1
|
Messadi E. Snake Venom Components as Therapeutic Drugs in Ischemic Heart Disease. Biomolecules 2023; 13:1539. [PMID: 37892221 PMCID: PMC10605524 DOI: 10.3390/biom13101539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Ischemic heart disease (IHD), especially myocardial infarction (MI), is a leading cause of death worldwide. Although coronary reperfusion is the most straightforward treatment for limiting the MI size, it has nevertheless been shown to exacerbate ischemic myocardial injury. Therefore, identifying and developing therapeutic strategies to treat IHD is a major medical challenge. Snake venoms contain biologically active proteins and peptides that are of major interest for pharmacological applications in the cardiovascular system (CVS). This has led to their use for the development and design of new drugs, such as the first-in-class angiotensin-converting enzyme inhibitor captopril, developed from a peptide present in Bothrops jararaca snake venom. This review discusses the potential usefulness of snake venom toxins for developing effective treatments against IHD and related diseases such as hypertension and atherosclerosis. It describes their biological effects at the molecular scale, their mechanisms of action according to their different pharmacological properties, as well as their subsequent molecular pathways and therapeutic targets. The molecules reported here have either been approved for human medical use and are currently available on the drug market or are still in the clinical or preclinical developmental stages. The information summarized here may be useful in providing insights into the development of future snake venom-derived drugs.
Collapse
Affiliation(s)
- Erij Messadi
- Plateforme de Physiologie et Physiopathologie Cardiovasculaires (P2C), Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia
| |
Collapse
|
2
|
Dehghani R, Monzavi SM, Mehrpour O, Shirazi FM, Hassanian-Moghaddam H, Keyler DE, Wüster W, Westerström A, Warrell DA. Medically important snakes and snakebite envenoming in Iran. Toxicon 2023; 230:107149. [PMID: 37187227 DOI: 10.1016/j.toxicon.2023.107149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
Snakebite is a common health condition in Iran with a diverse snake fauna, especially in tropical southern and mountainous western areas of the country with plethora of snake species. The list of medically important snakes, circumstances and effects of their bite, and necessary medical care require critical appraisal and should be updated regularly. This study aims to review and map the distributions of medically important snake species of Iran, re-evaluate their taxonomy, review their venomics, describe the clinical effects of envenoming, and discuss medical management and treatment, including the use of antivenom. Nearly 350 published articles and 26 textbooks with information on venomous and mildly venomous snake species and snakebites of Iran, were reviewed, many in Persian (Farsi) language, making them relatively inaccessible to an international readership. This has resulted in a revised updated list of Iran's medically important snake species, with taxonomic revisions of some, compilation of their morphological features, remapping of their geographical distributions, and description of species-specific clinical effects of envenoming. Moreover, the antivenom manufactured in Iran is discussed, together with treatment protocols that have been developed for the hospital management of envenomed patients.
Collapse
Affiliation(s)
- Ruhollah Dehghani
- Department of Environmental Health, Kashan University of Medical Sciences, Kashan, Iran; Social Determinants of Health Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mostafa Monzavi
- Medical Toxicology Center, Mashhad University of Medical Sciences, Mashhad, Iran; Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran; Rocky Mountain Poison and Drug Center, Denver Health and Hospital Authority, Denver, CO, USA.
| | - Farshad M Shirazi
- Arizona Poison and Drug Information Center, University of Arizona, Tucson, AZ, USA
| | - Hossein Hassanian-Moghaddam
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Clinical Toxicology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniel E Keyler
- Department of Experimental & Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Wolfgang Wüster
- Molecular Ecology and Evolution at Bangor, School of Natural Sciences, Bangor University, Bangor, UK
| | | | - David A Warrell
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
A case of envenoming by a Persian false-horned viper Pseudocerastes persicus (Duméril, Bibron & Duméril, 1854) (Serpentes: Viperidae) in Southeastern Iran. Toxicon 2023; 223:107009. [PMID: 36586490 DOI: 10.1016/j.toxicon.2022.107009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Despite the wide distribution of the Persian false-horned viper (Pseudocerastes persicus) in the Middle East, few identified bites have been reported. A 33-year-old herpetologist bitten on the hand by Pseudocerastes persicus in Kerman Province, Southeastern Iran, developed local pain and extensive swelling with mild non-specific systemic symptoms and minimal laboratory evidence of systemic envenoming.
