1
|
Abstract
Economical production of photosynthetic organisms requires the use of natural day/night cycles. These induce strong circadian rhythms that lead to transient changes in the cells, requiring complex modeling to capture. In this study, we coupled times series transcriptomic data from the model green alga Chlamydomonas reinhardtii to a metabolic model of the same organism in order to develop the first transient metabolic model for diurnal growth of algae capable of predicting phenotype from genotype. We first transformed a set of discrete transcriptomic measurements (D. Strenkert, S. Schmollinger, S. D. Gallaher, P. A. Salomé, et al., Proc Natl Acad Sci U S A 116:2374–2383, 2019, https://doi.org/10.1073/pnas.1815238116) into continuous curves, producing a complete database of the cell’s transcriptome that can be interrogated at any time point. We also decoupled the standard biomass formation equation to allow different components of biomass to be synthesized at different times of the day. The resulting model was able to predict qualitative phenotypical outcomes of a starchless mutant. We also extended this approach to simulate all single-knockout mutants and identified potential targets for rational engineering efforts to increase productivity. This model enables us to evaluate the impact of genetic and environmental changes on the growth, biomass composition, and intracellular fluxes for diurnal growth. IMPORTANCE We have developed the first transient metabolic model for diurnal growth of algae based on experimental data and capable of predicting phenotype from genotype. This model enables us to evaluate the impact of genetic and environmental changes on the growth, biomass composition and intracellular fluxes of the model green alga, Chlamydomonas reinhardtii. The availability of this model will enable faster and more efficient design of cells for production of fuels, chemicals, and pharmaceuticals.
Collapse
|
2
|
Krischer J, König S, Weisheit W, Mittag M, Büchel C. The C-terminus of a diatom plant-like cryptochrome influences the FAD redox state and binding of interaction partners. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1934-1948. [PMID: 35034113 DOI: 10.1093/jxb/erac012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
A plant-like cryptochrome of diatom microalgae, CryP, acts as a photoreceptor involved in transcriptional regulation. It contains FAD and 5,10-methenyltetrahydrofolate as chromophores. Here, we demonstrate that the unstructured C-terminal extension (CTE) of CryP has an influence on the redox state of the flavin. In CryP lacking the CTE, the flavin is in the oxidized state (FADox), whereas it is a neutral radical (FADH•) in the full-length protein. When the CTE of CryP is coupled to another diatom cryptochrome that naturally binds FADox, this chimera also binds FADH•. In full-length CryP, FADH• is the most stable redox state and oxidation to FADox is extremely slow, whereas reduction to FADH2 is reversible in the dark in approximately 1 h. We also identified novel interaction partners of this algal CRY and characterized two of them in depth regarding their binding activities. BolA, a putative transcription factor, binds to monomeric and to dimeric CryP via the CTE, independent of the redox state of the flavin. In contrast, an unknown protein, ID42612, which occurs solely in heterokont algae, binds only to CryP dimers. This binding is independent of the CTE and shows slight differences in strength depending on the flavin's redox state.
Collapse
Affiliation(s)
- Julia Krischer
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Sarah König
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Wolfram Weisheit
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, Jena, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, Jena, Germany
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
3
|
Mauvoisin D, Gachon F. Proteomics in Circadian Biology. J Mol Biol 2019; 432:3565-3577. [PMID: 31843517 DOI: 10.1016/j.jmb.2019.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
The circadian clock is an endogenous molecular timekeeping system that allows organisms to adjust their physiology and behavior to the time of day in an anticipatory fashion. In different organisms, the circadian clock coordinates physiology and metabolism through regulation of gene expression at the transcriptional and post-transcriptional levels. Until now, circadian gene expression studies have mostly focused primarily on transcriptomics approaches. This type of analyses revealed that many protein-encoding genes show circadian expression in a tissue-specific manner. During the last three decades, a long way has been traveled since the pioneering work on dinoflagellates, and new advances in mass spectrometry offered new perspectives in the characterization of the circadian dynamics of the proteome. Altogether, these efforts highlighted that rhythmic protein oscillation is driven equally by gene transcription, post-transcriptional and post-translational regulations. The determination of the role of the circadian clock in these three levels of regulation appears to be the next major challenge in the field.
