1
|
Zhang X, Zhang X, Zhong M, Zhao P, Guo C, Li Y, Xu H, Wang T, Gao H. A Novel Cu(II)-Binding Peptide Identified by Phage Display Inhibits Cu 2+-Mediated Aβ Aggregation. Int J Mol Sci 2021; 22:6842. [PMID: 34202166 PMCID: PMC8269028 DOI: 10.3390/ijms22136842] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 06/23/2021] [Indexed: 01/19/2023] Open
Abstract
Copper (Cu) has been implicated in the progression of Alzheimer's disease (AD), and aggregation of Cu and amyloid β peptide (Aβ) are considered key pathological features of AD. Metal chelators are considered to be potential therapeutic agents for AD because of their capacity to reduce metal ion-induced Aβ aggregation through the regulation of metal ion distribution. Here, we used phage display technology to screen, synthesize, and evaluate a novel Cu(II)-binding peptide that specifically blocked Cu-triggered Aβ aggregation. The Cu(II)-binding peptide (S-A-Q-I-A-P-H, PCu) identified from the phage display heptapeptide library was used to explore the mechanism of PCu inhibition of Cu2+-mediated Aβ aggregation and Aβ production. In vitro experiments revealed that PCu directly inhibited Cu2+-mediated Aβ aggregation and regulated copper levels to reduce biological toxicity. Furthermore, PCu reduced the production of Aβ by inhibiting Cu2+-induced BACE1 expression and improving Cu(II)-mediated cell oxidative damage. Cell culture experiments further demonstrated that PCu had relatively low toxicity. This Cu(II)-binding peptide that we have identified using phage display technology provides a potential therapeutic approach to prevent or treat AD.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiancheng Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Manli Zhong
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
| | - Pu Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
| | - You Li
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
| | - He Xu
- Department of Histology and Embryology, School of Medicine, Shenzhen University, Shenzhen 518060, China;
| | - Tao Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
| | - Huiling Gao
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (X.Z.); (X.Z.); (M.Z.); (P.Z.); (C.G.); (Y.L.); (T.W.)
| |
Collapse
|
2
|
Azizi D, Larachi F, Garnier A, Lagüe P, Levasseur B. Sorption of aqueous amino acid species on sulphidic mineral surfaces—DFT study and insights on biosourced‐reagent mineral flotation. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Dariush Azizi
- Department of Chemical Engineering Université Laval Québec Québec Canada
| | - Faïçal Larachi
- Department of Chemical Engineering Université Laval Québec Québec Canada
| | - Alain Garnier
- Department of Chemical Engineering Université Laval Québec Québec Canada
| | - Patrick Lagüe
- Department of Biochemistry, Microbiology & Bioinformatics Université Laval Québec Québec Canada
| | | |
Collapse
|
3
|
Phage display biopanning and isolation of target-unrelated peptides: in search of nonspecific binders hidden in a combinatorial library. Amino Acids 2016; 48:2699-2716. [DOI: 10.1007/s00726-016-2329-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/08/2016] [Indexed: 12/22/2022]
|
4
|
Sawada T, Asada M, Serizawa T. Selective Rare Earth Recovery Employing Filamentous Viruses with Chemically Conjugated Peptides. ChemistrySelect 2016. [DOI: 10.1002/slct.201600542] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Toshiki Sawada
- Department of Chemical Science and Engineering; School of Materials and Chemical Technology; Tokyo Institute of Technology; 2-12-1-H121 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Masaya Asada
- Department of Chemical Science and Engineering; School of Materials and Chemical Technology; Tokyo Institute of Technology; 2-12-1-H121 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering; School of Materials and Chemical Technology; Tokyo Institute of Technology; 2-12-1-H121 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
5
|
Matsubara T, Onishi A, Yamaguchi D, Sato T. Heptapeptide ligands against receptor-binding sites of influenza hemagglutinin toward anti-influenza therapy. Bioorg Med Chem 2016; 24:1106-14. [PMID: 26833245 DOI: 10.1016/j.bmc.2016.01.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/16/2016] [Accepted: 01/19/2016] [Indexed: 11/18/2022]
Abstract
The initial attachment of influenza virus to cells is the binding of hemagglutinin (HA) to the sialyloligosaccharide receptor; therefore, the small molecules that inhibit the sugar-protein interaction are promising as HA inhibitors to prevent the infection. We herein demonstrate that sialic acid-mimic heptapeptides are identified through a selection from a primary library against influenza virus HA. In order to obtain lead peptides, an affinity selection from a phage-displayed random heptapeptide library was performed with the HAs of the H1 and H3 strains, and two kinds of the HA-binding peptides were identified. The binding of the peptides to HAs was inhibited in the presence of sialic acid, and plaque assays indicated that the corresponding N-stearoyl peptide strongly inhibited infections by the A/Aichi/2/68 (H3N2) strain of the virus. Alanine scanning of the peptides indicated that arginine and proline were responsible for binding. The affinities of several mutant peptides with single-amino-acid substitutions against H3 HA were determined, and corresponding docking studies were performed. A Spearman analysis revealed a correlation between the affinity of the peptides and the docking study. These results provide a practicable method to design of peptide-based HA inhibitors that are promising as anti-influenza drugs.
