:163-7. [PMID: 18163885 DOI: 10.1515/bc.2008.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract Human dipeptidyl peptidase III (DPP III) is a member of the metallopeptidase family M49 with an implied role in the pain-modulatory system and endogenous defense against oxidative stress. Here, we report the heterologous expression of human DPP III and the site-directed mutagenesis results which demonstrate a functional role for Tyr318 at the active site of this enzyme. The substitution of Tyr318 to Phe decreased kcat by two orders of magnitude without altering the binding affinity of substrate, or of a competitive hydroxamate inhibitor designed to interact with S1 and S2 subsites. The results indicate that the conserved tyrosine could be involved in transition state stabilization during the catalytic action of M49 peptidases.
Collapse
Affiliation(s)
- Branka Salopek-Sondi
- Division of Molecular Biology, Ruder Bosković Institute, Bijenicka cesta 54, HR-10002 Zagreb, Croatia
| | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Paschoalin T, Carmona AK, Rodrigues EG, Oliveira V, Monteiro HP, Juliano MA, Juliano L, Travassos LR. Characterization of thimet oligopeptidase and neurolysin activities in B16F10-Nex2 tumor cells and their involvement in angiogenesis and tumor growth. Mol Cancer 2007; 6:44. [PMID: 17620116 PMCID: PMC1965469 DOI: 10.1186/1476-4598-6-44] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 07/09/2007] [Indexed: 01/01/2023] Open
Abstract
Background Angiogenesis is a fundamental process that allows tumor growth by providing nutrients and oxygen to the tumor cells. Beyond the oxygen diffusion limit from a capillary blood vessel, tumor cells become apoptotic. Angiogenesis results from a balance of pro- and anti-angiogenic stimuli. Endogenous inhibitors regulate enzyme activities that promote angiogenesis. Tumor cells may express pro-angiogenic factors and hydrolytic enzymes but also kinin-degrading oligopeptidases which have been investigated. Results Angiogenesis induced by B16F10-Nex2 melanoma cells was studied in a co-culture with HUVEC on Matrigel. A stimulating effect on angiogenesis was observed in the presence of B16F10-Nex2 lysate and plasma membrane. In contrast, the B16F10-Nex2 culture supernatant inhibited angiogenesis in a dose-dependent manner. This effect was abolished by the endo-oligopeptidase inhibitor, JA-2. Thimet oligopeptidase (TOP) and neurolysin activities were then investigated in B16F10-Nex2 melanoma cells aiming at gene sequencing, enzyme distribution and activity, influence on tumor development, substrate specificity, hydrolytic products and susceptibility to inhibitors. Fluorescence resonance energy transfer (FRET) peptides as well as neurotensin and bradykinin were used as substrates. The hydrolytic activities in B16F10-Nex2 culture supernatant were totally inhibited by o-phenanthrolin, JA-2 and partially by Pro-Ile. Leupeptin, PMSF, E-64, Z-Pro-Prolinal and captopril failed to inhibit these hydrolytic activities. Genes encoding M3A enzymes in melanoma cells were cloned and sequenced being highly similar to mouse genes. A decreased proliferation of B16F10-Nex2 cells was observed in vitro with specific inhibitors of these oligopeptidases. Active rTOP but not the inactive protein inhibited melanoma cell development in vivo increasing significantly the survival of mice challenged with the tumor cells. On Matrigel, rTOP inhibited the bradykinin – induced angiogenesis. A possible regulation of the homologous tumor enzyme in the perivascular microenvironment is suggested based on the observed rTOP inhibition by an S-nitrosothiol NO donor. Conclusion Data show that melanoma cells secrete endo-oligopeptidases which have an important role in tumor proliferation in vitro and in vivo. rTOP inhibited growth of subcutaneously injected B16F10-Nex2 cells in mice. TOP from tumor cells and bradykinin in endothelial cells are two antagonist factors that may control angiogenesis essential for melanoma growth. A regulatory role of NO or S-nitrosothiols is suggested.