Collapse
Affiliation(s)
- Daniel Mauvoisin
- L'institut Du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France.
| | - Frédéric Gachon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
4
|
Sake CL, Metcalf AJ, Boyle NR. The challenge and potential of photosynthesis: unique considerations for metabolic flux measurements in photosynthetic microorganisms. Biotechnol Lett 2018; 41:35-45. [PMID: 30430405 PMCID: PMC6313361 DOI: 10.1007/s10529-018-2622-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/07/2018] [Indexed: 11/29/2022]
Abstract
Photosynthetic microorganisms have the potential for sustainable production of chemical feedstocks and products but have had limited success due to a lack of tools and deeper understanding of metabolic pathway regulation. The application of instationary metabolic flux analysis (INST-MFA) to photosynthetic microorganisms has allowed researchers to quantify fluxes and identify bottlenecks and metabolic inefficiencies to improve strain performance or gain insight into cellular physiology. Additionally, flux measurements can also highlight deviations between measured and predicted fluxes, revealing weaknesses in metabolic models and highlighting areas where a lack of understanding still exists. In this review, we outline the experimental steps necessary to successfully perform photosynthetic flux experiments and analysis. We also discuss the challenges unique to photosynthetic microorganisms and how to account for them, including: light supply, quenching, concentration, extraction, analysis, and flux calculation. We hope that this will enable a larger number of researchers to successfully apply isotope assisted metabolic flux analysis (13C-MFA) to their favorite photosynthetic organism.
Collapse
|
5
|
Millius A, Ueda HR. Systems Biology-Derived Discoveries of Intrinsic Clocks. Front Neurol 2017; 8:25. [PMID: 28220104 PMCID: PMC5292584 DOI: 10.3389/fneur.2017.00025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/17/2017] [Indexed: 12/19/2022] Open
Abstract
A systems approach to studying biology uses a variety of mathematical, computational, and engineering tools to holistically understand and model properties of cells, tissues, and organisms. Building from early biochemical, genetic, and physiological studies, systems biology became established through the development of genome-wide methods, high-throughput procedures, modern computational processing power, and bioinformatics. Here, we highlight a variety of systems approaches to the study of biological rhythms that occur with a 24-h period-circadian rhythms. We review how systems methods have helped to elucidate complex behaviors of the circadian clock including temperature compensation, rhythmicity, and robustness. Finally, we explain the contribution of systems biology to the transcription-translation feedback loop and posttranslational oscillator models of circadian rhythms and describe new technologies and "-omics" approaches to understand circadian timekeeping and neurophysiology.
Collapse
Affiliation(s)
- Arthur Millius
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka, Japan
| | - Hiroki R. Ueda
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Abstract
The circadian system in higher organisms temporally orchestrates rhythmic changes in a vast number of genes and gene products in different organs. Complex interactions between these components, both within and among cells, ultimately lead to rhythmic behavior and physiology. Identifying the plethora of circadian targets and mapping their interactions with one another is therefore essential to comprehend the molecular mechanisms of circadian regulation. The emergence of new technology for unbiased identification of biomolecules and for mapping interactions at the genome-wide scale is offering powerful tools to decipher the regulatory networks underpinning circadian rhythms. In this review, the authors discuss the potential application of these genome-wide approaches in the study of circadian rhythms.
Collapse
Affiliation(s)
- Luciano De Haro
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | |
Collapse
|
7
|
Choudhary MK, Nomura Y, Shi H, Nakagami H, Somers DE. Circadian Profiling of the Arabidopsis Proteome Using 2D-DIGE. FRONTIERS IN PLANT SCIENCE 2016; 7:1007. [PMID: 27462335 PMCID: PMC4940426 DOI: 10.3389/fpls.2016.01007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/27/2016] [Indexed: 05/18/2023]
Abstract
Clock-generated biological rhythms provide an adaptive advantage to an organism, resulting in increased fitness and survival. To better elucidate the plant response to the circadian system, we surveyed protein oscillations in Arabidopsis seedlings under constant light. Using large-scale two-dimensional difference in gel electrophoresis (2D-DIGE) the abundance of more than 1000 proteins spots was reproducibly resolved quantified and profiled across a circadian time series. A comparison between phenol-extracted samples and RuBisCO-depleted extracts identified 71 and 40 rhythmically-expressed proteins, respectively, and between 30 and 40% of these derive from non-rhythmic transcripts. These included proteins influencing transcriptional regulation, translation, metabolism, photosynthesis, protein chaperones, and stress-mediated responses. The phasing of maximum expression for the cyclic proteins was similar for both datasets, with a nearly even distribution of peak phases across the time series. STRING clustering analysis identified two interaction networks with a notable number of oscillating proteins: plastid-based and cytosolic chaperones and 10 proteins involved in photosynthesis. The oscillation of the ABA receptor, PYR1/RCAR11, with peak expression near dusk adds to a growing body of evidence that intimately ties ABA signaling to the circadian system. Taken together, this study provides new insights into the importance of post-transcriptional circadian control of plant physiology and metabolism.