Collapse
Affiliation(s)
- Teruhiko Matsubara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Ai Onishi
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Daisuke Yamaguchi
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| |
Collapse
|
6
|
Artzy-Schnirman A, Abu-Shah E, Dishon M, Soifer H, Sivan Y, Reiter Y, Benhar I, Sivan U. On the limited recognition of inorganic surfaces by short peptides compared with antibodies. J Pept Sci 2014; 20:446-50. [PMID: 24733719 DOI: 10.1002/psc.2636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/06/2014] [Accepted: 03/14/2014] [Indexed: 11/07/2022]
Abstract
The vast potential applications of biomolecules that bind inorganic surfaces led mostly to the isolation of short peptides that target selectively specific materials. The demonstrated differential affinity toward certain surfaces created the impression that the recognition capacity of short peptides may match that of rigid biomolecules. In the following, we challenge this view by comparing the capacity of antibody molecules to discriminate between the (100) and (111A) facets of a gallium arsenide semiconductor crystal with the capacity of short peptides to do the same. Applying selection from several peptide and single chain phage display libraries, we find a number of antibody molecules that bind preferentially a given crystal facet but fail to isolate, in dozens of attempts, a single peptide capable of such recognition. The experiments underscore the importance of rigidity to the recognition of inorganic flat targets and therefore set limitations on potential applications of short peptides in biomimetics.
Collapse
Affiliation(s)
- Arbel Artzy-Schnirman
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 32000, Israel; Department of Physics, Technion - Israel Institute of Technology, Haifa, 32000, Israel; The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Ravikumar S, Ganesh I, Yoo IK, Hong SH. Construction of a bacterial biosensor for zinc and copper and its application to the development of multifunctional heavy metal adsorption bacteria. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Grabrucker AM, Schmeisser MJ, Udvardi PT, Arons M, Schoen M, Woodling NS, Andreasson KI, Hof PR, Buxbaum JD, Garner CC, Boeckers TM. Amyloid beta protein-induced zinc sequestration leads to synaptic loss via dysregulation of the ProSAP2/Shank3 scaffold. Mol Neurodegener 2011; 6:65. [PMID: 21939532 PMCID: PMC3189132 DOI: 10.1186/1750-1326-6-65] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/22/2011] [Indexed: 01/14/2023] Open
Abstract
Background Memory deficits in Alzheimer's disease (AD) manifest together with the loss of synapses caused by the disruption of the postsynaptic density (PSD), a network of scaffold proteins located in dendritic spines. However, the underlying molecular mechanisms remain elusive. Since it was shown that ProSAP2/Shank3 scaffold assembly within the PSD is Zn2+-dependent and that the amyloid beta protein (Aβ) is able to bind Zn2+, we hypothesize that sequestration of Zn2+ ions by Aβ contributes to ProSAP/Shank platform malformation. Results To test this hypothesis, we designed multiple in vitro and in vivo assays demonstrating ProSAP/Shank dysregulation in rat hippocampal cultures following Aβ oligomer accumulation. These changes were independent from alterations on ProSAP/Shank transcriptional level. However, application of soluble Aβ prevented association of Zn2+ ions with ProSAP2/Shank3 in a cell-based assay and decreased the concentration of Zn2+ clusters within dendrites. Zn2+ supplementation or saturation of Aβ with Zn2+ ions prior to cell treatment was able to counter the effects induced by Aβ on synapse density and ProSAP2/Shank3 levels at the PSD. Interestingly, intracellular Zn2+ levels in APP-PS1 mice and human AD hippocampus are reduced along with a reduction in synapse density and synaptic ProSAP2/Shank3 and Shank1 protein levels. Conclusions We conclude that sequestration of Zn2+ ions by Aβ significantly contributes to changes in ProSAP2/Shank3 platforms. These changes in turn lead to less consolidated (mature) synapses reflected by a decrease in Shank1 protein levels at the PSD and decreased synapse density in hippocampal neurons.