Collapse
MESH Headings
- Angiogenic Proteins/antagonists & inhibitors
- Angiogenic Proteins/metabolism
- Animals
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Bradykinin/metabolism
- Cell Extracts
- Cell Line, Tumor
- Cell Membrane/enzymology
- Cell Proliferation/drug effects
- Cloning, Molecular
- Coculture Techniques
- Collagen
- Culture Media, Conditioned/metabolism
- Dipeptides/pharmacology
- Dose-Response Relationship, Drug
- Drug Combinations
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Female
- Hydrolysis
- Laminin
- Leucine/analogs & derivatives
- Leucine/pharmacology
- Melanoma, Experimental/blood supply
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/enzymology
- Melanoma, Experimental/genetics
- Melanoma, Experimental/pathology
- Metalloendopeptidases/antagonists & inhibitors
- Metalloendopeptidases/genetics
- Metalloendopeptidases/metabolism
- Mice
- Mice, Inbred C57BL
- Neovascularization, Pathologic/enzymology
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/prevention & control
- Neurotensin/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide Donors/pharmacology
- Oligopeptides/pharmacology
- Peptides/metabolism
- Phenanthrolines/pharmacology
- Protease Inhibitors/pharmacology
- Proteoglycans
- S-Nitroso-N-Acetylpenicillamine/pharmacology
- Substrate Specificity
Collapse
Affiliation(s)
- Thaysa Paschoalin
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit (UNONEX), Federal University of São Paulo, São Paulo, Brazil
| | - Adriana K Carmona
- Department of Biophysics Federal University of São Paulo, São Paulo, Brazil
| | - Elaine G Rodrigues
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit (UNONEX), Federal University of São Paulo, São Paulo, Brazil
| | - Vitor Oliveira
- Department of Biophysics Federal University of São Paulo, São Paulo, Brazil
| | - Hugo P Monteiro
- Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | - Maria A Juliano
- Department of Biophysics Federal University of São Paulo, São Paulo, Brazil
| | - Luiz Juliano
- Department of Biophysics Federal University of São Paulo, São Paulo, Brazil
| | - Luiz R Travassos
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit (UNONEX), Federal University of São Paulo, São Paulo, Brazil
- UNONEX, Department of Microbiology, Immunology and Parasitology (UNIFESP), Rua Botucatu, 862, 8° andar, São Paulo, SP 04023-062, Brazil
| |
Collapse
|
15
|
Machado M, Rioli V, Dalio F, Castro L, Juliano M, Tersariol I, Ferro E, Juliano L, Oliveira V. The role of Tyr605 and Ala607 of thimet oligopeptidase and Tyr606 and Gly608 of neurolysin in substrate hydrolysis and inhibitor binding. Biochem J 2007; 404:279-88. [PMID: 17313369 PMCID: PMC1868798 DOI: 10.1042/bj20070060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The physicochemical properties of TOP (thimet oligopeptidase) and NEL (neurolysin) and their hydrolytic activities towards the FRET (fluorescence resonance energy transfer) peptide series Abz-GFSXFRQ-EDDnp [where Abz is o-aminobenzoyl; X=Ala, Ile, Leu, Phe, Tyr, Trp, Ser, Gln, Glu, His, Arg or Pro; and EDDnp is N-(2,4-dinitrophenyl)-ethylenediamine] were compared with those of site-mutated analogues. Mutations at Tyr605 and Ala607 in TOP and at Tyr606 and Gly608 in NEL did not affect the overall folding of the two peptidases, as indicated by their thermal stability, CD analysis and the pH-dependence of the intrinsic fluorescence of the protein. The kinetic parameters for the hydrolysis of substrates with systematic variations at position P1 showed that Tyr605 and Tyr606 of TOP and NEL respectively, played a role in subsite S1. Ala607 of TOP and Gly608 of NEL contributed to the flexibility of the loops formed by residues 600-612 (GHLAGGYDGQYYG; one-letter amino acid codes used) in NEL and 599-611 (GHLAGGYDAQYYG; one-letter amino acid codes used) in TOP contributing to the distinct substrate specificities, particularly with an isoleucine residue at P1. TOP Y605A was inhibited less efficiently by JA-2 {N-[1-(R,S)-carboxy-3-phenylpropyl]Ala-Aib-Tyr-p-aminobenzoate}, which suggested that the aromatic ring of Tyr605 was an important anchor for its interaction with wild-type TOP. The hydroxy groups of Tyr605 and Tyr606 did not contribute to the pH-activity profiles, since the pKs obtained in the assays of mutants TOP Y605F and NEL Y606F were similar to those of wild-type peptidases. However, the pH-kcat/Km dependence curve of TOP Y605A differed from that of wild-type TOP and from TOP Y606F. These results provide insights into the residues involved in the substrate specificities of TOP and NEL and how they select cytosolic peptides for hydrolysis.