Collapse
Affiliation(s)
- Mani K. Choudhary
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and TechnologyPohang, South Korea
| | - Yuko Nomura
- Plant Proteomics Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Hua Shi
- Department of Molecular Genetics, Ohio State UniversityColumbus, OH, USA
| | - Hirofumi Nakagami
- Plant Proteomics Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - David E. Somers
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and TechnologyPohang, South Korea
- Department of Molecular Genetics, Ohio State UniversityColumbus, OH, USA
- *Correspondence: David E. Somers
| |
Collapse
|
8
|
Krahmer J, Hindle MM, Martin SF, Le Bihan T, Millar AJ. Sample preparation for phosphoproteomic analysis of circadian time series in Arabidopsis thaliana. Methods Enzymol 2014; 551:405-31. [PMID: 25662467 PMCID: PMC4427183 DOI: 10.1016/bs.mie.2014.10.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Systems biological approaches to study the Arabidopsis thaliana circadian clock have mainly focused on transcriptomics while little is known about the proteome, and even less about posttranslational modifications. Evidence has emerged that posttranslational protein modifications, in particular phosphorylation, play an important role for the clock and its output. Phosphoproteomics is the method of choice for a large-scale approach to gain more knowledge about rhythmic protein phosphorylation. Recent plant phosphoproteomics publications have identified several thousand phosphopeptides. However, the methods used in these studies are very labor-intensive and therefore not suitable to apply to a well-replicated circadian time series. To address this issue, we present and compare different strategies for sample preparation for phosphoproteomics that are compatible with large numbers of samples. Methods are compared regarding number of identifications, variability of quantitation, and functional categorization. We focus on the type of detergent used for protein extraction as well as methods for its removal. We also test a simple two-fraction separation of the protein extract.
Collapse
Affiliation(s)
- Johanna Krahmer
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew M Hindle
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah F Martin
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Thierry Le Bihan
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
9
|
Mann M, Hoppenz P, Jakob T, Weisheit W, Mittag M, Wilhelm C, Goss R. Unusual features of the high light acclimation of Chromera velia. PHOTOSYNTHESIS RESEARCH 2014; 122:159-169. [PMID: 24906888 DOI: 10.1007/s11120-014-0019-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/21/2014] [Indexed: 06/03/2023]
Abstract
In the present study, the high light (HL) acclimation of Chromera velia (Chromerida) was studied. HL-grown cells exhibited an increased cell volume and dry weight compared to cells grown at medium light (ML). The chlorophyll (Chl) a-specific absorption spectra ([Formula: see text]) of the HL cells showed an increased absorption efficiency over a wavelength range from 400 to 750 nm, possibly due to differences in the packaging of Chl a molecules. In HL cells, the size of the violaxanthin (V) cycle pigment pool was strongly increased. Despite a higher concentration of de-epoxidized V cycle pigments, non-photochemical quenching (NPQ) of the HL cells was slightly reduced compared to ML cells. The analysis of NPQ recovery during low light (LL) after a short illumination with excess light showed a fast NPQ relaxation and zeaxanthin epoxidation. Purification of the pigment-protein complexes demonstrated that the HL-synthesized V was associated with the chromera light-harvesting complex (CLH). However, the difference absorption spectrum of HL minus ML CLH, together with the 77 K fluorescence excitation spectra, suggested that the additional V was not protein bound but localized in a lipid phase associated with the CLH. The polypeptide analysis of the pigment-protein complexes showed that one out of three known LHCr proteins was associated in higher concentration with photosystem I in the HL cells, whereas in ML cells, it was enriched in the CLH fraction. In conclusion, the acclimation of C. velia to HL illumination shows features that are comparable to those of diatoms, while other characteristics more closely resemble those of higher plants and green algae.