Collapse
Affiliation(s)
- Andreas M Grabrucker
- Institute for Anatomy and Cell Biology, Ulm University, Albert Einstein Allee 11, Ulm, 89081, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Grabrucker AM, Rowan M, Garner CC. Brain-Delivery of Zinc-Ions as Potential Treatment for Neurological Diseases: Mini Review. DRUG DELIVERY LETTERS 2011; 1:13-23. [PMID: 22102982 PMCID: PMC3220161 DOI: 10.2174/2210303111101010013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Homeostasis of metal ions such as Zn(2+) is essential for proper brain function. Moreover, the list of psychiatric and neurodegenerative disorders involving a dysregulation of brain Zn(2+)-levels is long and steadily growing, including Parkinson's and Alzheimer's disease as well as schizophrenia, attention deficit and hyperactivity disorder, depression, amyotrophic lateral sclerosis, Down's syndrome, multiple sclerosis, Wilson's disease and Pick's disease. Furthermore, alterations in Zn(2+)-levels are seen in transient forebrain ischemia, seizures, traumatic brain injury and alcoholism. Thus, the possibility of altering Zn(2+)-levels within the brain is emerging as a new target for the prevention and treatment of psychiatric and neurological diseases. Although the role of Zn(2+) in the brain has been extensively studied over the past decades, methods for controlled regulation and manipulation of Zn(2+) concentrations within the brain are still in their infancy. Since the use of dietary Zn(2+) supplementation and restriction has major limitations, new methods and alternative approaches are currently under investigation, such as the use of intracranial infusion of Zn(2+) chelators or nanoparticle technologies to elevate or decrease intracellular Zn(2+) levels. Therefore, this review briefly summarizes the role of Zn(2+) in psychiatric and neurodegenerative diseases and highlights key findings and impediments of brain Zn(2+)-level manipulation. Furthermore, some methods and compounds, such as metal ion chelation, redistribution and supplementation that are used to control brain Zn(2+)-levels in order to treat brain disorders are evaluated.
Collapse
Affiliation(s)
- Andreas M. Grabrucker
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Magali Rowan
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Craig C. Garner
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
10
|
SRINIVAS S, PRAKASH V. INTERACTION OF ZN(II) WITH BOVINE MILK α-CASEIN: STRUCTURE-FUNCTION STUDY. J Food Biochem 2011. [DOI: 10.1111/j.1745-4514.2010.00453.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Ravikumar S, Yoo IK, Lee SY, Hong SH. A study on the dynamics of the zraP gene expression profile and its application to the construction of zinc adsorption bacteria. Bioprocess Biosyst Eng 2011; 34:1119-26. [PMID: 21674266 DOI: 10.1007/s00449-011-0562-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 05/31/2011] [Indexed: 10/18/2022]
Abstract
Zinc ion plays essential roles in biological chemistry. Bacteria acquire Zn(2+) from the environment, and cellular concentration levels are controlled by zinc homeostasis systems. In comparison with other homeostatic systems, the ZraSR two-component system was found to be more efficient in responding to exogenous zinc concentrations. To understand the dynamic response of the bacterium ZraSR two-component system with respect to exogenous zinc concentrations, the genetic circuit of the ZraSR system was integrated with a reporter protein. This study was helpful in the construction of an E. coli system that can display selective metal binding peptides on the surface of the cell in response to exogenous zinc. The engineered bacterial system for monitoring exogenous zinc was successfully employed to detect levels of zinc as low as 0.001 mM, which directly activates the expression of chimeric ompC(t)--zinc binding peptide gene to remove zinc by adsorbing a maximum of 163.6 μmol of zinc per gram of dry cell weight. These results indicate that the engineered bacterial strain developed in the present study can sense the specific heavy metal and activates a cell surface display system that acts to remove the metal.
