1
|
Mackieh R, Al-Bakkar N, Kfoury M, Roufayel R, Sabatier JM, Fajloun Z. Inhibitors of ATP Synthase as New Antibacterial Candidates. Antibiotics (Basel) 2023; 12:antibiotics12040650. [PMID: 37107012 PMCID: PMC10135114 DOI: 10.3390/antibiotics12040650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
ATP, the power of all cellular functions, is constantly used and produced by cells. The enzyme called ATP synthase is the energy factory in all cells, which produces ATP by adding inorganic phosphate (Pi) to ADP. It is found in the inner, thylakoid and plasma membranes of mitochondria, chloroplasts and bacteria, respectively. Bacterial ATP synthases have been the subject of multiple studies for decades, since they can be genetically manipulated. With the emergence of antibiotic resistance, many combinations of antibiotics with other compounds that enhance the effect of these antibiotics have been proposed as approaches to limit the spread of antibiotic-resistant bacteria. ATP synthase inhibitors, such as resveratrol, venturicidin A, bedaquiline, tomatidine, piceatannol, oligomycin A and N,N-dicyclohexylcarbodiimide were the starting point of these combinations. However, each of these inhibitors target ATP synthase differently, and their co-administration with antibiotics increases the susceptibility of pathogenic bacteria. After a brief description of the structure and function of ATP synthase, we aim in this review to highlight therapeutic applications of the major bacterial ATP synthase inhibitors, including animal’s venoms, and to emphasize their importance in decreasing the activity of this enzyme and subsequently eradicating resistant bacteria as ATP synthase is their source of energy.
Collapse
|
2
|
Liu Y, Liu J, He X. Different p Ka Shifts of Internal GLU8 in Human β-Endorphin Amyloid Revealing a Coupling of Internal Ionization and Stepwise Fibril Disassembly. J Phys Chem B 2023; 127:1089-1096. [PMID: 36696655 DOI: 10.1021/acs.jpcb.2c06706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
As a functional amyloid, human β-endorphin amyloid fibril features a β-solenoid conformation and store peptide hormones within acidic secretory granules, which would be released into the blood through fibril disassembly when the cellular milieu pH increases from acidic to neutral level on exocytosis. To gain detailed atomic mechanism of β-endorphin amyloid fibrils' pH-responsive disassembly, we conduct constant pH molecular dynamics simulations to investigate the structural and dynamical properties of β-endorphin amyloid fibrils in experiencing the environmental pH changes. Our results demonstrate a clear pKa shift of the internal ionizable residue of GLU8, and this shift becomes even more pronounced when it is buried more deeply in the amyloid fibrils. The unusual pKa of GLU8 reveals that its protonation state changes from the protonated state in the acidic secretory granule to the deprotonated state in the neutral pH conditions in the blood, where the deprotonation of GLU8 leads to unfavorable interactions within the hydrophobic core of the amyloid and subsequent fibril disassembly. The different pKa shifts of GLU8 relative to its positions in the amyloid fibril indicate that the β-endorphin amyloid fibril disassembly is a stepwise process, accounting for the experimental observation that the disassembly always initiates from the outermost layer. This study reveals the critical role of the protonation state of GLU8 in amyloid fibrils' pH-responsive disassembly, and provides clear insights for understanding the structural transitions of amyloids in hormone secretion. This study also provides theoretical basis for designing pH-sensitive biological tools for specific use with precise positioning of ionizable residues into the hydrophobic interior of proteins.
Collapse
Affiliation(s)
- Yiwei Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Jinfeng Liu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.,New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai, 200062, China
| |
Collapse
|
3
|
ATP synthesis in an ancient ATP synthase at low driving forces. Proc Natl Acad Sci U S A 2022; 119:e2201921119. [PMID: 35512103 DOI: 10.1073/pnas.2201921119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceThe ATP synthases of many anaerobic archaea have an unusual motor subunit c that otherwise is only found in eukaryotic V1VO ATPases. The evolutionary switch from synthase to hydrolase is thought to be caused by a doubling of the rotor subunit c, followed by a loss of the ion binding site. By purification and reconstitution of an ATP synthase with a V-type c subunit, we have unequivocally demonstrated, against expectations, the capability of such an enzyme to synthesize ATP at physiological relevant driving forces of 90 to 150 mV. This is the long-awaited answer to an eminent question in microbial energetics and physiology, especially for life near the thermodynamic limit of ATP synthesis.
Collapse
|
4
|
Zhu L, Huang L, Su W, Liang X, Lin W. A Fluorescent Probe Targeting Mitochondria and Lipid Droplets for Visualization of Cell Death. Chem Asian J 2022; 17:e202101304. [PMID: 35040582 DOI: 10.1002/asia.202101304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/18/2021] [Indexed: 12/18/2022]
Abstract
Subcellular organelles play an indispensable role in various biological process. Therefore, it is very important to develop fluorescent probe to identify different organelles and their dynamics in specific biological processes. Herein, a new fluorescent probe has been prepared, which can be used to visualize cell death via targeting mitochondria and lipid droplets (LDs) in dual-emission channels. The new probe appeared in the form of ring-open in mitochondria to emit strong yellow fluorescence in living cells, while it carried out intramolecular spiral cyclization reaction to target LDs and give a cyan emission in dead cells. The performance of cell death in the UV-exposure, lipopolysaccharide and hydrogen peroxide treatment is successfully revealed by the probe. The probe has great potential in dual colour biomedical imaging of dynamic changes of mitochondria and LDs in biological processes.
Collapse
Affiliation(s)
- Lin Zhu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Ling Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Wanting Su
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Xing Liang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| |
Collapse
|
5
|
Insights on the proton translocation pathways in FоF1-ATP synthase using molecular dynamics simulations. Arch Biochem Biophys 2022; 717:109135. [DOI: 10.1016/j.abb.2022.109135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/21/2022]
|
6
|
Katsyv A, Müller V. Overcoming Energetic Barriers in Acetogenic C1 Conversion. Front Bioeng Biotechnol 2020; 8:621166. [PMID: 33425882 PMCID: PMC7793690 DOI: 10.3389/fbioe.2020.621166] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Currently one of the biggest challenges for society is to combat global warming. A solution to this global threat is the implementation of a CO2-based bioeconomy and a H2-based bioenergy economy. Anaerobic lithotrophic bacteria such as the acetogenic bacteria are key players in the global carbon and H2 cycle and thus prime candidates as driving forces in a H2- and CO2-bioeconomy. Naturally, they convert two molecules of CO2via the Wood-Ljungdahl pathway (WLP) to one molecule of acetyl-CoA which can be converted to different C2-products (acetate or ethanol) or elongated to C4 (butyrate) or C5-products (caproate). Since there is no net ATP generation from acetate formation, an electron-transport phosphorylation (ETP) module is hooked up to the WLP. ETP provides the cell with additional ATP, but the ATP gain is very low, only a fraction of an ATP per mol of acetate. Since acetogens live at the thermodynamic edge of life, metabolic engineering to obtain high-value products is currently limited by the low energy status of the cells that allows for the production of only a few compounds with rather low specificity. To set the stage for acetogens as production platforms for a wide range of bioproducts from CO2, the energetic barriers have to be overcome. This review summarizes the pathway, the energetics of the pathway and describes ways to overcome energetic barriers in acetogenic C1 conversion.