Collapse
Affiliation(s)
- Maurício F. M. Machado
- *Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, SP, Brazil
| | - Vanessa Rioli
- †Laboratório Especial de Toxinologia Aplicada (CAT/CEPID) Instituto Butantan, 05467-010, São Paulo, SP, Brazil
- ‡Departamento de Biologia Celular e Desenvolvimento, Programa de Biologia Celular, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), 05508-900, São Paulo, SP, Brazil
| | - Fernanda M. Dalio
- §Laboratório de Neurociências, Universidade Cidade de São Paulo, 03071-000, São Paulo, SP, Brazil
| | - Leandro M. Castro
- ‡Departamento de Biologia Celular e Desenvolvimento, Programa de Biologia Celular, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), 05508-900, São Paulo, SP, Brazil
| | - Maria A. Juliano
- *Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, SP, Brazil
| | - Ivarne L. Tersariol
- ∥Centro Interdisciplinar de Investigação Bioquímica (CIIB), Universidade de Mogi das Cruzes, 08780-911, Mogi das Cruzes, SP, Brazil
| | - Emer S. Ferro
- ‡Departamento de Biologia Celular e Desenvolvimento, Programa de Biologia Celular, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), 05508-900, São Paulo, SP, Brazil
| | - Luiz Juliano
- *Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, SP, Brazil
| | - Vitor Oliveira
- *Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, SP, Brazil
- §Laboratório de Neurociências, Universidade Cidade de São Paulo, 03071-000, São Paulo, SP, Brazil
- To whom correspondence should be addressed (email )
| |
Collapse
|
16
|
Morty RE, Vadász I, Bulau P, Dive V, Oliveira V, Seeger W, Juliano L. Tropolysin, a New Oligopeptidase from African Trypanosomes†,‡. Biochemistry 2005; 44:14658-69. [PMID: 16262265 DOI: 10.1021/bi051035k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oligopeptidases are emerging as important pathogenic factors and therapeutic targets in trypanosome infections. We describe here the purification, cloning, and biochemical analysis of a new oligopeptidase from two pathogenic African trypanosomes. This oligopeptidase, which we have called tropolysin (encoded by the trn gene), represents an evolutionarily distant member of the M3A subfamily of metallopeptidases, ancestral to thimet oligopeptidase, neurolysin, and saccharolysin. The trn gene was present as a single copy per haploid genome, was expressed in both the mammalian and insect stages of the parasite life cycle, and encoded an 84 kDa protein. Both purified and hyperexpressed tropolysin hydrolyzed bradykinin-derived fluorogenic peptide substrates at restricted sites, with an alkaline pH optimum, and were activated by dithiothreitol and reduced glutathione and by divalent metal cations, in the order Zn(2+) > Co(2+) > Mn(2+). Under oxidizing conditions, tropolysin reversibly formed inactive multimers. Tropolysin exhibited a preference for acidic amino acid side chains in P(4), hydrophobic side chains in P(3), and hydrophobic or large uncharged side chains in P(1), P(1)', and P(3)', while the S(2)' site was unselective. Highly charged residues were not tolerated in P(1)'. Tropolysin was responsible for the bulk of the kinin-degrading activity in trypanosome lysates, potently (k(cat) approximately 119 s(-)(1)) inactivated the vasoactive kinins bradykinin and kallidin, and generated angiotensin(1-7) from angiotensin I. This hydrolysis both abolished the capacity of bradykinin to stimulate the bradykinin B(2) receptor and abrogated bradykinin prohypotensive properties in vivo, raising the possibility that tropolysin may play a role in the dysregulated kinin metabolism observed in the plasma of trypanosome-infected hosts.