Collapse
|
4
|
Ang WF, Koh CY, Kini RM. From Snake Venoms to Therapeutics: A Focus on Natriuretic Peptides. Pharmaceuticals (Basel) 2022; 15:ph15091153. [PMID: 36145374 PMCID: PMC9502559 DOI: 10.3390/ph15091153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022] Open
Abstract
Snake venom is a cocktail of multifunctional biomolecules that has evolved with the purpose of capturing prey and for defense. These biomolecules are classified into different classes based on their functions. They include three-finger toxins, natriuretic peptides, phospholipases and metalloproteinases. The focus for this review is on the natriuretic peptide (NP), which is an active component that can be isolated from the venoms of vipers and mambas. In these venoms, NPs contribute to the lowering of blood pressure, causing a rapid loss of consciousness in the prey such that its mobility is reduced, paralyzing the prey, and often death follows. Over the past 30 years since the discovery of the first NP in the venom of the green mamba, venom NPs have shown potential in the development of drug therapy for heart failure. Venom NPs have long half-lives, different pharmacological profiles, and may also possess different functions in comparison to the mammalian NPs. Understanding their mechanisms of action provides the strategies needed to develop new NPs for treatment of heart failure. This review summarizes the venom NPs that have been identified over the years and how they can be useful in drug development.
Collapse
Affiliation(s)
- Wei Fong Ang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117558, Singapore
- NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Cho Yeow Koh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117559, Singapore
- Correspondence: (C.Y.K.); (R.M.K.); Tel.: +65-6601-1387 (C.Y.K.); +65-6516-5235 (R.M.K.)
| | - R. Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117558, Singapore
- NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0614, USA
- Correspondence: (C.Y.K.); (R.M.K.); Tel.: +65-6601-1387 (C.Y.K.); +65-6516-5235 (R.M.K.)
| |
Collapse
|
5
|
Xie B, Dashevsky D, Rokyta D, Ghezellou P, Fathinia B, Shi Q, Richardson MK, Fry BG. Dynamic genetic differentiation drives the widespread structural and functional convergent evolution of snake venom proteinaceous toxins. BMC Biol 2022; 20:4. [PMID: 34996434 PMCID: PMC8742412 DOI: 10.1186/s12915-021-01208-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/06/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The explosive radiation and diversification of the advanced snakes (superfamily Colubroidea) was associated with changes in all aspects of the shared venom system. Morphological changes included the partitioning of the mixed ancestral glands into two discrete glands devoted for production of venom or mucous respectively, as well as changes in the location, size and structural elements of the venom-delivering teeth. Evidence also exists for homology among venom gland toxins expressed across the advanced snakes. However, despite the evolutionary novelty of snake venoms, in-depth toxin molecular evolutionary history reconstructions have been mostly limited to those types present in only two front-fanged snake families, Elapidae and Viperidae. To have a broader understanding of toxins shared among extant snakes, here we first sequenced the transcriptomes of eight taxonomically diverse rear-fanged species and four key viperid species and analysed major toxin types shared across the advanced snakes. RESULTS Transcriptomes were constructed for the following families and species: Colubridae - Helicops leopardinus, Heterodon nasicus, Rhabdophis subminiatus; Homalopsidae - Homalopsis buccata; Lamprophiidae - Malpolon monspessulanus, Psammophis schokari, Psammophis subtaeniatus, Rhamphiophis oxyrhynchus; and Viperidae - Bitis atropos, Pseudocerastes urarachnoides, Tropidolaeumus subannulatus, Vipera transcaucasiana. These sequences were combined with those from available databases of other species in order to facilitate a robust reconstruction of the molecular evolutionary history of the key toxin classes present in the venom of the last common ancestor of the advanced snakes, and thus present across the full diversity of colubroid snake venoms. In addition to differential rates of evolution in toxin classes between the snake lineages, these analyses revealed multiple instances of previously unknown instances of structural and functional convergences. Structural convergences included: the evolution of new cysteines to form heteromeric complexes, such as within kunitz peptides (the beta-bungarotoxin trait evolving on at least two occasions) and within SVMP enzymes (the P-IIId trait evolving on at least three occasions); and the C-terminal tail evolving on two separate occasions within the C-type natriuretic peptides, to create structural and functional analogues of the ANP/BNP tailed condition. Also shown was that the de novo evolution of new post-translationally liberated toxin families within the natriuretic peptide gene propeptide region occurred on at least five occasions, with novel functions ranging from induction of hypotension to post-synaptic neurotoxicity. Functional convergences included the following: multiple occasions of SVMP neofunctionalised in procoagulant venoms into activators of the clotting factors prothrombin and Factor X; multiple instances in procoagulant venoms where kunitz peptides were neofunctionalised into inhibitors of the clot destroying enzyme plasmin, thereby prolonging the half-life of the clots formed by the clotting activating enzymatic toxins; and multiple occasions of kunitz peptides neofunctionalised into neurotoxins acting on presynaptic targets, including twice just within Bungarus venoms. CONCLUSIONS We found novel convergences in both structural and functional evolution of snake toxins. These results provide a detailed roadmap for future work to elucidate predator-prey evolutionary arms races, ascertain differential clinical pathologies, as well as documenting rich biodiscovery resources for lead compounds in the drug design and discovery pipeline.