Collapse
Affiliation(s)
- Alexander Katsyv
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
7
|
|
8
|
Ebanks B, Ingram TL, Chakrabarti L. ATP synthase and Alzheimer's disease: putting a spin on the mitochondrial hypothesis. Aging (Albany NY) 2020; 12:16647-16662. [PMID: 32853175 PMCID: PMC7485717 DOI: 10.18632/aging.103867] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022]
Abstract
It is estimated that over 44 million people across the globe have dementia, and half of these cases are believed to be Alzheimer’s disease (AD). As the proportion of the global population which is over the age 60 increases so will the number of individuals living with AD. This will result in ever-increasing demands on healthcare systems and the economy. AD can be either sporadic or familial, but both present with similar pathobiology and symptoms. Three prominent theories about the cause of AD are the amyloid, tau and mitochondrial hypotheses. The mitochondrial hypothesis focuses on mitochondrial dysfunction in AD, however little attention has been given to the potential dysfunction of the mitochondrial ATP synthase in AD. ATP synthase is a proton pump which harnesses the chemical potential energy of the proton gradient across the inner mitochondrial membrane (IMM), generated by the electron transport chain (ETC), in order to produce the cellular energy currency ATP. This review presents the evidence accumulated so far that demonstrates dysfunction of ATP synthase in AD, before highlighting two potential pharmacological interventions which may modulate ATP synthase.
Collapse
Affiliation(s)
- Brad Ebanks
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Thomas L Ingram
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK.,MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Chesterfield, UK
| |
Collapse
|
9
|
Anderson AJ, Jackson TD, Stroud DA, Stojanovski D. Mitochondria-hubs for regulating cellular biochemistry: emerging concepts and networks. Open Biol 2019; 9:190126. [PMID: 31387448 PMCID: PMC6731593 DOI: 10.1098/rsob.190126] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are iconic structures in biochemistry and cell biology, traditionally referred to as the powerhouse of the cell due to a central role in energy production. However, modern-day mitochondria are recognized as key players in eukaryotic cell biology and are known to regulate crucial cellular processes, including calcium signalling, cell metabolism and cell death, to name a few. In this review, we will discuss foundational knowledge in mitochondrial biology and provide snapshots of recent advances that showcase how mitochondrial function regulates other cellular responses.
Collapse
Affiliation(s)
- Alexander J Anderson
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Thomas D Jackson
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - David A Stroud
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
10
|
Sekiya M, Izumisawa S, Iwamoto-Kihara A, Fan Y, Shimoyama Y, Sasaki M, Nakanishi-Matsui M. Proton-pumping F-ATPase plays an important role in Streptococcus mutans under acidic conditions. Arch Biochem Biophys 2019; 666:46-51. [DOI: 10.1016/j.abb.2019.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/30/2022]
|
11
|
Li XL, Huang WL, Yang HH, Jiang RC, Sun F, Wang HC, Zhao J, Xu CH, Tan BC. EMP18 functions in mitochondrial atp6 and cox2 transcript editing and is essential to seed development in maize. THE NEW PHYTOLOGIST 2019; 221:896-907. [PMID: 30168136 DOI: 10.1111/nph.15425] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/02/2018] [Indexed: 05/02/2023]
Abstract
RNA editing plays an important role in organellar gene expression in plants, and pentatricopeptide repeat (PPR) proteins are involved in this function. Because of its large family size, many PPR proteins are not known for their function and roles in plant growth and development. Through genetic and molecular analyses of the empty pericarp18 (emp18) mutant in maize (Zea mays), we cloned the Emp18 gene, revealed its molecular function, and defined its role in the mitochondrial complex assembly and seed development. Emp18 encodes a mitochondrial-localized DYW-PPR protein. Null mutation of Emp18 arrests embryo and endosperm development at an early stage in maize, resulting in embryo lethality. Mutants are deficient in the cytidine (C)-to-uridine (U) editing at atp6-635 and cox2-449, which converts a Leu to Pro in ATP6 and a Met to Thr in Cox2. The atp6 gene encodes the subunit a of F1 Fo -ATPase. The Leu to Pro alteration disrupts an α-helix of subunit a, resulting in a dramatic reduction in assembly and activity of F1 Fo -ATPase holoenzyme and an accumulation of free F1 -subcomplex. These results demonstrate that EMP18 functions in the C-to-U editing of atp6 and cox2, and is essential to mitochondrial biogenesis and seed development in maize.
Collapse
Affiliation(s)
- Xiu-Lan Li
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Wen-Long Huang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Huan-Huan Yang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Rui-Cheng Jiang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Feng Sun
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Hong-Chun Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Jiao Zhao
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Chun-Hui Xu
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| |
Collapse
|
12
|
Engineered Protein Model of the ATP synthase H +- Channel Shows No Salt Bridge at the Rotor-Stator Interface. Sci Rep 2018; 8:11361. [PMID: 30054535 PMCID: PMC6063947 DOI: 10.1038/s41598-018-29693-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022] Open
Abstract
ATP synthase is powered by the flow of protons through the molecular turbine composed of two α-helical integral membrane proteins, subunit a, which makes a stator, and a cylindrical rotor assembly made of multiple copies of subunit c. Transient protonation of a universally conserved carboxylate on subunit c (D61 in E. coli) gated by the electrostatic interaction with arginine on subunit a (R210 in E. coli) is believed to be a crucial step in proton transfer across the membrane. We used a fusion protein consisting of subunit a and the adjacent helices of subunit c to test by NMR spectroscopy if cD61 and aR210 are involved in an electrostatic interaction with each other, and found no evidence of such interaction. We have also determined that R140 does not form a salt bridge with either D44 or D124 as was suggested previously by mutation analysis. Our results demonstrate the potential of using arginines as NMR reporter groups for structural and functional studies of challenging membrane proteins.
Collapse
|
13
|
Robinson AC, Schlessman JL, García-Moreno E B. Dielectric Properties of a Protein Probed by Reversal of a Buried Ion Pair. J Phys Chem B 2018; 122:2516-2524. [PMID: 29466010 DOI: 10.1021/acs.jpcb.7b12121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Thirty years ago, Hwang and Warshel suggested that a microenvironment preorganized to stabilize an ion pair would be incapable of reorganizing to stabilize the reverse ion pair. The implications were that (1) proteins have a limited capacity to reorganize, even under the influence of strong interactions, such as those present when ionizable groups are buried in the hydrophobic interior of a protein, and (2) the inability of proteins to tolerate the reversal of buried ion pairs demonstrates the limitations inherent to continuum electrostatic models of proteins. Previously we showed that when buried individually in the interior of staphylococcal nuclease, Glu23 and Lys36 have p Ka values near pH 7, but when buried simultaneously, they establish a strong interaction of ∼5 kcal/mol and have p Ka values shifted toward more normal values. Here, using equilibrium thermodynamic measurements, crystal structures, and NMR spectroscopy experiments, we show that although the reversed, individual substitutions-Lys23 and Glu36-also have p Ka values near 7, when buried together, they neither establish a strong interaction nor promote reorganization of their microenvironment. These experiments both confirm Warshel's original hypothesis and expand it by showing that it applies to reorganization, as demonstrated by our artificial ion pairs, as well as to preorganization as is commonly argued for motifs that stabilize naturally occurring ion pairs in polar microenvironments. These data constitute a challenging benchmark useful to test the ability of structure-based algorithms to reproduce the compensation between self-energy, Coulomb and polar interactions in hydrophobic environments of proteins.
Collapse
Affiliation(s)
- Aaron C Robinson
- Department of Biophysics , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Jamie L Schlessman
- Chemistry Department , U.S. Naval Academy , Annapolis , Maryland 21402 , United States
| | - Bertrand García-Moreno E
- Department of Biophysics , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
14
|
Liu J, Swails J, Zhang JZH, He X, Roitberg AE. A Coupled Ionization-Conformational Equilibrium Is Required To Understand the Properties of Ionizable Residues in the Hydrophobic Interior of Staphylococcal Nuclease. J Am Chem Soc 2018; 140:1639-1648. [PMID: 29308643 DOI: 10.1021/jacs.7b08569] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ionizable residues in the interior of proteins play essential roles, especially in biological energy transduction, but are relatively rare and seem incompatible with the complex and polar environment. We perform a comprehensive study of the internal ionizable residues on 21 variants of staphylococcal nuclease with internal Lys, Glu, or Asp residues. Using pH replica exchange molecular dynamics simulations, we find that, in most cases, the pKa values of these internal ionizable residues are shifted significantly from their values in solution. Our calculated results are in excellent agreement with the experimental observations of the Garcia-Moreno group. We show that the interpretation of the experimental pKa values requires the study of not only protonation changes but also conformational changes. The coupling between the protonation and conformational equilibria suggests a mechanism for efficient pH-sensing and regulation in proteins. This study provides new physical insights into how internal ionizable residues behave in the hydrophobic interior of proteins.