Collapse
Affiliation(s)
- Marcus Mann
- Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Filonova A, Haemsch P, Gebauer C, Weisheit W, Wagner V. Protein disulfide isomerase 2 of Chlamydomonas reinhardtii is involved in circadian rhythm regulation. MOLECULAR PLANT 2013; 6:1503-17. [PMID: 23475997 DOI: 10.1093/mp/sst048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Protein disulfide isomerases (PDIs) are known to play important roles in the folding of nascent proteins and in the formation of disulfide bonds. Recently, we identified a PDI from Chlamydomonas reinhardtii (CrPDI2) by a mass spectrometry approach that is specifically enriched by heparin affinity chromatography in samples taken during the night phase. Here, we show that the recombinant CrPDI2 is a redox-active protein. It is reduced by thioredoxin reductase and catalyzes itself the reduction of insulin chains and the oxidative refolding of scrambled RNase A. By immunoblots, we confirm a high-amplitude change in abundance of the heparin-bound CrPDI2 during subjective night. Interestingly, we find that CrPDI2 is present in protein complexes of different sizes at both day and night. Among three identified interaction partners, one (a 2-cys peroxiredoxin) is present only during the night phase. To study a potential function of CrPDI2 within the circadian system, we have overexpressed its gene. Two transgenic lines were used to measure the rhythm of phototaxis. In the transgenic strains, a change in the acrophase was observed. This indicates that CrPDI2 is involved in the circadian signaling pathway and, together with the night phase-specific interaction of CrPDI2 and a peroxiredoxin, these findings suggest a close coupling of redox processes and the circadian clock in C. reinhardtii.
Collapse
Affiliation(s)
- Anna Filonova
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | | | | | | | | |
Collapse
|
11
|
Gundermann K, Schmidt M, Weisheit W, Mittag M, Büchel C. Identification of several sub-populations in the pool of light harvesting proteins in the pennate diatom Phaeodactylum tricornutum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:303-10. [DOI: 10.1016/j.bbabio.2012.10.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 09/28/2012] [Accepted: 10/31/2012] [Indexed: 10/27/2022]
|
12
|
Schellenberger Costa B, Jungandreas A, Jakob T, Weisheit W, Mittag M, Wilhelm C. Blue light is essential for high light acclimation and photoprotection in the diatom Phaeodactylum tricornutum. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64. [PMID: 23183259 PMCID: PMC3542041 DOI: 10.1093/jxb/ers340] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The objective of the present study was to test the hypothesis that the acclimation to different light intensities in the diatom Phaeodactylum tricornutum is controlled by light quality perception mechanisms. Therefore, semi-continuous cultures of P. tricornutum were illuminated with equal amounts of photosynthetically absorbed radiation of blue (BL), white (WL), and red light (RL) and in combination of two intensities of irradiance, low (LL) and medium light (ML). Under LL conditions, growth rates and photosynthesis rates were similar for all cultures. However, BL cultures were found to be in an acclimation state with an increased photoprotective potential. This was deduced from an increased capacity of non-photochemical quenching, a larger pool of xanthophyll cycle pigments, and a higher de-epoxidation state of xanthophyll cycle pigments compared to WL and RL cultures. Furthermore, in the chloroplast membrane proteome of BL cells, an upregulation of proteins involved in photoprotection, e.g. the Lhcx1 protein and zeaxanthin epoxidase, was evident. ML conditions induced increased photosynthesis rates and a further enhanced photoprotective potential for algae grown under BL and WL. In contrast, RL cultures exhibited no signs of acclimation towards increased irradiance. The data implicate that in diatoms the photoacclimation to high light intensities requires the perception of blue light.