Collapse
Affiliation(s)
- Bing Xie
- Institute of Biology Leiden, Leiden University, 2333BE, Leiden, The Netherlands
| | - Daniel Dashevsky
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, 4072 Australia
- Australian National Insect Collection, Commonwealth Science and Industry Research Organization, ACT, Canberra, 2601 Australia
| | - Darin Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL 24105 USA
| | - Parviz Ghezellou
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411 Iran
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Behzad Fathinia
- Department of Biology, Faculty of Science, Yasouj University, Yasouj, 75914 Iran
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, 518083 China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083 China
| | | | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, 4072 Australia
| |
Collapse
|
6
|
Averin AS, Utkin YN. Cardiovascular Effects of Snake Toxins: Cardiotoxicity and Cardioprotection. Acta Naturae 2021; 13:4-14. [PMID: 34707893 PMCID: PMC8526186 DOI: 10.32607/actanaturae.11375] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Snake venoms, as complex mixtures of peptides and proteins, affect various vital systems of the organism. One of the main targets of the toxic components from snake venoms is the cardiovascular system. Venom proteins and peptides can act in different ways, exhibiting either cardiotoxic or cardioprotective effects. The principal classes of these compounds are cobra cardiotoxins, phospholipases A2, and natriuretic, as well as bradykinin-potentiating peptides. There is another group of proteins capable of enhancing angiogenesis, which include, e.g., vascular endothelial growth factors possessing hypotensive and cardioprotective activities. Venom proteins and peptides exhibiting cardiotropic and vasoactive effects are promising candidates for the design of new drugs capable of preventing or constricting the development of pathological processes in cardiovascular diseases, which are currently the leading cause of death worldwide. For example, a bradykinin-potentiating peptide from Bothrops jararaca snake venom was the first snake venom compound used to create the widely used antihypertensive drugs captopril and enalapril. In this paper, we review the current state of research on snake venom components affecting the cardiovascular system and analyse the mechanisms of physiological action of these toxins and the prospects for their medical application.
Collapse
Affiliation(s)
- A. S. Averin
- Institute of Cell Biophysics of the Russian Academy of Sciences PSCBR RAS, Pushchino, Moscow region, 142290 Russia
| | - Yu. N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
7
|
Snake Venom Components: Tools and Cures to Target Cardiovascular Diseases. Molecules 2021; 26:molecules26082223. [PMID: 33921462 PMCID: PMC8070158 DOI: 10.3390/molecules26082223] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular diseases (CVDs) are considered as a major cause of death worldwide. Therefore, identifying and developing therapeutic strategies to treat and reduce the prevalence of CVDs is a major medical challenge. Several drugs used for the treatment of CVDs, such as captopril, emerged from natural products, namely snake venoms. These venoms are complex mixtures of bioactive molecules, which, among other physiological networks, target the cardiovascular system, leading to them being considered in the development and design of new drugs. In this review, we describe some snake venom molecules targeting the cardiovascular system such as phospholipase A2 (PLA2), natriuretic peptides (NPs), bradykinin-potentiating peptides (BPPs), cysteine-rich secretory proteins (CRISPs), disintegrins, fibrinolytic enzymes, and three-finger toxins (3FTXs). In addition, their molecular targets, and mechanisms of action—vasorelaxation, inhibition of platelet aggregation, cardioprotective activities—are discussed. The dissection of their biological effects at the molecular scale give insights for the development of future snake venom-derived drugs.
Collapse
|
8
|
Lerner Y, Hanout W, Ben-Uliel SF, Gani S, Leshem MP, Qvit N. Natriuretic Peptides as the Basis of Peptide Drug Discovery for Cardiovascular Diseases. Curr Top Med Chem 2020; 20:2904-2921. [PMID: 33050863 DOI: 10.2174/1568026620666201013154326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/14/2020] [Accepted: 09/25/2020] [Indexed: 01/14/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading global cause of death, accounting for more than 17.6 million deaths per year in 2016, a number that is expected to grow to more than 23.6 million by 2030. While many technologies are currently under investigation to improve the therapeutic outcome of CVD complications, only a few medications have been approved. Therefore, new approaches to treat CVD are urgently required. Peptides regulate numerous physiological processes, mainly by binding to specific receptors and inducing a series of signals, neurotransmissions or the release of growth factors. Importantly, peptides have also been shown to play an important role in the circulatory system both in physiological and pathological conditions. Peptides, such as angiotensin II, endothelin, urotensin-II, urocortins, adrenomedullin and natriuretic peptides have been implicated in the control of vascular tone and blood pressure as well as in CVDs such as congestive heart failure, atherosclerosis, coronary artery disease, and pulmonary and systemic hypertension. Hence it is not surprising that peptides are becoming important therapeutic leads in CVDs. This article will review the current knowledge on peptides and their role in the circulatory system, focusing on the physiological roles of natriuretic peptides in the cardiovascular system and their implications in CVDs.