Collapse
Affiliation(s)
- Jinfeng Liu
- School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University , Shanghai, 200062, China.,Department of Chemistry, University of Florida , Gainesville, Florida 32611, United States.,Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University , Nanjing, 210009, China
| | - Jason Swails
- Department of Chemistry and Chemical Biology and BioMaPS Institute, Rutgers University , Piscataway, New Jersey 08854, United States
| | - John Z H Zhang
- School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University , Shanghai, 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai, 200062, China
| | - Xiao He
- School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University , Shanghai, 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai, 200062, China
| | - Adrian E Roitberg
- Department of Chemistry, University of Florida , Gainesville, Florida 32611, United States
| |
Collapse
|
15
|
Naumenko N, Morgenstern M, Rucktäschel R, Warscheid B, Rehling P. INA complex liaises the F 1F o-ATP synthase membrane motor modules. Nat Commun 2017; 8:1237. [PMID: 29093463 PMCID: PMC5665977 DOI: 10.1038/s41467-017-01437-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 09/18/2017] [Indexed: 01/11/2023] Open
Abstract
The F1F0-ATP synthase translates a proton flux across the inner mitochondrial membrane into a mechanical rotation, driving anhydride bond formation in the catalytic portion. The complex’s membrane-embedded motor forms a proteinaceous channel at the interface between Atp9 ring and Atp6. To prevent unrestricted proton flow dissipating the H+-gradient, channel formation is a critical and tightly controlled step during ATP synthase assembly. Here we show that the INA complex (INAC) acts at this decisive step promoting Atp9-ring association with Atp6. INAC binds to newly synthesized mitochondrial-encoded Atp6 and Atp8 in complex with maturation factors. INAC association is retained until the F1-portion is built on Atp6/8 and loss of INAC causes accumulation of the free F1. An independent complex is formed between INAC and the Atp9 ring. We conclude that INAC maintains assembly intermediates of the F1 F0-ATP synthase in a primed state for the terminal assembly step–motor module formation. The inner membrane assembly complex (INAC) interacts with components of the F1F0-ATP synthase but its function remains unclear. Here the authors show that INAC associates with two distinct complexes during F1F0-ATP synthase formation, which points towards a safeguarding role during proton-conducting channel assembly.
Collapse
Affiliation(s)
- Nataliia Naumenko
- Department of Cellular Biochemistry, University Medical Center Göttingen, GZMB, D-37073, Göttingen, Germany
| | - Marcel Morgenstern
- Department of Biochemistry and Functional Proteomics, Faculty of Biology, University Freiburg, D-79104, Freiburg, Germany
| | - Robert Rucktäschel
- Department of Cellular Biochemistry, University Medical Center Göttingen, GZMB, D-37073, Göttingen, Germany
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Faculty of Biology, University Freiburg, D-79104, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104, Freiburg, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, GZMB, D-37073, Göttingen, Germany. .,Max Planck Institute for Biophysical Chemistry, D-37077, Göttingen, Germany.
| |
Collapse
|
16
|
Sekiya M, Sakamoto Y, Futai M, Nakanishi-Matsui M. Role of α/β interface in F 1 ATPase rotational catalysis probed by inhibitors and mutations. Int J Biol Macromol 2017; 99:615-621. [DOI: 10.1016/j.ijbiomac.2017.02.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/24/2017] [Indexed: 01/26/2023]
|
17
|
AKUTSU H. Dynamic mechanisms driving conformational conversions of the β and ε subunits involved in rotational catalysis of F 1-ATPase. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:630-647. [PMID: 29021512 PMCID: PMC5743862 DOI: 10.2183/pjab.93.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/16/2017] [Indexed: 05/26/2023]
Abstract
F-type ATPase is a ubiquitous molecular motor. Investigations on thermophilic F1-ATPase and its subunits, β and ε, by NMR were reviewed. Using specific isotope labeling, pKa of the putative catalytic carboxylate in β was estimated. Segmental isotope-labeling enabled us to monitor most residues of β, revealing that the conformational conversion from open to closed form of β on nucleotide binding found in ATPase was an intrinsic property of β and could work as a driving force of the rotational catalysis. A stepwise conformational change was driven by switching of the hydrogen bond networks involving Walker A and B motifs. Segmentally labeled ATPase provided a well resolved NMR spectra, revealing while the open form of β was identical for β monomer and ATPase, its closed form could be different. ATP-binding was also a critical factor in the conformational conversion of ε, an ATP hydrolysis inhibitor. Its structural elucidation was described.
Collapse
Affiliation(s)
- Hideo AKUTSU
- Institute for Protein Research, Osaka University, Osaka, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
18
|
Robinson AC, Majumdar A, Schlessman JL, García-Moreno E B. Charges in Hydrophobic Environments: A Strategy for Identifying Alternative States in Proteins. Biochemistry 2016; 56:212-218. [DOI: 10.1021/acs.biochem.6b00843] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Jamie L. Schlessman
- Chemistry
Department, United States Naval Academy, 572M Holloway Rd MS 9B, Annapolis, Maryland 21402, United States
| | | |
Collapse
|
19
|
Wen S, Niedzwiecka K, Zhao W, Xu S, Liang S, Zhu X, Xie H, Tribouillard-Tanvier D, Giraud MF, Zeng C, Dautant A, Kucharczyk R, Liu Z, di Rago JP, Chen H. Identification of G8969>A in mitochondrial ATP6 gene that severely compromises ATP synthase function in a patient with IgA nephropathy. Sci Rep 2016; 6:36313. [PMID: 27812026 PMCID: PMC5095641 DOI: 10.1038/srep36313] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/13/2016] [Indexed: 12/04/2022] Open
Abstract
Here we elucidated the pathogenesis of a 14-year-old Chinese female who initially developed an isolated nephropathy followed by a complex clinical presentation with brain and muscle problems, which indicated that the disease process was possibly due to a mitochondrial dysfunction. Careful evaluation of renal biopsy samples revealed a decreased staining of cells induced by COX and NADH dehydrogenase activities, and a strong fragmentation of the mitochondrial network. These anomalies were due to the presence of a mutation in the mitochondrial ATP6 gene, G8969>A. This mutation leads to replacement of a highly conserved serine residue at position 148 of the a-subunit of ATP synthase. Increasing the mutation load in cybrid cell lines was paralleled by the appearance of abnormal mitochondrial morphologies, diminished respiration and enhanced production of reactive oxygen species. An equivalent of the G8969>A mutation in yeast had dramatic consequences on ATP synthase, with a block in proton translocation. The mutation was particularly abundant (89%) in the kidney compared to blood and urine, which is likely the reason why this organ was affected first. Based on these findings, we suggest that nephrologists should pay more attention to the possibility of a mitochondrial dysfunction when evaluating patients suffering from kidney problems.