Collapse
Affiliation(s)
| | - Anne Jungandreas
- Institute of Biology, University of Leipzig, Johannisallee 21–23, D-04103 Leipzig, Germany
| | - Torsten Jakob
- Institute of Biology, University of Leipzig, Johannisallee 21–23, D-04103 Leipzig, Germany
| | - Wolfram Weisheit
- Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, Am Planetarium 1, D-07743 Jena, Germany
| | - Maria Mittag
- Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, Am Planetarium 1, D-07743 Jena, Germany
| | - Christian Wilhelm
- Institute of Biology, University of Leipzig, Johannisallee 21–23, D-04103 Leipzig, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
13
|
Hsieh SI, Castruita M, Malasarn D, Urzica E, Erde J, Page MD, Yamasaki H, Casero D, Pellegrini M, Merchant SS, Loo JA. The proteome of copper, iron, zinc, and manganese micronutrient deficiency in Chlamydomonas reinhardtii. Mol Cell Proteomics 2012; 12:65-86. [PMID: 23065468 DOI: 10.1074/mcp.m112.021840] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trace metals such as copper, iron, zinc, and manganese play important roles in several biochemical processes, including respiration and photosynthesis. Using a label-free, quantitative proteomics strategy (MS(E)), we examined the effect of deficiencies in these micronutrients on the soluble proteome of Chlamydomonas reinhardtii. We quantified >10(3) proteins with abundances within a dynamic range of 3 to 4 orders of magnitude and demonstrated statistically significant changes in ~200 proteins in each metal-deficient growth condition relative to nutrient-replete media. Through analysis of Pearson's coefficient, we also examined the correlation between protein abundance and transcript abundance (as determined via RNA-Seq analysis) and found moderate correlations under all nutritional states. Interestingly, in a subset of transcripts known to significantly change in abundance in metal-replete and metal-deficient conditions, the correlation to protein abundance is much stronger. Examples of new discoveries highlighted in this work include the accumulation of O(2) labile, anaerobiosis-related enzymes (Hyd1, Pfr1, and Hcp2) in copper-deficient cells; co-variation of Cgl78/Ycf54 and coprogen oxidase; the loss of various stromal and lumenal photosynthesis-related proteins, including plastocyanin, in iron-limited cells; a large accumulation (from undetectable amounts to over 1,000 zmol/cell) of two COG0523 domain-containing proteins in zinc-deficient cells; and the preservation of photosynthesis proteins in manganese-deficient cells despite known losses in photosynthetic function in this condition.
Collapse
Affiliation(s)
- Scott I Hsieh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tardif M, Atteia A, Specht M, Cogne G, Rolland N, Brugière S, Hippler M, Ferro M, Bruley C, Peltier G, Vallon O, Cournac L. PredAlgo: a new subcellular localization prediction tool dedicated to green algae. Mol Biol Evol 2012; 29:3625-39. [PMID: 22826458 DOI: 10.1093/molbev/mss178] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a prime model for deciphering processes occurring in the intracellular compartments of the photosynthetic cell. Organelle-specific proteomic studies have started to delineate its various subproteomes, but sequence-based prediction software is necessary to assign proteins subcellular localizations at whole genome scale. Unfortunately, existing tools are oriented toward land plants and tend to mispredict the localization of nuclear-encoded algal proteins, predicting many chloroplast proteins as mitochondrion targeted. We thus developed a new tool called PredAlgo that predicts intracellular localization of those proteins to one of three intracellular compartments in green algae: the mitochondrion, the chloroplast, and the secretory pathway. At its core, a neural network, trained using carefully curated sets of C. reinhardtii proteins, divides the N-terminal sequence into overlapping 19-residue windows and scores the probability that they belong to a cleavable targeting sequence for one of the aforementioned organelles. A targeting prediction is then deduced for the protein, and a likely cleavage site is predicted based on the shape of the scoring function along the N-terminal sequence. When assessed on an independent benchmarking set of C. reinhardtii sequences, PredAlgo showed a highly improved discrimination capacity between chloroplast- and mitochondrion-localized proteins. Its predictions matched well the results of chloroplast proteomics studies. When tested on other green algae, it gave good results with Chlorophyceae and Trebouxiophyceae but tended to underpredict mitochondrial proteins in Prasinophyceae. Approximately 18% of the nuclear-encoded C. reinhardtii proteome was predicted to be targeted to the chloroplast and 15% to the mitochondrion.