Collapse
Affiliation(s)
- Yana Lerner
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed, Israel
| | - Wessal Hanout
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed, Israel
| | - Shulamit Fluss Ben-Uliel
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed, Israel
| | - Samar Gani
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed, Israel
| | - Michal Pellach Leshem
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed, Israel
| | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed, Israel
| |
Collapse
|
9
|
Lebetin Peptides, A New Class of Potent Platelet Aggregation Inhibitors: Chemical Synthesis, Biological Activity and NMR Spectroscopic Study. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Sridharan S, Kini RM, Richards AM. Venom natriuretic peptides guide the design of heart failure therapeutics. Pharmacol Res 2020; 155:104687. [PMID: 32057893 DOI: 10.1016/j.phrs.2020.104687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 12/29/2022]
Abstract
Heart failure (HF) affects over 26 million people world-wide. It is a syndrome triggered by loss of normal cardiac function due to many acute (eg myocardial infarction) and/or chronic (eg hypertension) causes and characterized by mixed beneficial and deleterious activation of a complex of multifaceted neurohormonal systems the net effect of which frequently is further adverse disruption of pressure-volume homeostasis. Unlike the situation in chronic heart failure, current strategies for treatment of acute heart failure are empirical and lack a strong evidence base. Management includes any of a combination of vasodilators, diuretics and ionotropic agents depending on the hemodynamic profile of the patient. Despite the improvement in the options available to improve outcomes in patients with chronic HF, for several decades little gain has been made in the treatment of the acute decompensated state. Morbidity and mortality rates remain high necessitating new therapeutic agents. The cardiac natriuretic peptides (NPs) are key hormones in pressure-volume homoeostasis. There are three isoforms of mammalian NPs, namely ANP, BNP and CNP. These peptides bind to membrane-bound NP receptors (NPRs) on the heart, vasculature and kidney to lower blood pressure and circulating volume. Intravenous infusion of NPs in HF patients improves hemodynamic status but is associated with occasional severe hypotension. Apart from mammalian NPs, snake venom NPs are an excellent source of pharmacologically distinct ligands that offer the possibility of engineering NPs for therapeutic purposes. Venom NPs have long half-lives, differential NPR activation profiles and varied NPR specificity. The scaffolds of venom NPs encode the molecular information for designing NPs with longer half-lives and improved and differential vascular and renal functions. This review focuses on the structure-function paradigm of mammalian and venom NPs and the different peptide engineering strategies that have been utilized in the design of clinically relevant new NP-analogues.
Collapse
Affiliation(s)
- Sindhuja Sridharan
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore.
| | - Arthur Mark Richards
- Cardiac Department, National University Hospital, Cardiovascular Research Institute, National University Heart Centre, National University Health System, Singapore; Christchurch Heart Institute, University of Otago, NZ, United States.
| |
Collapse
|
11
|
Péterfi O, Boda F, Szabó Z, Ferencz E, Bába L. Hypotensive Snake Venom Components-A Mini-Review. Molecules 2019; 24:E2778. [PMID: 31370142 PMCID: PMC6695636 DOI: 10.3390/molecules24152778] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Hypertension is considered a major public health issue due to its high prevalence and subsequent risk of cardiovascular and kidney diseases. Thus, the search for new antihypertensive compounds remains of great interest. Snake venoms provide an abundant source of lead molecules that affect the cardiovascular system, which makes them prominent from a pharmaceutical perspective. Such snake venom components include bradykinin potentiating peptides (proline-rich oligopeptides), natriuretic peptides, phospholipases A2, serine-proteases and vascular endothelial growth factors. Some heparin binding hypotensive factors, three-finger toxins and 5' nucleotidases can also exert blood pressure lowering activity. Great advances have been made during the last decade regarding the understanding of the mechanism of action of these hypotensive proteins. Bradykinin potentiating peptides exert their action primarily by inhibiting the angiotensin-converting enzyme and increasing the effect of endogenous bradykinin. Snake venom phospholipases A2 are capable of reducing blood pressure through the production of arachidonic acid, a precursor of cyclooxygenase metabolites (prostaglandins or prostacyclin). Other snake venom proteins mimic the effects of endogenous kallikrein, natriuretic peptides or vascular endothelial growth factors. The aim of this work was to review the current state of knowledge regarding snake venom components with potential antihypertensive activity and their mechanisms of action.
Collapse
Affiliation(s)
- Orsolya Péterfi
- Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540139 Tirgu Mures, Romania
| | - Francisc Boda
- Department of Fundamental Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540139 Tirgu Mures, Romania.
| | - Zoltán Szabó
- Department of Specialty Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540139 Tirgu Mures, Romania
| | - Elek Ferencz
- Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540139 Tirgu Mures, Romania
| | - László Bába
- Department of Specialty Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540139 Tirgu Mures, Romania
| |
Collapse
|
12
|
Leonardi A, Sajevic T, Pungerčar J, Križaj I. Comprehensive Study of the Proteome and Transcriptome of the Venom of the Most Venomous European Viper: Discovery of a New Subclass of Ancestral Snake Venom Metalloproteinase Precursor-Derived Proteins. J Proteome Res 2019; 18:2287-2309. [PMID: 31017792 PMCID: PMC6727599 DOI: 10.1021/acs.jproteome.9b00120] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
nose-horned viper, its nominotypical subspecies Vipera
ammodytes ammodytes (Vaa), in particular,
is, medically, one of the most relevant snakes in Europe. The local
and systemic clinical manifestations of poisoning by the venom of
this snake are the result of the pathophysiological effects inflicted
by enzymatic and nonenzymatic venom components acting, most prominently,
on the blood, cardiovascular, and nerve systems. This venom is a very
complex mixture of pharmacologically active proteins and peptides.