Collapse
Affiliation(s)
- Rory E Morty
- Department of Internal Medicine, University Hospital Giessen, Aulweg 123, D-35392 Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Hayashi MAF, Portaro FCV, Bastos MF, Guerreiro JR, Oliveira V, Gorrão SS, Tambourgi DV, Sant'Anna OA, Whiting PJ, Camargo LM, Konno K, Brandon NJ, Camargo ACM. Inhibition of NUDEL (nuclear distribution element-like)-oligopeptidase activity by disrupted-in-schizophrenia 1. Proc Natl Acad Sci U S A 2005; 102:3828-33. [PMID: 15728732 PMCID: PMC553309 DOI: 10.1073/pnas.0500330102] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recently, nuclear distribution element-like (NUDEL) has been implicated to play a role in lissencephaly and schizophrenia through interactions with the lissencephaly gene 1 (Lis1) and disrupted-in-schizophrenia 1 (DISC1) products, respectively. Interestingly, NUDEL is the same protein as endooligopeptidase A (EOPA), a thiol-activated peptidase involved in conversion and inactivation of a number of bioactive peptides. In this study, we have cloned EOPA from the human brain and have confirmed that it is equivalent to NUDEL, leading us to suggest a single name, NUDEL-oligopeptidase. In the brain, the monomeric form of NUDEL-oligopeptidase is responsible for the peptidase activity whose catalytic mechanism is likely to involve a reactive cysteine, because mutation of Cys-273 fully abolished NUDEL-oligopeptidase activity without disrupting the protein's secondary structure. Cys-273 is very close to the DISC1-binding site on NUDEL-oligopeptidase. Intriguingly, DISC1 inhibits NUDEL-oligopeptidase activity in a competitive fashion. We suggest that the activity of NUDEL-oligopeptidase is under tight regulation through protein-protein interactions and that disruption of these interactions, as postulated in a Scottish DISC1 translocation schizophrenia cohort, may lead to aberrant regulation of NUDEL-oligopeptidase, perhaps providing a substrate for the pathology of schizophrenia.
Collapse
Affiliation(s)
- Mirian A F Hayashi
- Center for Applied Toxinology, Laboratories of Immunogenetics and Immunochemistry, Butantan Institute, and Laboratory of Neurosciences, Universidade Cidade de São Paulo, SP 05503-900, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Saric T, Graef CI, Goldberg AL. Pathway for Degradation of Peptides Generated by Proteasomes. J Biol Chem 2004; 279:46723-32. [PMID: 15328361 DOI: 10.1074/jbc.m406537200] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The degradation of cellular proteins by proteasomes generates peptides 2-24 residues long, which are hydrolyzed rapidly to amino acids. To define the final steps in this pathway and the responsible peptidases, we fractionated by size the peptides generated by proteasomes from beta-[14C]casein and studied in HeLa cell extracts the degradation of the 9-17 residue fraction and also of synthetic deca- and dodecapeptide libraries, because peptides of this size serve as precursors to MHC class I antigenic peptides. Their hydrolysis was followed by measuring the generation of smaller peptides or of new amino groups using fluorescamine. The 14C-labeled peptides released by 20 S proteasomes could not be degraded further by proteasomes. However, their degradation in the extracts and that of the peptide libraries was completely blocked by o-phenanthroline and thus required metallopeptidases. One such endopeptidase, thimet oligopeptidase (TOP), which was recently shown to degrade many antigenic precursors in the cytosol, was found to play a major role in degrading proteasome products. Inhibition or immunodepletion of TOP decreased their degradation and that of the peptide libraries by 30-50%. Pure TOP failed to degrade proteasome products 18-24 residues long but degraded the 9-17 residue fraction to peptides of 6-9 residues. When aminopeptidases in the cell extract were inhibited with bestatin, the 9-17 residue proteasome products were also converted to peptides of 6-9 residues, instead of smaller products. Accordingly, the cytosolic aminopeptidase, leucine aminopeptidase, could not degrade the 9-17 residue fraction but hydrolyzed the peptides generated by TOP to smaller products, recapitulating the process in cell extracts. Inactivation of both TOP and aminopeptidases blocked the degradation of proteasome products and peptide libraries nearly completely. Thus, degradation of most 9-17 residue proteasome products is initiated by endoproteolytic cleavages, primarily by TOP, and the resulting 6-9 residue fragments are further digested to amino acids by aminopeptidases.