Collapse
Affiliation(s)
- Sambandam Ravikumar
- School of Chemical Engineering and Bioengineering, University of Ulsan, Daehakro 93, Nam-gu, Ulsan, 680-749, Republic of Korea
| | | | | | | |
Collapse
|
12
|
Curtis SB, MacGillivray RTA, Dunbar WS. Effects of bacteriophage on the surface properties of chalcopyrite (CuFeS₂), and phage-induced flocculation of chalcopyrite, glacial till, and oil sands tailings. Biotechnol Bioeng 2011; 108:1579-90. [PMID: 21337331 DOI: 10.1002/bit.23097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/27/2011] [Accepted: 02/04/2011] [Indexed: 11/08/2022]
Abstract
The binding of mineral-specific phage to the surface of chalcopyrite (CuFeS(2)) was investigated by using X-ray photoelectron spectroscopy and scanning Auger microscopy. These studies confirmed the elemental composition of the minerals and confirmed that bacteriophage were bound to the mineral surface. These techniques also revealed that the phage were not forming a continuous film over the entire surface of the CuFeS(2) particles, but selectively bound to the slimes coating the particles. In addition, the effect of mineral-specific phage binding to the surface of CuFeS(2) was investigated using induction time and zeta potential measurements. Bacteriophage (10(12) /mL) increased the induction time (contact time resulting in 50% particle attachment to a bubble) from ∼7.5 to ∼17 ms and reversed the zeta potential from negative to positive. In the course of performing the zeta potential measurements on particles <45 µm in diameter, phage-induced aggregation was observed. The mechanism of aggregation was explored using a range of pH (3-11) and cation concentrations. Aggregation was observed across the tested pH range and with all cations. Phage also mediated aggregation of glacial till and oil sands tailings in a dose-dependent and particle size-dependent manner. We conclude that binding of bacteriophage to the surface of CuFeS(2) does alter its surface properties.
Collapse
Affiliation(s)
- Susan B Curtis
- Norman B. Keevil Institute of Mining Engineering, 517-6350 Stores Road, Vancouver, BC, Canada V6T1Z4
| | | | | |
Collapse
|
13
|
Nian R, Kim DS, Nguyen T, Tan L, Kim CW, Yoo IK, Choe WS. Chromatographic biopanning for the selection of peptides with high specificity to Pb2+ from phage displayed peptide library. J Chromatogr A 2010; 1217:5940-9. [DOI: 10.1016/j.chroma.2010.07.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 07/02/2010] [Accepted: 07/17/2010] [Indexed: 10/19/2022]
|
14
|
Matsubara T, Onishi A, Saito T, Shimada A, Inoue H, Taki T, Nagata K, Okahata Y, Sato T. Sialic Acid-Mimic Peptides As Hemagglutinin Inhibitors for Anti-Influenza Therapy. J Med Chem 2010; 53:4441-9. [DOI: 10.1021/jm1002183] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Teruhiko Matsubara
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan
| | - Ai Onishi
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan
| | - Tomomi Saito
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan
| | - Aki Shimada
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan
| | - Hiroki Inoue
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Takao Taki
- Molecular Medical Science Institute, Otsuka Pharmaceutical Co. Ltd., Tokushima 771-0192, Japan
| | - Kyosuke Nagata
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Yoshio Okahata
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
15
|
Van Dorst B, De Coen W, Blust R, Robbens J. Phage display as a novel screening tool for primary toxicological targets. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:250-255. [PMID: 20821442 DOI: 10.1002/etc.38] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In the present study the use of phage display as a screening tool to determine primary toxicological targets was investigated. These primary toxicological targets are the targets in the cell with which a chemical compound initially interacts and that are responsible for consecutive (toxic) effects. Nickel was used as model compound for the present study. By selection of Ni-binding peptides out of a 12-mer peptide phage library, it was possible to identify primary toxicological targets of Ni (and other metals). The selected Ni-binding peptides showed similarities to important primary toxicological targets of Ni, such as the hydrogenase nickel incorporation protein (hypB) and the Mg/Ni/Co transporter (corA). This shows that phage display, which is already widely used in other research fields, also has potential in ecotoxicology, as a novel screening tool with which to determine primary toxicological targets of chemical compounds.