Collapse
Affiliation(s)
- Shuzhen Wen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Katarzyna Niedzwiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Weiwei Zhao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Shutian Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Shaoshan Liang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaodong Zhu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Honglang Xie
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Déborah Tribouillard-Tanvier
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France.,Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France.,INSERM, Institut de Biochimie et Génétique Cellulaires, F-33077 Bordeaux, France
| | - Marie-France Giraud
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France.,Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Caihong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Alain Dautant
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France.,Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Róża Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jean-Paul di Rago
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France.,Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Huimei Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
20
|
Pathak AK. Effect of a buried ion pair in the hydrophobic core of a protein: An insight from constant pH molecular dynamics study. Biopolymers 2016; 103:148-57. [PMID: 25363335 DOI: 10.1002/bip.22577] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 01/18/2023]
Abstract
Constant pH molecular dynamics (CpHMD) is a commonly used sampling method, which incorporates the coupling of conformational flexibility and protonation state of a protein during the simulation by using pH as an external parameter. The effects on the structure and stability of a hyperstable variant of staphylococcal nuclease (Δ+PHS) protein of an artificial charge pair buried in its hydrophobic core are investigated by applying both CpHMD and accelerated molecular dynamics coupled with constant pH (CpHaMD) methods. Generalized Born electrostatics is used to model the solvent water. Two sets of starting coordinates of V23E/L36K variant of Δ+PHS, namely, Maestro generated coordinates from Δ+PHS and crystal structure coordinates of the same are considered for detail investigations. On the basis of root mean square displacement (RMSD) and root mean square fluctuations (RMSF) calculations, it is observed that this variant is stable over a wide range of pH. The calculated pKa values for aspartate and glutamate residues based on both CpHMD and CpHaMD simulations are consistent with the reported experimental values (within ± 0.5 to ± 1.5 pH unit), which clearly indicates that the local chemical environment of the carboxylic acids in V23E/L36K variant are comparable to the parent form. The strong salt bridge interaction between the mutated pair, E23/K36 and additional hydrogen bonds formed in the V23E/L36K variant, may help to compensate for the unfavorable self-energy experienced by the burial of these residues in the hydrophobic core. However, from RMSD, RMSF, and pKa analysis, no significant change in the global conformation of V23E/L36K variant with respect to the parent form, Δ+PHS is noticed.
Collapse
Affiliation(s)
- Arup K Pathak
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai, 400085, India
| |
Collapse
|
21
|
Niedzwiecka K, Kabala AM, Lasserre JP, Tribouillard-Tanvier D, Golik P, Dautant A, di Rago JP, Kucharczyk R. Yeast models of mutations in the mitochondrial ATP6 gene found in human cancer cells. Mitochondrion 2016; 29:7-17. [PMID: 27083309 DOI: 10.1016/j.mito.2016.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 01/09/2023]
Abstract
Since the discovery of somatic mtDNA mutations in tumor cells, multiple studies have focused on establishing a causal relationship between those changes and alterations in energy metabolism, a hallmark of cancer cells. Yet the consequences of these mutations on mitochondrial function remain largely unknown. In this study, Saccharomyces cerevisiae has been used as a model to investigate the functional consequences of four cancer-associated missense mutations (8914C>A, 8932C>T, 8953A>G, 9131T>C) found in the mitochondrial MT-ATP6 gene. This gene encodes the a-subunit of F1FO-ATP synthase, which catalyzes the last steps of ATP production in mitochondria. Although the four studied mutations affected well-conserved residues of the a-subunit, only one of them (8932C>T) had a significant impact on mitochondrial function, due to a less efficient incorporation of the a-subunit into ATP synthase. Our findings indicate that these ATP6 genetic variants found in human tumors are neutral mitochondrial genome substitutions with a limited, if any, impact on the energetic function of mitochondria.
Collapse
Affiliation(s)
- Katarzyna Niedzwiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Magdalena Kabala
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland; Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
| | - Jean-Paul Lasserre
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
| | - Déborah Tribouillard-Tanvier
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
| | - Pawel Golik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Poland
| | - Alain Dautant
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
| | - Jean-Paul di Rago
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
22
|
Nakanishi-Matsui M, Sekiya M, Futai M. ATP synthase from Escherichia coli : Mechanism of rotational catalysis, and inhibition with the ε subunit and phytopolyphenols. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:129-140. [DOI: 10.1016/j.bbabio.2015.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/19/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
|
23
|
Xu T, Pagadala V, Mueller DM. Understanding structure, function, and mutations in the mitochondrial ATP synthase. MICROBIAL CELL 2015; 2:105-125. [PMID: 25938092 PMCID: PMC4415626 DOI: 10.15698/mic2015.04.197] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mitochondrial ATP synthase is a multimeric enzyme complex with an overall molecular weight of about 600,000 Da. The ATP synthase is a molecular motor composed of two separable parts: F1 and Fo. The F1 portion contains the catalytic sites for ATP synthesis and protrudes into the mitochondrial matrix. Fo forms a proton turbine that is embedded in the inner membrane and connected to the rotor of F1. The flux of protons flowing down a potential gradient powers the rotation of the rotor driving the synthesis of ATP. Thus, the flow of protons though Fo is coupled to the synthesis of ATP. This review will discuss the structure/function relationship in the ATP synthase as determined by biochemical, crystallographic, and genetic studies. An emphasis will be placed on linking the structure/function relationship with understanding how disease causing mutations or putative single nucleotide polymorphisms (SNPs) in genes encoding the subunits of the ATP synthase, will affect the function of the enzyme and the health of the individual. The review will start by summarizing the current understanding of the subunit composition of the enzyme and the role of the subunits followed by a discussion on known mutations and their effect on the activity of the ATP synthase. The review will conclude with a summary of mutations in genes encoding subunits of the ATP synthase that are known to be responsible for human disease, and a brief discussion on SNPs.
Collapse
Affiliation(s)
- Ting Xu
- Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064
| | - Vijayakanth Pagadala
- Department of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC
| | - David M Mueller
- Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064
| |
Collapse
|
24
|
Pathak AK. Constant pH molecular dynamics study on the doubly mutated staphylococcal nuclease: capturing the microenvironment. RSC Adv 2015. [DOI: 10.1039/c5ra17983a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Small rearrangements of residues in the microenvironment of V23E/L36K variant of staphylococcal nuclease can effectively be captured by CpHMD method.
Collapse
Affiliation(s)
- Arup Kumar Pathak
- Theoretical Chemistry Section
- Bhabha Atomic Reserch Centre
- Mumbai-400085
- India
| |
Collapse
|
25
|
Interacting cytoplasmic loops of subunits a and c of Escherichia coli F1F0 ATP synthase gate H+ transport to the cytoplasm. Proc Natl Acad Sci U S A 2014; 111:16730-5. [PMID: 25385585 DOI: 10.1073/pnas.1414660111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
H(+)-transporting F1F0 ATP synthase catalyzes the synthesis of ATP via coupled rotary motors within F0 and F1. H(+) transport at the subunit a-c interface in transmembranous F0 drives rotation of a cylindrical c10 oligomer within the membrane, which is coupled to rotation of subunit γ within the α3β3 sector of F1 to mechanically drive ATP synthesis. F1F0 functions in a reversible manner, with ATP hydrolysis driving H(+) transport. ATP-driven H(+) transport in a select group of cysteine mutants in subunits a and c is inhibited after chelation of Ag(+) and/or Cd(+2) with the substituted sulfhydryl groups. The H(+) transport pathway mapped via these Ag(+)(Cd(+2))-sensitive Cys extends from the transmembrane helices (TMHs) of subunits a and c into cytoplasmic loops connecting the TMHs, suggesting these loop regions could be involved in gating H(+) release to the cytoplasm. Here, using select loop-region Cys from the single cytoplasmic loop of subunit c and multiple cytoplasmic loops of subunit a, we show that Cd(+2) directly inhibits passive H(+) transport mediated by F0 reconstituted in liposomes. Further, in extensions of previous studies, we show that the regions mediating passive H(+) transport can be cross-linked to each other. We conclude that the loop-regions in subunits a and c that are implicated in H(+) transport likely interact in a single structural domain, which then functions in gating H(+) release to the cytoplasm.