To help improve the current antivenom therapy toward higher specificity
and efficiency and to assist drug discovery, we have constructed,
by combining transcriptomic and proteomic analyses, the most comprehensive
library yet of the Vaa venom proteins and peptides.
Sequence analysis of the venom gland cDNA library has revealed the
presence of messages encoding 12 types of polypeptide precursors.
The most abundant are those for metalloproteinase inhibitors (MPis),
bradykinin-potentiating peptides (BPPs), and natriuretic peptides
(NPs) (all three on a single precursor), snake C-type lectin-like
proteins (snaclecs), serine proteases (SVSPs), P-II and P-III metalloproteinases
(SVMPs), secreted phospholipases A2 (sPLA2s),
and disintegrins (Dis). These constitute >88% of the venom transcriptome.
At the protein level, 57 venom proteins belonging to 16 different
protein families have been identified and, with SVSPs, sPLA2s, snaclecs, and SVMPs, comprise ∼80% of all venom proteins.
Peptides detected in the venom include NPs, BPPs, and inhibitors of
SVSPs and SVMPs. Of particular interest, a transcript coding for a
protein similar to P-III SVMPs but lacking the MP domain was also
found at the protein level in the venom. The existence of such proteins,
also supported by finding similar venom gland transcripts in related
snake species, has been demonstrated for the first time, justifying
the proposal of a new P-IIIe subclass of ancestral SVMP precursor-derived
proteins.
Collapse
Affiliation(s)
- Adrijana Leonardi
- Department of Molecular and Biomedical Sciences , Jožef Stefan Institute , Jamova cesta 39 , SI-1000 Ljubljana , Slovenia
| | - Tamara Sajevic
- Department of Molecular and Biomedical Sciences , Jožef Stefan Institute , Jamova cesta 39 , SI-1000 Ljubljana , Slovenia
| | - Jože Pungerčar
- Department of Molecular and Biomedical Sciences , Jožef Stefan Institute , Jamova cesta 39 , SI-1000 Ljubljana , Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences , Jožef Stefan Institute , Jamova cesta 39 , SI-1000 Ljubljana , Slovenia
| |
Collapse
|
13
|
Ali SA, Jackson TNW, Casewell NR, Low DHW, Rossi S, Baumann K, Fathinia B, Visser J, Nouwens A, Hendrikx I, Jones A, Undheim E, Fry BG. Extreme venom variation in Middle Eastern vipers: a proteomics comparison of Eristicophis macmahonii, Pseudocerastes fieldi and Pseudocerastes persicus. J Proteomics 2014; 116:106-13. [PMID: 25241240 DOI: 10.1016/j.jprot.2014.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/28/2014] [Accepted: 09/06/2014] [Indexed: 10/24/2022]
Abstract
UNLABELLED Venoms of the viperid sister genera Eristicophis and Pseudocerastes are poorly studied despite their anecdotal reputation for producing severe or even lethal envenomations. This is due in part to the remote and politically unstable regions that they occupy. All species contained are sit and wait ambush feeders. Thus, this study examined their venoms through proteomics techniques in order to establish if this feeding ecology, and putatively low levels of gene flow, have resulted in significant variations in venom profile. The techniques indeed revealed extreme venom variation. This has immediate implications as only one antivenom is made (using the venom of Pseudocerastes persicus) yet the proteomic variation suggests that it would be of only limited use for the other species, even the sister species Pseudocerastes fieldi. The high degree of variation however also points toward these species being rich resources for novel compounds which may have use as lead molecules in drug design and development. BIOLOGICAL SIGNIFICANCE These results show extreme venom variation between these closely related snakes. These results have direct implications for the treatment of the envenomed patient.