Collapse
Affiliation(s)
- Bieke Van Dorst
- Department of Biology, Laboratory for Ecophysiology, Biochemistry and Toxicology, University Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- Institute for Agricultural and Fisheries Research (ILVO), Ankerstraat 1, B-8400 Oostende, Belgium
| | - Wim De Coen
- Department of Biology, Laboratory for Ecophysiology, Biochemistry and Toxicology, University Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- European Chemicals Agency (ECHA), Annankatu 18, F-00120 Helsinki, Finland
| | - Ronny Blust
- Department of Biology, Laboratory for Ecophysiology, Biochemistry and Toxicology, University Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Johan Robbens
- Department of Biology, Laboratory for Ecophysiology, Biochemistry and Toxicology, University Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- Institute for Agricultural and Fisheries Research (ILVO), Ankerstraat 1, B-8400 Oostende, Belgium
| |
Collapse
|
16
|
On the metal ion (Zn2+, Cu2+) coordination with beta-amyloid peptide: DFT computational study. Interdiscip Sci 2010; 2:57-69. [DOI: 10.1007/s12539-010-0086-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 01/02/2023]
|
17
|
Maximizing filamentous phage yield during computer-controlled fermentation. Bioprocess Biosyst Eng 2009; 32:773-9. [PMID: 19221805 DOI: 10.1007/s00449-009-0303-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 01/29/2009] [Indexed: 10/21/2022]
Abstract
Filamentous phage such as M13 and fd consist of a circular, single-stranded DNA molecule surrounded by several different coat proteins. These phages have been used extensively as vectors in phage display where one of the phage coat proteins is genetically engineered to contain a unique peptide surface loop. Through these peptide sequences, a phage collection can be screened for individual phage that binds to different macromolecules or small organic and inorganic molecules. Here, we use computer-controlled bioreactors to produce large quantities of filamentous phage in the bacterial host Escherichia coli. By measuring phage yield and bacterial growth while changing the growth medium, pH and dissolved oxygen concentration, we found that the optimal conditions for phage yield were NZY medium with pH maintained at 7.4, the dO(2) held at 100% and agitation at 800 rpm. These computer-controlled fermentations result in a minimum of a tenfold higher filamentous phage production compared to standard shake flask conditions.
Collapse
|
18
|
Dong J, Liu C, Zhang J, Xin ZT, Yang G, Gao B, Mao CQ, Liu NL, Wang F, Shao NS, Fan M, Xue YN. Selection of novel nickel-binding peptides from flagella displayed secondary peptide library. Chem Biol Drug Des 2006; 68:107-12. [PMID: 16999775 DOI: 10.1111/j.1747-0285.2006.00421.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nickel (Ni) performs its biological or toxic functions in nickel-protein coordination form. Novel Ni-binding peptides were isolated from a random dodecapeptide library displayed on the flagella of Escherichia coli against immobilized ions. On the basis of isolated sequences rich in histidine residues, two secondary libraries were constructed respectively. By consequent selection, more Ni-chelating peptides were identified and the consensus motif RHXHR (where X was always H) was deduced. The result suggested that not only histidine, but also arginine, play an important role in Ni-binding. Furthermore, two selected clones (1035 and 2022) were chosen for further identification. They exhibited similar relative binding affinity, which was about nine times that of the original library derived clones and statistically much more significant than the positive control with polyhistidine insert. Free nickel ions could almost completely inhibit the binding of the clones 1035 and 2022 to immobilized nickel, implicating that the peptides were able to chelate nickel ions. These studies reveal that bacterial surface displayed peptide libraries may have promising future potential for the development of metal bioadsorbents. Furthermore, novel Ni-binding peptides may provide lead molecules for Ni-chelation and applications thereof.
Collapse
Affiliation(s)
- Jie Dong
- Department of Biochemistry, Beijing Institute of Basic Medical Sciences, P.O. Box 130(3) Beijing 100850, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mathonet P, Barrios H, Soumillion P, Fastrez J. Selection of allosteric beta-lactamase mutants featuring an activity regulation by transition metal ions. Protein Sci 2006; 15:2335-43. [PMID: 16963642 PMCID: PMC2242392 DOI: 10.1110/ps.062304406] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Libraries of phage-displayed beta-lactamase mutants in which up to three loops have been engineered by genetic introduction of random peptide sequences or by randomization of the wild-type sequence have been submitted to selection protocols designed to find mutants in which binding of transition metal ions to the engineered secondary binding site leads to significant effects on the enzymatic activity. A double-selection protocol was applied: The phage-displayed libraries were first selected for transition metal ions affinity by panning on IMAC support, then a second selection step was applied to isolate mutants that have retained significant catalytic activity. The analysis of the kinetic properties of mutants in the presence of nickel, copper, or zinc ions allowed isolation of a few mutants whose activity was either enhanced or inhibited by factors up to three and >10, respectively, in a metal-specific manner. A remarkable mutant exhibiting differential allosteric regulation depending on the metal was found. Its activity was activated by nickel ion binding, inhibited by cupric ion binding, and nearly unaffected by zinc ions. These observations point to an interesting potential for up- or down-regulation of activity within a monomeric enzyme by binding to an "allosteric site" relatively remote from the active site.