Collapse
|
26
|
A unique mechanism of curcumin inhibition on F1 ATPase. Biochem Biophys Res Commun 2014; 452:940-4. [DOI: 10.1016/j.bbrc.2014.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/05/2014] [Indexed: 11/21/2022]
|
27
|
Nakanishi-Matsui M, Sekiya M, Yano S, Futai M. Inhibition of F1-ATPase rotational catalysis by the carboxyl-terminal domain of the ϵ subunit. J Biol Chem 2014; 289:30822-30831. [PMID: 25228697 DOI: 10.1074/jbc.m114.578872] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli ATP synthase (F0F1) couples catalysis and proton transport through subunit rotation. The ϵ subunit, an endogenous inhibitor, lowers F1-ATPase activity by decreasing the rotation speed and extending the duration of the inhibited state (Sekiya, M., Hosokawa, H., Nakanishi-Matsui, M., Al-Shawi, M. K., Nakamoto, R. K., and Futai, M. (2010) Single molecule behavior of inhibited and active states of Escherichia coli ATP synthase F1 rotation. J. Biol. Chem. 285, 42058-42067). In this study, we constructed a series of ϵ subunits truncated successively from the carboxyl-terminal domain (helix 1/loop 2/helix 2) and examined their effects on rotational catalysis (ATPase activity, average rotation rate, and duration of inhibited state). As expected, the ϵ subunit lacking helix 2 caused about ½-fold reduced inhibition, and that without loop 2/helix 2 or helix 1/loop 2/helix 2 showed a further reduced effect. Substitution of ϵSer(108) in loop 2 and ϵTyr(114) in helix 2, which possibly interact with the β and γ subunits, respectively, decreased the inhibitory effect. These results suggest that the carboxyl-terminal domain of the ϵ subunit plays a pivotal role in the inhibition of F1 rotation through interaction with other subunits.
Collapse
Affiliation(s)
- Mayumi Nakanishi-Matsui
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Iwate Medical University, Nishitokuta 2-1-1, Yahaba, Iwate 028-3694, Japan.
| | - Mizuki Sekiya
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Iwate Medical University, Nishitokuta 2-1-1, Yahaba, Iwate 028-3694, Japan
| | - Shio Yano
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Iwate Medical University, Nishitokuta 2-1-1, Yahaba, Iwate 028-3694, Japan
| | - Masamitsu Futai
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Iwate Medical University, Nishitokuta 2-1-1, Yahaba, Iwate 028-3694, Japan
| |
Collapse
|
28
|
Sekiya M, Chiba E, Satoh M, Yamakoshi H, Iwabuchi Y, Futai M, Nakanishi-Matsui M. Strong inhibitory effects of curcumin and its demethoxy analog on Escherichia coli ATP synthase F1 sector. Int J Biol Macromol 2014; 70:241-5. [DOI: 10.1016/j.ijbiomac.2014.06.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 06/15/2014] [Accepted: 06/30/2014] [Indexed: 01/30/2023]
|
29
|
Fillingame RH, Steed PR. Half channels mediating H+ transport and the mechanism of gating in the Fo sector of Escherichia coli F1Fo ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1063-8. [DOI: 10.1016/j.bbabio.2014.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 11/29/2022]
|
30
|
López-Gallardo E, Emperador S, Solano A, Llobet L, Martín-Navarro A, López-Pérez MJ, Briones P, Pineda M, Artuch R, Barraquer E, Jericó I, Ruiz-Pesini E, Montoya J. Expanding the clinical phenotypes of MT-ATP6 mutations. Hum Mol Genet 2014; 23:6191-200. [DOI: 10.1093/hmg/ddu339] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
31
|
Lytovchenko O, Naumenko N, Oeljeklaus S, Schmidt B, von der Malsburg K, Deckers M, Warscheid B, van der Laan M, Rehling P. The INA complex facilitates assembly of the peripheral stalk of the mitochondrial F1Fo-ATP synthase. EMBO J 2014; 33:1624-38. [PMID: 24942160 DOI: 10.15252/embj.201488076] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial F1Fo-ATP synthase generates the bulk of cellular ATP. This molecular machine assembles from nuclear- and mitochondria-encoded subunits. Whereas chaperones for formation of the matrix-exposed hexameric F1-ATPase core domain have been identified, insight into how the nuclear-encoded F1-domain assembles with the membrane-embedded Fo-region is lacking. Here we identified the INA complex (INAC) in the inner membrane of mitochondria as an assembly factor involved in this process. Ina22 and Ina17 are INAC constituents that physically associate with the F1-module and peripheral stalk, but not with the assembled F1Fo-ATP synthase. Our analyses show that loss of Ina22 and Ina17 specifically impairs formation of the peripheral stalk that connects the catalytic F1-module to the membrane embedded Fo-domain. We conclude that INAC represents a matrix-exposed inner membrane protein complex that facilitates peripheral stalk assembly and thus promotes a key step in the biogenesis of mitochondrial F1Fo-ATP synthase.
Collapse
Affiliation(s)
- Oleksandr Lytovchenko
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Nataliia Naumenko
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Silke Oeljeklaus
- Department of Biochemistry and Functional Proteomics, Faculty for Biology, University of Freiburg, Freiburg, Germany BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Bernhard Schmidt
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Karina von der Malsburg
- Institute for Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Freiburg, Germany
| | - Markus Deckers
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Faculty for Biology, University of Freiburg, Freiburg, Germany BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Martin van der Laan
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany Institute for Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Freiburg, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
32
|
A unique F-type H+-ATPase from Streptococcus mutans: An active H+ pump at acidic pH. Biochem Biophys Res Commun 2014; 443:677-82. [DOI: 10.1016/j.bbrc.2013.12.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/04/2013] [Indexed: 11/15/2022]
|
33
|
Kabala AM, Lasserre JP, Ackerman SH, di Rago JP, Kucharczyk R. Defining the impact on yeast ATP synthase of two pathogenic human mitochondrial DNA mutations, T9185C and T9191C. Biochimie 2013; 100:200-6. [PMID: 24316278 DOI: 10.1016/j.biochi.2013.11.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/25/2013] [Indexed: 12/18/2022]
Abstract
Mutations in the human mitochondrial ATP6 gene encoding ATP synthase subunit a/6 (referred to as Atp6p in yeast) are at the base of neurodegenerative disorders like Neurogenic Ataxia and Retinitis Pigmentosa (NARP), Leigh syndrome (LS), Charcot-Marie-Tooth (CMT), and ataxia telangiectasia. In previous studies, using the yeast Saccharomyces cerevisiae as a model we were able to better define how several of these mutations impact the ATP synthase. Here we report the construction of yeast models of two other ATP6 pathogenic mutations, T9185C and T9191C. The first one was reported as conferring a mild, sometimes reversible, CMT clinical phenotype; the second one has been described in a patient presenting with severe LS. We found that an equivalent of the T9185C mutation partially impaired the functioning of yeast ATP synthase, with only a 30% deficit in mitochondrial ATP production. An equivalent of the mutation T9191C had much more severe effects, with a nearly complete block in yeast Atp6p assembly and an >95% drop in the rate of ATP synthesis. These findings provide a molecular basis for the relative severities of the diseases induced by T9185C and T9191C.
Collapse
Affiliation(s)
- Anna Magdalena Kabala
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland; Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université Bordeaux Segalen, 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France
| | - Jean-Paul Lasserre
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université Bordeaux Segalen, 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France
| | - Sharon H Ackerman
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jean-Paul di Rago
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université Bordeaux Segalen, 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
34
|
Steed PR, Fillingame RH. Residues in the polar loop of subunit c in Escherichia coli ATP synthase function in gating proton transport to the cytoplasm. J Biol Chem 2013; 289:2127-38. [PMID: 24297166 DOI: 10.1074/jbc.m113.527879] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rotary catalysis in F1F0 ATP synthase is powered by proton translocation through the membrane-embedded F0 sector. Proton binding and release occur in the middle of the membrane at Asp-61 on the second transmembrane helix (TMH) of subunit c, which folds in a hairpin-like structure with two TMHs. Previously, the aqueous accessibility of Cys substitutions in the transmembrane regions of subunit c was probed by testing the inhibitory effects of Ag(+) or Cd(2+) on function, which revealed extensive aqueous access in the region around Asp-61 and on the half of TMH2 extending to the cytoplasm. In the current study, we surveyed the Ag(+) and Cd(2+) sensitivity of Cys substitutions in the loop of the helical hairpin and used a variety of assays to categorize the mechanisms by which Ag(+) or Cd(2+) chelation with the Cys thiolates caused inhibition. We identified two distinct metal-sensitive regions in the cytoplasmic loop where function was inhibited by different mechanisms. Metal binding to Cys substitutions in the N-terminal half of the loop resulted in an uncoupling of F1 from F0 with release of F1 from the membrane. In contrast, substitutions in the C-terminal half of the loop retained membrane-bound F1 after metal treatment. In several of these cases, inhibition was shown to be due to blockage of passive H(+) translocation through F0 as assayed with F0 reconstituted into liposomes. The results suggest that the C-terminal domain of the cytoplasmic loop may function in gating H(+) translocation to the cytoplasm.