Collapse
Affiliation(s)
- Tomo Saric
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
19
|
Ray K, Hines CS, Coll-Rodriguez J, Rodgers DW. Crystal structure of human thimet oligopeptidase provides insight into substrate recognition, regulation, and localization. J Biol Chem 2004; 279:20480-9. [PMID: 14998993 DOI: 10.1074/jbc.m400795200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thimet oligopeptidase (TOP) is a zinc metallopeptidase that metabolizes a number of bioactive peptides and degrades peptides released by the proteasome, limiting antigenic presentation by MHC class I molecules. We present the crystal structure of human TOP at 2.0-A resolution. The active site is located at the base of a deep channel that runs the length of the elongated molecule, an overall fold first seen in the closely related metallopeptidase neurolysin. Comparison of the two related structures indicates hinge-like flexibility and identifies elements near one end of the channel that adopt different conformations. Relatively few of the sequence differences between TOP and neurolysin map to the proposed substrate-binding site, and four of these variable residues may account for differences in substrate specificity. In addition, a loop segment (residues 599-611) in TOP differs in conformation and degree of order from the corresponding neurolysin loop, suggesting it may also play a role in activity differences. Cysteines thought to mediate covalent oligomerization of rat TOP, which can inactivate the enzyme, are found to be surface-accessible in the human enzyme, and additional cysteines (residues 321,350, and 644) may also mediate multimerization in the human homolog. Disorder in the N terminus of TOP indicates it may be involved in subcellular localization, but a potential nuclear import element is found to be part of a helix and, therefore, unlikely to be involved in transport. A large acidic patch on the surface could potentially mediate a protein-protein interaction, possibly through formation of a covalent linkage.
Collapse
Affiliation(s)
- Kallol Ray
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
20
|
Sigman JA, Edwards SR, Pabon A, Glucksman MJ, Wolfson AJ. pH dependence studies provide insight into the structure and mechanism of thimet oligopeptidase (EC 3.4.24.15). FEBS Lett 2003; 545:224-8. [PMID: 12804780 DOI: 10.1016/s0014-5793(03)00548-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thimet oligopeptidase (EC 3.4.24.15; TOP) is a Zn(II) endopeptidase implicated in physiological regulation of processes involving neuropeptides. The present study clarifies the active site structure and mechanism of catalysis of TOP. The enzyme exhibited a bell-shaped pH dependence of activity having an acidic limb due to a protonation event with a pK(a) of 5.7 and a basic limb with pK(a) of 8.8. The acidic limb can be attributed to protonation of a residue affecting k(cat) while the alkaline limb may be due to conformational change. Mutation of Tyr612 to Phe resulted in more than 400-fold decrease in activity. This result, supported by modeling studies, implicates Tyr612 in transition state stabilization analogous to the role of His231 of thermolysin.
Collapse
Affiliation(s)
- Jeffrey A Sigman
- Department of Chemistry, Wellesley College, Wellesley, MA 02481, USA
| | | | | | | | | |
Collapse
|