Collapse
|
15
|
Krügel U, He HX, Gier K, Reins J, Chincinska I, Grimm B, Schulze WX, Kühn C. The potato sucrose transporter StSUT1 interacts with a DRM-associated protein disulfide isomerase. MOLECULAR PLANT 2012; 5:43-62. [PMID: 21746698 DOI: 10.1093/mp/ssr048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Organization of proteins into complexes is crucial for many cellular functions. Recently, the SUT1 protein was shown to form homodimeric complexes, to be associated with lipid raft-like microdomains in yeast as well as in plants and to undergo endocytosis in response to brefeldin A. We therefore aimed to identify SUT1-interacting proteins that might be involved in dimerization, endocytosis, or targeting of SUT1 to raft-like microdomains. Therefore, we identified potato membrane proteins, which are associated with the detergent-resistant membrane (DRM) fraction. Among the proteins identified, we clearly confirmed StSUT1 as part of DRM in potato source leaves. We used the yeast two-hybrid split ubiquitin system (SUS) to systematically screen for interaction between the sucrose transporter StSUT1 and other membrane-associated or soluble proteins in vivo. The SUS screen was followed by immunoprecipitation using affinity-purified StSUT1-specific peptide antibodies and mass spectrometric analysis of co-precipitated proteins. A large overlap was observed between the StSUT1-interacting proteins identified in the co-immunoprecipitation and the detergent-resistant membrane fraction. One of the SUT1-interacting proteins, a protein disulfide isomerase (PDI), interacts also with other sucrose transporter proteins. A potential role of the PDI as escort protein is discussed.
Collapse
Affiliation(s)
- Undine Krügel
- Institute of Biology, Department of Plant Physiology, Humboldt University, 10115 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hwang H, Cho MH, Hahn BS, Lim H, Kwon YK, Hahn TR, Bhoo SH. Proteomic identification of rhythmic proteins in rice seedlings. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:470-9. [PMID: 21300183 DOI: 10.1016/j.bbapap.2011.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 01/20/2011] [Accepted: 01/27/2011] [Indexed: 01/04/2023]
Abstract
Many aspects of plant metabolism that are involved in plant growth and development are influenced by light-regulated diurnal rhythms as well as endogenous clock-regulated circadian rhythms. To identify the rhythmic proteins in rice, periodically grown (12h light/12h dark cycle) seedlings were harvested for three days at six-hour intervals. Continuous dark-adapted plants were also harvested for two days. Among approximately 3000 reproducible protein spots on each gel, proteomic analysis ascertained 354 spots (~12%) as light-regulated rhythmic proteins, in which 53 spots showed prolonged rhythm under continuous dark conditions. Of these 354 ascertained rhythmic protein spots, 74 diurnal spots and 10 prolonged rhythmic spots under continuous dark were identified by MALDI-TOF MS analysis. The rhythmic proteins were functionally classified into photosynthesis, central metabolism, protein synthesis, nitrogen metabolism, stress resistance, signal transduction and unknown. Comparative analysis of our proteomic data with the public microarray database (the Plant DIURNAL Project) and RT-PCR analysis of rhythmic proteins showed differences in rhythmic expression phases between mRNA and protein, suggesting that the clock-regulated proteins in rice are modulated by not only transcriptional but also post-transcriptional, translational, and/or post-translational processes.