Collapse
Affiliation(s)
- P Ryan Steed
- From the Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706
| | | |
Collapse
|
35
|
Morgan D, Musset B, Kulleperuma K, Smith SME, Rajan S, Cherny VV, Pomès R, DeCoursey TE. Peregrination of the selectivity filter delineates the pore of the human voltage-gated proton channel hHV1. ACTA ACUST UNITED AC 2013; 142:625-40. [PMID: 24218398 PMCID: PMC3840923 DOI: 10.1085/jgp.201311045] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Extraordinary selectivity is crucial to all proton-conducting molecules, including the human voltage-gated proton channel (hHV1), because the proton concentration is >106 times lower than that of other cations. Here we use “selectivity filter scanning” to elucidate the molecular requirements for proton-specific conduction in hHV1. Asp112, in the middle of the S1 transmembrane helix, is an essential part of the selectivity filter in wild-type (WT) channels. After neutralizing Asp112 by mutating it to Ala (D112A), we introduced Asp at each position along S1 from 108 to 118, searching for “second site suppressor” activity. Surprisingly, most mutants lacked even the anion conduction exhibited by D112A. Proton-specific conduction was restored only with Asp or Glu at position 116. The D112V/V116D channel strikingly resembled WT in selectivity, kinetics, and ΔpH-dependent gating. The S4 segment of this mutant has similar accessibility to WT in open channels, because R211H/D112V/V116D was inhibited by internally applied Zn2+. Asp at position 109 allowed anion permeation in combination with D112A but did not rescue function in the nonconducting D112V mutant, indicating that selectivity is established externally to the constriction at F150. The three positions that permitted conduction all line the pore in our homology model, clearly delineating the conduction pathway. Evidently, a carboxyl group must face the pore directly to enable conduction. Molecular dynamics simulations indicate reorganization of hydrogen bond networks in the external vestibule in D112V/V116D. At both positions where it produces proton selectivity, Asp frequently engages in salt linkage with one or more Arg residues from S4. Surprisingly, mean hydration profiles were similar in proton-selective, anion-permeable, and nonconducting constructs. That the selectivity filter functions in a new location helps to define local environmental features required to produce proton-selective conduction.
Collapse
Affiliation(s)
- Deri Morgan
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Li Y, Héroux P. Extra-low-frequency magnetic fields alter cancer cells through metabolic restriction. Electromagn Biol Med 2013; 33:264-75. [PMID: 23915261 DOI: 10.3109/15368378.2013.817334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Biological effects of extra-low-frequency (ELF) magnetic fields (MFs) have lacked a credible mechanism of interaction between MFs and living material. OBJECTIVES To examine the effect of ELF-MFs on cancer cells. METHODS Five cancer cell lines were exposed to ELF-MFs within the range of 0.025-5 µT, and the cells were examined for karyotype changes after 6 d. RESULTS All cancer cells lines lost chromosomes from MF exposure, with a mostly flat dose-response. Constant MF exposures for three weeks allow a rising return to the baseline, unperturbed karyotypes. From this point, small MF increases or decreases are again capable of inducing karyotype contractions (KCs). Our data suggest that the KCs are caused by MF interference with mitochondria's adenosine triphosphate synthase (ATPS), compensated by the action of adenosine monophosphate-activated protein kinase (AMPK). The effects of MFs are similar to those of the ATPS inhibitor, oligomycin. They are amplified by metformin, an AMPK stimulator, and attenuated by resistin, an AMPK inhibitor. Over environmental MFs, KCs of various cancer cell lines show exceptionally wide and flat dose-responses, except for those of erythroleukemia cells, which display a progressive rise from 0.025 to 0.4 µT. CONCLUSIONS The biological effects of MFs are connected to an alteration in the structure of water that impedes the flux of protons in ATPS channels. These results may be environmentally important, in view of the central roles played in human physiology by ATPS and AMPK, particularly in their links to diabetes, cancer and longevity.
Collapse
Affiliation(s)
- Ying Li
- InVitroPlus Laboratory, Department of Surgery, Royal Victoria Hospital , Montreal, QC , Canada and
| | | |
Collapse
|
37
|
Gunner MR, Amin M, Zhu X, Lu J. Molecular mechanisms for generating transmembrane proton gradients. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1827:892-913. [PMID: 23507617 PMCID: PMC3714358 DOI: 10.1016/j.bbabio.2013.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/28/2013] [Accepted: 03/01/2013] [Indexed: 01/02/2023]
Abstract
Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side.
Collapse
Affiliation(s)
- M R Gunner
- Department of Physics, City College of New York, New York, NY 10031, USA.
| | | | | | | |
Collapse
|
38
|
Nakanishi-Matsui M, Sekiya M, Futai M. Rotating proton pumping ATPases: subunit/subunit interactions and thermodynamics. IUBMB Life 2013; 65:247-54. [PMID: 23441040 DOI: 10.1002/iub.1134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 12/21/2012] [Indexed: 11/05/2022]
Abstract
In this article, we discuss single molecule observation of rotational catalysis by E. coli ATP synthase (F-ATPase) using small gold beads. Studies involving a low viscous drag probe showed the stochastic properties of the enzyme in alternating catalytically active and inhibited states. The importance of subunit interaction between the rotor and the stator, and thermodynamics of the catalysis are also discussed. "Single Molecule Enzymology" is a new trend for understanding enzyme mechanisms in biochemistry and physiology.
Collapse
Affiliation(s)
- Mayumi Nakanishi-Matsui
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Iwate Medical University, and Futai Special Laboratory, Yahaba, Iwate, Japan.
| | | | | |
Collapse
|
39
|
Gajadeera CS, Weber J. Escherichia coli F1Fo-ATP synthase with a b/δ fusion protein allows analysis of the function of the individual b subunits. J Biol Chem 2013; 288:26441-7. [PMID: 23893411 DOI: 10.1074/jbc.m113.503722] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The "stator stalk" of F1Fo-ATP synthase is essential for rotational catalysis as it connects the nonrotating portions of the enzyme. In Escherichia coli, the stator stalk consists of two (identical) b subunits and the δ subunit. In mycobacteria, one of the b subunits and the δ subunit are replaced by a b/δ fusion protein; the remaining b subunit is of the shorter b' type. In the present study, it is shown that it is possible to generate a functional E. coli ATP synthase containing a b/δ fusion protein. This construct allowed the analysis of the roles of the individual b subunits. The full-length b subunit (which in this case is covalently linked to δ in the fusion protein) is responsible for connecting the stalk to the catalytic F1 subcomplex. It is not required for interaction with the membrane-embedded Fo subcomplex, as its transmembrane helix can be removed. Attachment to Fo is the function of the other b subunit which in turn has only a minor (if any at all) role in binding to δ. Also in E. coli the second b subunit can be shortened to a b' type.