Collapse
Affiliation(s)
- Syed A Ali
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Queensland 4520, Australia; HEJ Research Institute of Chemistry, International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan; Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4520, Australia
| | - Timothy N W Jackson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Queensland 4520, Australia; Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4520, Australia
| | - Nicholas R Casewell
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Queensland 4520, Australia; Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Dolyce H W Low
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Queensland 4520, Australia
| | - Sarah Rossi
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Queensland 4520, Australia
| | - Kate Baumann
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Queensland 4520, Australia
| | - Behzad Fathinia
- Department of Biology, Faculty of Science, Yasouj University, 75914 Yasouj, Iran
| | - Jeroen Visser
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Queensland 4520, Australia; Life Sciences, Hogeschool Inholland Amsterdam, 1081 HV, The Netherlands
| | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia
| | - Iwan Hendrikx
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Queensland 4520, Australia
| | - Alun Jones
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4520, Australia
| | - Eba Undheim
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4520, Australia
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Queensland 4520, Australia; Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4520, Australia.
| |
Collapse
|
14
|
Venom down under: dynamic evolution of Australian elapid snake toxins. Toxins (Basel) 2013; 5:2621-55. [PMID: 24351719 PMCID: PMC3873703 DOI: 10.3390/toxins5122621] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 12/13/2013] [Accepted: 12/16/2013] [Indexed: 12/30/2022] Open
Abstract
Despite the unparalleled diversity of venomous snakes in Australia, research has concentrated on a handful of medically significant species and even of these very few toxins have been fully sequenced. In this study, venom gland transcriptomes were sequenced from eleven species of small Australian elapid snakes, from eleven genera, spanning a broad phylogenetic range. The particularly large number of sequences obtained for three-finger toxin (3FTx) peptides allowed for robust reconstructions of their dynamic molecular evolutionary histories. We demonstrated that each species preferentially favoured different types of α-neurotoxic 3FTx, probably as a result of differing feeding ecologies. The three forms of α-neurotoxin [Type I (also known as (aka): short-chain), Type II (aka: long-chain) and Type III] not only adopted differential rates of evolution, but have also conserved a diversity of residues, presumably to potentiate prey-specific toxicity. Despite these differences, the different α-neurotoxin types were shown to accumulate mutations in similar regions of the protein, largely in the loops and structurally unimportant regions, highlighting the significant role of focal mutagenesis. We theorize that this phenomenon not only affects toxin potency or specificity, but also generates necessary variation for preventing/delaying prey animals from acquiring venom-resistance. This study also recovered the first full-length sequences for multimeric phospholipase A2 (PLA2) ‘taipoxin/paradoxin’ subunits from non-Oxyuranus species, confirming the early recruitment of this extremely potent neurotoxin complex to the venom arsenal of Australian elapid snakes. We also recovered the first natriuretic peptides from an elapid that lack the derived C-terminal tail and resemble the plesiotypic form (ancestral character state) found in viper venoms. This provides supporting evidence for a single early recruitment of natriuretic peptides into snake venoms. Novel forms of kunitz and waprin peptides were recovered, including dual domain kunitz-kunitz precursors and the first kunitz-waprin hybrid precursors from elapid snakes. The novel sequences recovered in this study reveal that the huge diversity of unstudied venomous Australian snakes are of considerable interest not only for the investigation of venom and whole organism evolution but also represent an untapped bioresource in the search for novel compounds for use in drug design and development.
Collapse
|
15
|
Vink S, Jin A, Poth K, Head G, Alewood P. Natriuretic peptide drug leads from snake venom. Toxicon 2012; 59:434-45. [DOI: 10.1016/j.toxicon.2010.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
|
16
|
Koh CY, Kini RM. From snake venom toxins to therapeutics – Cardiovascular examples. Toxicon 2012; 59:497-506. [DOI: 10.1016/j.toxicon.2011.03.017] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 11/30/2022]
|
17
|
A novel anti-platelet aggregation tripeptide from Agkistrodon acutus venom: isolation and characterization. Toxicon 2009; 54:103-9. [PMID: 19345702 DOI: 10.1016/j.toxicon.2009.03.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 03/16/2009] [Accepted: 03/23/2009] [Indexed: 11/21/2022]
Abstract
AAP, a tripeptide that inhibited rabbit platelet aggregation, was isolated from Agkistrodon acutus venom by ion-exchange, gel filtration and reverse-phase chromatography. Amino acid sequences which determined mainly by amino acid analyses and NMR spectroscopy indicated it was a tripeptide including pyroglutamic acid, asparagine and tryptophane residues. The ESMS experiment assigned a molecular weight of 429 Da. AAP inhibited rabbit platelet aggregation induced by ADP, PAF-acether, collagen and thrombin, the IC(50)s were 178 microM, 332 microM, 179 microM and 203 microM, respectively. AAP also inhibited thrombus formation in vivo thrombosis model and prevented the combination between fibrinogen and GP IIb/IIIa. Besides, AAP was not toxic after intravenous injection into mice at a higher dose. Those studies might be helpful to delineate unknown mechanisms involved in platelet aggregation and serve as a model for developing antithrombotic agents.