Collapse
Affiliation(s)
- Pascale Mathonet
- Laboratoire de Biochimie Physique et des Biopolymères, Institut des Sciences de la Vie, Université catholique de Louvain, B1348 Louvain la Neuve, Belgium
| | | | | | | |
Collapse
|
20
|
Kawamura M, Shibata H, Kamada H, Okamoto T, Mukai Y, Sugita T, Abe Y, Imai S, Nomura T, Nagano K, Mayumi T, Nakagawa S, Tsutsumi Y, Tsunoda SI. A novel method for construction of gene fragment library to searching epitopes. Biochem Biophys Res Commun 2006; 346:198-204. [PMID: 16759645 DOI: 10.1016/j.bbrc.2006.05.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2006] [Accepted: 05/17/2006] [Indexed: 10/24/2022]
Abstract
Identification of the epitope sequence or the functional domain of proteins is a laborious process but a necessary one for biochemical and immunological research. To achieve intensive and effective screening of these functional peptides in various molecules, we established a novel screening method using a phage library system that displays various lengths and parts of peptides derived from target protein. Applying this library for epitope mapping, epitope peptide was more efficiently identified from gene fragment library than conventional random peptide library. Our system may be a most powerful method for identifying functional peptides.
Collapse
Affiliation(s)
- Maki Kawamura
- Laboratory of Pharmaceutical Proteomics, National Institute of Biomedical Innovation, 7-6-8 Asagi, Saito, Ibaraki, Osaka 567-0085, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zirah S, Kozin SA, Mazur AK, Blond A, Cheminant M, Ségalas-Milazzo I, Debey P, Rebuffat S. Structural changes of region 1-16 of the Alzheimer disease amyloid beta-peptide upon zinc binding and in vitro aging. J Biol Chem 2005; 281:2151-61. [PMID: 16301322 DOI: 10.1074/jbc.m504454200] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Amyloid deposits within the cerebral tissue constitute a characteristic lesion associated with Alzheimer disease. They mainly consist of the amyloid peptide Abeta and display an abnormal content in Zn(2+) ions, together with many truncated, isomerized, and racemized forms of Abeta. The region 1-16 of Abeta can be considered the minimal zinc-binding domain and contains two aspartates subject to protein aging. The influence of zinc binding and protein aging related modifications on the conformation of this region of Abeta is of importance given the potentiality of this domain to constitute a therapeutic target, especially for immunization approaches. In this study, we determined from NMR data the solution structure of the Abeta-(1-16)-Zn(2+) complex in aqueous solution at pH 6.5. The residues His(6), His(13), and His(14) and the Glu(11) carboxylate were identified as ligands that tetrahedrally coordinate the Zn(II) cation. In vitro aging experiments on Abeta-(1-16) led to the formation of truncated and isomerized species. The major isomer generated, Abeta-(1-16)-l-iso-Asp(7), displayed a local conformational change in the His(6)-Ser(8) region but kept a zinc binding propensity via a coordination mode involving l-iso-Asp(7). These results are discussed here with regard to Abeta fibrillogenesis and the potentiality of the region 1-16 of Abeta to be used as a therapeutic target.
Collapse
Affiliation(s)
- Séverine Zirah
- Laboratoire de Chimie et Biochimie des Substances Naturelles, UMR 5154 CNRS-MNHN, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, 63 Rue Buffon, 75005 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zuo R, Ornek D, Wood TK. Aluminum- and mild steel-binding peptides from phage display. Appl Microbiol Biotechnol 2005; 68:505-9. [PMID: 15703906 DOI: 10.1007/s00253-005-1922-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 01/16/2005] [Accepted: 01/17/2005] [Indexed: 10/25/2022]
Abstract
Using a phage library displaying random peptides of 12 amino acids on its surface, several peptides were found that bind to aluminum and mild steel. Like other metal-binding peptides, no obvious consensus motif has been found for these peptides. However, most of them are rich in hydroxyl-containing amino acids, serine or threonine, or contain histidine. For the aluminum-binding peptides, peptides with a higher number of hydroxyl-containing amino acids bind to the aluminum surface more tightly. For example, Val-Pro-Ser-Ser-Gly-Pro-Gln-Asp-Thr-Arg-Thr-Thr, which contains five hydroxyl-containing amino acid residues, was selected four-fold more frequently than a peptide containing only one serine, suggesting an important role for the hydroxyl-containing amino acids in the metal-peptide interaction.
Collapse
Affiliation(s)
- Rongjun Zuo
- Department of Chemical Engineering, University of Connecticut, Storrs, CT 06269-3222, USA
| | | | | |
Collapse
|