Collapse
Affiliation(s)
- Chathurada S Gajadeera
- From the Department of Chemistry and Biochemistry and the Center for Chemical Biology, Texas Tech University, Lubbock, Texas 79409 and the Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | | |
Collapse
|
40
|
Moore KJ, Fillingame RH. Obstruction of transmembrane helical movements in subunit a blocks proton pumping by F1Fo ATP synthase. J Biol Chem 2013; 288:25535-25541. [PMID: 23864659 DOI: 10.1074/jbc.m113.496794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit a plays a key role in promoting H(+) transport-coupled rotary motion of the subunit c ring in F1Fo ATP synthase. H(+) binding and release occur at Asp-61 in the middle of the second transmembrane helix (TMH) of Fo subunit c. H(+) are thought to reach cAsp61 via aqueous half-channels formed by TMHs 2-5 of subunit a. Movements of TMH4 and TMH5 have been proposed to facilitate protonation of cAsp61 from a half channel centered in a four helix bundle at the periplasmic side of subunit a. The possible necessity of these proposed TMH movements was investigated by assaying ATP driven H(+) pumping function before and after cross-linking paired Cys substitutions at the center of TMHs within subunit a. The cross-linking of the Cys pairs aG218C/I248C in TMH4 and TMH5, and aL120C/H245C in TMH2 and TMH5, inhibited H(+) pumping by 85-90%. H(+) pumping function was largely unaffected by modification of the same Cys residues in the absence of cross-link formation. The inhibition is consistent with the proposed requirement for TMH movements during the gating of periplasmic H(+) access to cAsp61. The cytoplasmic loops of subunit a have been implicated in gating H(+) release to the cytoplasm, and previous cross-linking experiments suggest that the chemically reactive regions of the loops may pack as a single domain. Here we show that Cys substitutions in these domains can be cross-linked with retention of function and conclude that these domains need not undergo large conformational changes during enzyme function.
Collapse
Affiliation(s)
- Kyle J Moore
- From the Department of Biomolecular Chemistry, School of Medicine, and Public Health, University of Wisconsin, Madison, Wisconsin 53706
| | - Robert H Fillingame
- From the Department of Biomolecular Chemistry, School of Medicine, and Public Health, University of Wisconsin, Madison, Wisconsin 53706.
| |
Collapse
|
41
|
DeCoursey TE. Voltage-gated proton channels: molecular biology, physiology, and pathophysiology of the H(V) family. Physiol Rev 2013; 93:599-652. [PMID: 23589829 PMCID: PMC3677779 DOI: 10.1152/physrev.00011.2012] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Voltage-gated proton channels (H(V)) are unique, in part because the ion they conduct is unique. H(V) channels are perfectly selective for protons and have a very small unitary conductance, both arguably manifestations of the extremely low H(+) concentration in physiological solutions. They open with membrane depolarization, but their voltage dependence is strongly regulated by the pH gradient across the membrane (ΔpH), with the result that in most species they normally conduct only outward current. The H(V) channel protein is strikingly similar to the voltage-sensing domain (VSD, the first four membrane-spanning segments) of voltage-gated K(+) and Na(+) channels. In higher species, H(V) channels exist as dimers in which each protomer has its own conduction pathway, yet gating is cooperative. H(V) channels are phylogenetically diverse, distributed from humans to unicellular marine life, and perhaps even plants. Correspondingly, H(V) functions vary widely as well, from promoting calcification in coccolithophores and triggering bioluminescent flashes in dinoflagellates to facilitating killing bacteria, airway pH regulation, basophil histamine release, sperm maturation, and B lymphocyte responses in humans. Recent evidence that hH(V)1 may exacerbate breast cancer metastasis and cerebral damage from ischemic stroke highlights the rapidly expanding recognition of the clinical importance of hH(V)1.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Dept. of Molecular Biophysics and Physiology, Rush University Medical Center HOS-036, 1750 West Harrison, Chicago, IL 60612, USA.
| |
Collapse
|
42
|
Mussel and mammalian ATP synthase share the same bioenergetic cost of ATP. J Bioenerg Biomembr 2013; 45:289-300. [PMID: 23456170 DOI: 10.1007/s10863-013-9504-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/08/2013] [Indexed: 10/27/2022]
Abstract
The molecular mechanism by which the membrane-embedded FO sector of the mitochondrial ATP synthase translocates protons, thus dissipating the transmembrane protonmotive force and leading to ATP synthesis, involves the neutralization of the carboxylate residues of the c-ring. Carboxylates are thought to constitute the binding sites for ion translocation. In order to cast light on this mechanism, we exploited N,N'-dicyclohexylcarbodiimide, which covalently binds to FO c-ring carboxylates, and ionophores which selectively modulate the transmembrane electric (Δφ) and chemical (ΔpH) gradients such as valinomycin, nigericin and dinitrophenol. ATP hydrolysis was evaluated in mitochondrial preparations and/or inside-out submitochondrial particles from mussel and mammalian tissues under different experimental conditions. The experiments pointed out striking similarities between mussel and mammalian mitochondrial ATP synthase. Our results support the hypothesis that the ATP synthase of Mytilus galloprovincialis induces intersubunit torque generation and translocates H(+) by coordinating the hydronium ion (H3O(+)) in the ion binding site of FO. Our results are consistent with the hypothesis that in mussel mitochondria the main component of the electrochemical gradient driving proton flux and ATP synthesis is Δφ. Therefore, mussel FO probably contains a small c-ring, which implies a low bioenergetic cost of making ATP as in mammals. These features which make mussel mitochondria as efficient in ATP production as mammalian ones may be especially advantageous in facultative aerobic species which intermittently exploit mitochondrial respiration to generate ATP.
Collapse
|
43
|
Realistic simulations of the coupling between the protomotive force and the mechanical rotation of the F0-ATPase. Proc Natl Acad Sci U S A 2012; 109:14876-81. [PMID: 22927379 DOI: 10.1073/pnas.1212841109] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular origin of the action of the F(0) proton gradient-driven rotor presents a major puzzle despite significant structural advances. Although important conceptual models have provided guidelines of how such systems should work, it has been challenging to generate a structure-based molecular model using physical principles that will consistently lead to the unidirectional proton-driven rotational motion during ATP synthesis. This work uses a coarse-grained (CG) model to simulate the energetics of the F(0)-ATPase system in the combined space defined by the rotational coordinate and the proton transport (PTR) from the periplasmic side (P) to the cytoplasmic side (N). The model establishes the molecular origin of the rotation, showing that this effect is due to asymmetry in the energetics of the proton path rather than only the asymmetry of the interaction of the Asp on the c-ring helices and Arg on the subunit-a. The simulation provides a clear conceptual background for further exploration of the electrostatic basis of proton-driven mechanochemical systems.
Collapse
|
44
|
Molecular Regulation of the Mitochondrial F(1)F(o)-ATPsynthase: Physiological and Pathological Significance of the Inhibitory Factor 1 (IF(1)). Int J Cell Biol 2012; 2012:367934. [PMID: 22966230 PMCID: PMC3433140 DOI: 10.1155/2012/367934] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/19/2012] [Accepted: 04/19/2012] [Indexed: 12/24/2022] Open
Abstract
In mammals, the mitochondrial F1Fo-ATPsynthase sets out the energy homeostasis by producing the bulk of cellular ATP. As for every enzyme, the laws of thermodynamics command it; however, it is privileged to have a dedicated molecular regulator that controls its rotation. This is the so-called ATPase Inhibitory Factor 1 (IF1) that blocks its reversal to avoid the consumption of cellular ATP when the enzyme acts as an ATP hydrolase. Recent evidence has also demonstrated that IF1 may control the alignment of the enzyme along the mitochondrial inner membrane, thus increasing the interest for the molecule. We conceived this review to outline the fundamental knowledge of the F1Fo-ATPsynthase and link it to the molecular mechanisms by which IF1 regulates its way of function, with the ultimate goal to highlight this as an important and possibly unique means to control this indispensable enzyme in both physiological and pathological settings.