Collapse
|
18
|
Abstract
Since the discovery of atrial natriuretic factor by de Bold et al., there has been tremendous progress in our understanding of the physiologic, diagnostic and therapeutic roles of the natriuretic peptides (NPs) in health and disease. Natriuretic peptides are endogenous hormones that are released by the heart in response to myocardial stretch and overload. Three mammalian NPs have been identified and characterized, including atrial natriuretic peptide (ANP or atrial natriuretic factor), B-type natriuretic peptide (BNP), and C-type natriuretic peptide (CNP). In addition, Dendroaspis natriuretic peptide (DNP) has been isolated from the venom of Dendroaspis angusticeps (the green mamba snake), and urodilatin from human urine. These peptides are structurally similar and they consist of a 17-amino-acid core ring and a cysteine bridge. Both ANP and BNP bind to natriuretic peptide receptor A (NPR-A) that are expressed in the heart and other organs. Activation of NPR-A generates an increase in cyclic guanosine monophosphate, which mediates natriuresis, inhibition of renin and aldosterone, as well as vasorelaxant, anti-fibrotic, anti-hypertrophic, and lusitropic effects. The NP system thus serves as an important compensatory mechanism against neurohumoral activation in heart failure. This provides a strong rationale for the use of exogenous NPs in the management of acutely decompensated heart failure. In this article, the therapeutic applications of NPs in the acute heart failure syndromes are reviewed. Emerging therapeutic agents and areas for future research are discussed.
Collapse
Affiliation(s)
- Candace Y W Lee
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN 55906, USA.
| | | |
Collapse
|
19
|
Affiliation(s)
- Horng H Chen
- Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | |
Collapse
|
20
|
Chen HH, Burnett JC. Clinical application of the natriuretic peptides in heart failure. Eur Heart J Suppl 2006. [DOI: 10.1093/eurheartj/sul026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
St Pierre L, Flight S, Masci PP, Hanchard KJ, Lewis RJ, Alewood PF, de Jersey J, Lavin MF. Cloning and characterisation of natriuretic peptides from the venom glands of Australian elapids. Biochimie 2006; 88:1923-31. [PMID: 16908092 DOI: 10.1016/j.biochi.2006.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 06/18/2006] [Indexed: 11/24/2022]
Abstract
The venom from Australian elapid snakes contains a complex mixture of polypeptide toxins that adversely affect multiple homeostatic systems within their prey in a highly specific and targeted manner. Included in these toxin families are the recently described venom natriuretic peptides, which display similar structure and vasoactive functions to mammalian natriuretic peptides. This paper describes the identification and detailed comparative analysis of the cDNA transcripts coding for the mature natriuretic peptide from a total of nine Australian elapid snake species. Multiple isoforms were identified in a number of species and represent the first description of a natriuretic peptide from the venom gland for most of these snakes. Two distinct natriuretic peptide isoforms were selected from the common brown snake (Pseudonaja textilis), PtNP-a, and the mulga (Pseudechis australis), PaNP-c, for recombinant protein expression and functional analysis. Only one of these peptides, PtNP-a, displayed cGMP stimulation indicative of normal natriuretic peptide activity. Interestingly, both recombinant peptides demonstrated a dose-dependent inhibition of angiotensin converting enzyme (ACE) activity, which is predictive of the vasoactive effects of the toxin. The natriuretic peptides, however, did not possess any coagulopathic activity, nor did they inhibit or potentiate thrombin, adenosine diphosphate or arachidonic acid induced platelet aggregation. The data presented in this study represent a significant resource for understanding the role of various natriuretic peptides isoforms during the envenomation process by Australian elapid snakes.
Collapse
Affiliation(s)
- Liam St Pierre
- The Queensland Institute of Medical Research, Brisbane, Australia
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Nikkhah M, Manesh HN, Taghdir M, Talebzadeh M, Zadeh MS, Schaller J, Sarbolouki MN. cDNA Cloning, Sequence Analysis and Molecular Modeling of a New Peptide from the Scorpion Buthotus saulcyi Venom. BMB Rep 2006; 39:284-91. [PMID: 16756757 DOI: 10.5483/bmbrep.2006.39.3.284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, the cDNA of a new peptide from the venom of the scorpion, Buthotus saulcyi, was cloned and sequenced. It codes for a 64 residues peptide (Bsaul1) which shares high sequence similarity with depressant insect toxins of scorpions. The differences between them mainly appear in the loop1 which connects the beta-strand1 to the alpha-helix and seems to be functionally important in long chain scorpion neurotoxins. This loop is three amino acids longer in Bsaul1 compared to other depressant toxins. A comparative amino acid sequence analysis done on Bsaul1 and some of alpha-, beta-, excitatory and depressant toxins of scorpions showed that Bsaul1 contains all the residues which are highly conserved among long chain scorpion neurotoxins. Structural model of Bsaul1 was generated using Ts1 (a beta-toxin that competes with the depressant insect toxins for binding to Na(+) channels) as template. According to the molecular model of Bsaul1, the folding of the polypeptide chain is being composed of an anti-parallel three-stranded beta-sheet and a stretch of alpha- helix, tightly bound by a set of four disulfide bridges. A striking similarity in the spatial arrangement of some critical residues was shown by superposition of the backbone conformation of Bsaul1 and Ts1.