Collapse
Affiliation(s)
- Heeyoun Hwang
- Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University, Yongin 446-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Grossman AR, Karpowicz SJ, Heinnickel M, Dewez D, Hamel B, Dent R, Niyogi KK, Johnson X, Alric J, Wollman FA, Li H, Merchant SS. Phylogenomic analysis of the Chlamydomonas genome unmasks proteins potentially involved in photosynthetic function and regulation. PHOTOSYNTHESIS RESEARCH 2010; 106:3-17. [PMID: 20490922 PMCID: PMC2947710 DOI: 10.1007/s11120-010-9555-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 04/16/2010] [Indexed: 05/18/2023]
Abstract
Chlamydomonas reinhardtii, a unicellular green alga, has been exploited as a reference organism for identifying proteins and activities associated with the photosynthetic apparatus and the functioning of chloroplasts. Recently, the full genome sequence of Chlamydomonas was generated and a set of gene models, representing all genes on the genome, was developed. Using these gene models, and gene models developed for the genomes of other organisms, a phylogenomic, comparative analysis was performed to identify proteins encoded on the Chlamydomonas genome which were likely involved in chloroplast functions (or specifically associated with the green algal lineage); this set of proteins has been designated the GreenCut. Further analyses of those GreenCut proteins with uncharacterized functions and the generation of mutant strains aberrant for these proteins are beginning to unmask new layers of functionality/regulation that are integrated into the workings of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Schulze T, Prager K, Dathe H, Kelm J, Kiessling P, Mittag M. How the green alga Chlamydomonas reinhardtii keeps time. PROTOPLASMA 2010; 244:3-14. [PMID: 20174954 DOI: 10.1007/s00709-010-0113-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 01/18/2010] [Indexed: 05/10/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii has two flagella and a primitive visual system, the eyespot apparatus, which allows the cell to phototax. About 40 years ago, it was shown that the circadian clock controls its phototactic movement. Since then, several circadian rhythms such as chemotaxis, cell division, UV sensitivity, adherence to glass, or starch metabolism have been characterized. The availability of its entire genome sequence along with homology studies and the analysis of several sub-proteomes render C. reinhardtii as an excellent eukaryotic model organism to study its circadian clock at different levels of organization. Previous studies point to several potential photoreceptors that may be involved in forwarding light information to entrain its clock. However, experimental data are still missing toward this end. In the past years, several components have been functionally characterized that are likely to be part of the oscillatory machinery of C. reinhardtii since alterations in their expression levels or insertional mutagenesis of the genes resulted in defects in phase, period, or amplitude of at least two independent measured rhythms. These include several RHYTHM OF CHLOROPLAST (ROC) proteins, a CONSTANS protein (CrCO) that is involved in parallel in photoperiodic control, as well as the two subunits of the circadian RNA-binding protein CHLAMY1. The latter is also tightly connected to circadian output processes. Several candidates including a significant number of ROCs, CrCO, and CASEIN KINASE1 whose alterations of expression affect the circadian clock have in parallel severe effects on the release of daughter cells, flagellar formation, and/or movement, indicating that these processes are interconnected in C. reinhardtii. The challenging task for the future will be to get insights into the clock network and to find out how the clock-related factors are functionally connected. In this respect, system biology approaches will certainly contribute in the future to improve our understanding of the C. reinhardtii clock machinery.
Collapse
Affiliation(s)
- Thomas Schulze
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University, Am Planetarium 1, 07743, Jena, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Alizadeh D, Cohen A. Red light and calmodulin regulate the expression of the psbA binding protein genes in Chlamydomonas reinhardtii. PLANT & CELL PHYSIOLOGY 2010; 51:312-22. [PMID: 20061301 PMCID: PMC2817094 DOI: 10.1093/pcp/pcq002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 12/25/2009] [Indexed: 05/23/2023]
Abstract
In the unicellular green alga Chlamydomonas reinhardtii, translation of the chloroplast-encoded psbA mRNA is regulated by the light-dependent binding of a nuclear-encoded protein complex (RB38, RB47, RB55 and RB60) to the 5'-untranslated region of the RNA. Despite the absence of any report identifying a red light photoreceptor within this alga, we show that the expression of the rb38, rb47 and rb60 genes, as well as the nuclear-encoded psbO gene that directs the synthesis of OEE1 (oxygen evolving enhancer 1), is differentially regulated by red light. Further elucidation of the signal transduction pathway shows that calmodulin is an important messenger in the signaling cascade that leads to the expression of rb38, rb60 and psbO, and that a chloroplast signal affects rb47 at the translational level. While there may be several factors involved in the cascade of events from the perception of red light to the expression of the rb and psbO genes, our data suggest the involvement of a red light photoreceptor. Future studies will elucidate this receptor and the additional components of this red light signaling expression pathway in C. reinhardtii.