Collapse
|
45
|
Kucharczyk R, Giraud MF, Brèthes D, Wysocka-Kapcinska M, Ezkurdia N, Salin B, Velours J, Camougrand N, Haraux F, di Rago JP. Defining the pathogenesis of human mtDNA mutations using a yeast model: the case of T8851C. Int J Biochem Cell Biol 2012; 45:130-40. [PMID: 22789932 DOI: 10.1016/j.biocel.2012.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 06/27/2012] [Accepted: 07/01/2012] [Indexed: 11/28/2022]
Abstract
More and more mutations are found in the mitochondrial DNA of various patients but ascertaining their pathogenesis is often difficult. Due to the conservation of mitochondrial function from yeast to humans, the unique ability of yeast to survive without production of ATP by oxidative phosphorylation, and the amenability of the yeast mitochondrial genome to site-directed mutagenesis, yeast is an excellent model for investigating the consequences of specific human mtDNA mutations. Here we report the construction of a yeast model of a point mutation (T8851C) in the mitochondrially-encoded subunit a/6 of the ATP synthase that has been associated with bilateral striatal lesions, a group of rare human neurological disorders characterized by symmetric degeneration of the corpus striatum. The biochemical consequences of this mutation are unknown. The T8851C yeast displayed a very slow growth phenotype on non-fermentable carbon sources, both at 28°C (the optimal temperature for yeast growth) and at 36°C. Mitochondria from T8851C yeast grown in galactose at 28°C showed a 60% deficit in ATP production. When grown at 36°C the rate of ATP synthesis was below 5% that of the wild-type, indicating that heat renders the mutation much more deleterious. At both growth temperatures, the mutant F(1)F(o) complex was correctly assembled but had only very weak ATPase activity (about 10% that of the control), both in mitochondria and after purification. These findings indicate that a block in the proton-translocating domain of the ATP synthase is the primary cause of the neurological disorder in the patients carrying the T8851C mutation. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.
Collapse
Affiliation(s)
- Roza Kucharczyk
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université Bordeaux Segalen, 1 Rue Camille SaintSaëns, Bordeaux 33077 cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sekiya M, Nakamoto RK, Nakanishi-Matsui M, Futai M. Binding of phytopolyphenol piceatannol disrupts β/γ subunit interactions and rate-limiting step of steady-state rotational catalysis in Escherichia coli F1-ATPase. J Biol Chem 2012; 287:22771-80. [PMID: 22582396 DOI: 10.1074/jbc.m112.374868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In observations of single molecule behavior under V(max) conditions with minimal load, the F(1) sector of the ATP synthase (F-ATPase) rotates through continuous cycles of catalytic dwells (∼0.2 ms) and 120° rotation steps (∼0.6 ms). We previously established that the rate-limiting transition step occurs during the catalytic dwell at the initiation of the 120° rotation. Here, we use the phytopolyphenol, piceatannol, which binds to a pocket formed by contributions from α and β stator subunits and the carboxyl-terminal region of the rotor γ subunit. Piceatannol did not interfere with the movement through the 120° rotation step, but caused increased duration of the catalytic dwell. The duration time of the intrinsic inhibited state of F(1) also became significantly longer with piceatannol. All of the beads rotated at a lower rate in the presence of saturating piceatannol, indicating that the inhibitor stays bound throughout the rotational catalytic cycle. The Arrhenius plot of the temperature dependence of the reciprocal of the duration of the catalytic dwell (catalytic rate) indicated significantly increased activation energy of the rate-limiting step to trigger the 120° rotation. The activation energy was further increased by combination of piceatannol and substitution of γ subunit Met(23) with Lys, indicating that the inhibitor and the β/γ interface mutation affect the same transition step, even though they perturb physically separated rotor-stator interactions.
Collapse
Affiliation(s)
- Mizuki Sekiya
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, and Futai Special Laboratory, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | | | | | | |
Collapse
|
47
|
Rotational catalysis in proton pumping ATPases: from E. coli F-ATPase to mammalian V-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1711-21. [PMID: 22459334 DOI: 10.1016/j.bbabio.2012.03.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 03/10/2012] [Accepted: 03/13/2012] [Indexed: 01/28/2023]
Abstract
We focus on the rotational catalysis of Escherichia coli F-ATPase (ATP synthase, F(O)F(1)). Using a probe with low viscous drag, we found stochastic fluctuation of the rotation rates, a flat energy pathway, and contribution of an inhibited state to the overall behavior of the enzyme. Mutational analyses revealed the importance of the interactions among β and γ subunits and the β subunit catalytic domain. We also discuss the V-ATPase, which has different physiological roles from the F-ATPase, but is structurally and mechanistically similar. We review the rotation, diversity of subunits, and the regulatory mechanism of reversible subunit dissociation/assembly of Saccharomyces cerevisiae and mammalian complexes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
|
48
|
Uhlemann EME, Pierson HE, Fillingame RH, Dmitriev OY. Cell-free synthesis of membrane subunits of ATP synthase in phospholipid bicelles: NMR shows subunit a fold similar to the protein in the cell membrane. Protein Sci 2012; 21:279-88. [PMID: 22162071 DOI: 10.1002/pro.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/20/2011] [Accepted: 11/27/2011] [Indexed: 11/09/2022]
Abstract
NMR structure determination of large membrane proteins is hampered by broad spectral lines, overlap, and ambiguity of signal assignment. Chemical shift and NOE assignment can be facilitated by amino acid selective isotope labeling in cell-free protein synthesis system. However, many biological detergents are incompatible with the cell-free synthesis, and membrane proteins often have to be synthesized in an insoluble form. We report cell-free synthesis of subunits a and c of the proton channel of Escherichia coli ATP synthase in a soluble form in a mixture of phosphatidylcholine derivatives. In comparison, subunit a was purified from the cell-free system and from the bacterial cell membranes. NMR spectra of both preparations were similar, indicating that our procedure for cell-free synthesis produces protein structurally similar to that prepared from the cell membranes.
Collapse
Affiliation(s)
- Eva-Maria E Uhlemann
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada
| | | | | | | |
Collapse
|
49
|
Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase. Nature 2011; 481:214-8. [DOI: 10.1038/nature10699] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 11/03/2011] [Indexed: 01/15/2023]
|
50
|
Ollis AA, Postle K. ExbD mutants define initial stages in TonB energization. J Mol Biol 2011; 415:237-47. [PMID: 22100395 DOI: 10.1016/j.jmb.2011.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 11/01/2011] [Accepted: 11/03/2011] [Indexed: 10/15/2022]
Abstract
Cytoplasmic membrane proteins ExbB and ExbD of the Escherichia coli TonB system couple cytoplasmic membrane protonmotive force (pmf) to TonB. TonB transmits this energy to high-affinity outer membrane active transporters. ExbD is proposed to catalyze TonB conformational changes during energy transduction. Here, the effect of ExbD mutants and changes in pmf on TonB proteinase K sensitivity in spheroplasts was examined. Spheroplasts supported the pmf-dependent formaldehyde cross-link between periplasmic domains of TonB and ExbD, indicating that they constituted a biologically relevant in vivo system to study changes in TonB proteinase K sensitivity. Three stages in TonB energization were identified. In Stage I, ExbD L123Q or TonB H20A prevented proper interaction between TonB and ExbD, rendering TonB sensitive to proteinase K. In Stage II, ExbD D25N supported conversion of TonB to a proteinase-K-resistant form, but not energization of TonB or formation of the pmf-dependent formaldehyde cross-link. Addition of protonophores had the same effect as ExbD D25N. This suggested the existence of a pmf-independent association between TonB and ExbD. TonB proceeded to Stage III when pmf was present, again becoming proteinase K sensitive, but now able to form the pmf-dependent cross-link to ExbD. Absence or presence of pmf toggled TonB between Stage II and Stage III conformations, which were also detected in wild-type cells. ExbD also underwent pmf-dependent conformational changes that were interdependent with TonB. These observations supported the hypothesis that ExbD couples TonB to the pmf, with concomitant transitions of ExbD and TonB periplasmic domains from unenergized to energized heterodimers.
Collapse
Affiliation(s)
- Anne A Ollis
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|