Collapse
Affiliation(s)
- Maryam Nikkhah
- Institute of Biochemistry and Biophysics, University of Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
23
|
Bazaa A, Marrakchi N, El Ayeb M, Sanz L, Calvete JJ. Snake venomics: Comparative analysis of the venom proteomes of the Tunisian snakesCerastes cerastes, Cerastes vipera andMacrovipera lebetina. Proteomics 2005; 5:4223-35. [PMID: 16206329 DOI: 10.1002/pmic.200402024] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The protein composition of the crude venoms of the three most important vipers of Tunisia was analyzed by RP-HPLC, N-terminal sequence analysis, MALDI-TOF mass determination, and in-gel tryptic digestion followed by PMF and CID-MS/MS of selected peptide ions in a quadrupole-linear IT instrument. Our results show that the venom proteomes of Cerastes cerastes, Cerastes vipera, and Macrovipera lebetina are composed of proteins belonging to a few protein families. However, each venom showed distinct degree of protein composition complexity. The three venoms shared a number of protein classes though the relative occurrence of these toxins was different in each snake species. On the other hand, the venoms of the Cerastes species and Macrovipera lebetina each contained unique components. The comparative proteomic analysis of Tunisian snake venoms provides a comprehensible catalogue of secreted proteins, which may contribute to a deeper understanding of the biological effects of the venoms, and may also serve as a starting point for studying structure-function correlations of individual toxins.
Collapse
Affiliation(s)
- Amine Bazaa
- Laboratoire des Venins et Toxines, Institut Pasteur de Tunis, Tunis-Belvedere, Tunisia
| | | | | | | | | |
Collapse
|
24
|
Jalali A, Bosmans F, Amininasab M, Clynen E, Cuypers E, Zaremirakabadi A, Sarbolouki MN, Schoofs L, Vatanpour H, Tytgat J. OD1, the first toxin isolated from the venom of the scorpionOdonthobuthus doriaeactive on voltage-gated Na+channels. FEBS Lett 2005; 579:4181-6. [PMID: 16038905 DOI: 10.1016/j.febslet.2005.06.052] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 06/20/2005] [Accepted: 06/20/2005] [Indexed: 11/23/2022]
Abstract
In this study, we isolated and pharmacologically characterized the first alpha-like toxin from the venom of the scarcely studied Iranian scorpion Odonthobuthus doriae. The toxin was termed OD1 and its primary sequence was determined: GVRDAYIADDKNCVYTCASNGYCNTECTKNGAESGYCQWIGRYGNACWCIKLPDEVPIRIPGKCR. Using the two-electrode voltage clamp technique, the pharmacological effects of OD1 were studied on three cloned voltage-gated Na+ channels expressed in Xenopus laevis oocytes (Na(v)1.2/beta1, Na(v)1.5/beta1, para/tipE). The inactivation process of the insect channel, para/tipE, was severely hampered by 200 nM of OD1 (EC50 = 80+/-14 nM) while Na(v)1.2/beta1 still was not affected at concentrations up to 5 microM. Na(v)1.5/beta1 was influenced at micromolar concentrations.
Collapse
Affiliation(s)
- Amir Jalali
- Department of Toxicology and Pharmacology, Shaheed Beheshti University of Medical Science, Tehran, Iran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Peto H, Stott K, Sunde M, Broadhurst RW. Backbone dynamics of oxidised and reduced forms of human atrial natriuretic peptide. J Struct Biol 2004; 148:214-25. [PMID: 15477101 DOI: 10.1016/j.jsb.2004.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 05/12/2004] [Indexed: 11/19/2022]
Abstract
The backbone dynamics of the 28 residue 15N-labelled human atrial natriuretic peptide have been examined by 15N NMR methods. 15N R1, R2 and [1H]-15N NOE values were determined for the oxidised and reduced forms of the peptide (ANPox and ANPrd, respectively), and analysed using reduced spectral density mapping and an extended model-free approach. The two forms possessed correlation times for overall molecular motion of 4.7 ns and were highly flexible, with substantial contributions to relaxation processes from internal motions on picosecond to nanosecond time scales. Reduction of the Cys7-Cys23 disulphide bond to form ANPrd produced a very dynamic linear peptide with a mean overall order parameter of 0.2; the intramolecular cross-link in ANPox increased this to a mean value of 0.4. A simple model for segmental backbone motion accounted for the R2 values of both species using only two variable parameters, indicating that relaxation is dominated by interactions with sites <7 residues distant in the covalent network and that changes in the conformation of the disulphide bond lead to significant chemical exchange broadening in ANPox. The contributions of backbone dynamics to configurational entropy were determined and accounted for the different receptor binding affinities of cyclised and linear natriuretic peptides.
Collapse
Affiliation(s)
- Heather Peto
- Centre for Protein Engineering, MRC Centre, Hills Road Cambridge CB2 2QH, UK
| | | | | | | |
Collapse
|