Collapse
Affiliation(s)
- Darya Alizadeh
- Department of Biological Science, California State University, Fullerton, PO Box 6850, Fullerton, CA 92834-6850, USA
- City of Hope, Division of Neurosurgery, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Amybeth Cohen
- Department of Biological Science, California State University, Fullerton, PO Box 6850, Fullerton, CA 92834-6850, USA
| |
Collapse
|
20
|
New Insights into the Circadian Clock in Chlamydomonas. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 280:281-314. [DOI: 10.1016/s1937-6448(10)80006-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Wagner V, Gessner G, Mittag M. Functional Proteomics: A Promising Approach to Find Novel Components of the Circadian System. Chronobiol Int 2009; 22:403-15. [PMID: 16076645 DOI: 10.1081/cbi-200062348] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the postgenome era, the analysis of entire subproteomes in correlation with their function has emerged due to high throughput technologies. Early approaches have been initiated to identify novel components of the circadian system. For example, in the marine dinoflagellate Lingulodinium polyedra, a chronobiological proteome assay was performed, which resulted in the identification of already known circadian expressed proteins as well as novel temporal controlled proteins involved in metabolic pathways. In the green alga Chlamydomonas reinhardtii, two circadian expressed proteins (a protein disulfide isomerase and a tetratricopeptide repeat protein) were identified by functional proteomics. Also, the first hints of temporal control within chloroplast proteins of Arabidopsis thaliana were identified by proteome analysis.
Collapse
Affiliation(s)
- Volker Wagner
- Institut für Allgemeine Botanik, Friedrich-Schiller-Universität-Jena, Germany
| | | | | |
Collapse
|
22
|
Wagner V, Boesger J, Mittag M. Sub-proteome analysis in the green flagellate alga Chlamydomonas reinhardtii. J Basic Microbiol 2009; 49:32-41. [PMID: 19253330 DOI: 10.1002/jobm.200800292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the past years, research on the flagellate unicellular alga Chlamydomonas reinhardtii has entered a new era based on the availability of its complete genome. Since this green alga can be grown relatively easy in a short time-range, sufficient biological material is available to efficiently establish biochemical purification procedures of sub-cellular fractions. Combined with the available genome sequences, this paved the way to perform analysis of specific sub-proteomes by mass spectrometry. In this review, several approaches that provided comprehensive lists of components of certain sub-cellular compartments and their biological relevance will be described. These include proteins of chloroplast ribosomes, of flagella, of the eyespot as well as posttranslational and environmentally modified sub-proteomes. The power of such proteome approaches lies in the identification of novel components and modifications of a given sub-proteome that have not been discovered before. Information is usually gained at a large scale and is very valuable to further understand biological processes of a given cellular sub-compartment. But clearly the arduous task has then to be performed to further analyze the function of specific proteins/genes by RNA interference technology, mutant analyses or methods for identifying the protein interaction network within a sub-proteome.
Collapse
Affiliation(s)
- Volker Wagner
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | | | | |
Collapse
|
23
|
Abstract
The circadian clock regulates diverse aspects of plant growth and development and promotes plant fitness. Molecular identification of clock components, primarily in Arabidopsis, has led to recent rapid progress in our understanding of the clock mechanism in higher plants. Using mathematical modeling and experimental approaches, workers in the field have developed a model of the clock that incorporates both transcriptional and posttranscriptional regulation of clock genes. This cell-autonomous clock, or oscillator, generates rhythmic outputs that can be monitored at the cellular and whole-organism level. The clock not only confers daily rhythms in growth and metabolism, but also interacts with signaling pathways involved in plant responses to the environment. Future work will lead to a better understanding of how the clock and other signaling networks are integrated to provide plants with an adaptive advantage.
Collapse
Affiliation(s)
- Stacey L Harmer
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616, USA.
| |
Collapse
|
24
|
Abstract
In the unicellular flagellated green alga Chlamydomonas reinhardtii several processes are regulated by the circadian clock. To study circadian controlled processes, the cell's clock is synchronized in a 12 h light-12 h dark cycle (LD12:12) before the cells are released into constant conditions of dim light and temperature. Under these free-running conditions circadian rhythms will continue with a period of about 24 h and cells can be harvested during specific time-points of subjective day and night. These cells were then used for isolating basic proteins by heparin-affinity chromatography, separating them on two-dimensional PAGE and comparing the amount of their expression at four different time-points of subjective day and night. Among 230 proteins, we could find two proteins whose expression level changed more than fourfold throughout the circadian cycle. These proteins were identified as a protein disulfide isomerase (PDI)-like protein and a tetratricopeptide repeat (TPR) protein by liquid-chromatography-electrospray ionization mass spectrometry (LC-ESI-MS).
Collapse
|
25
|
Grossman AR. In the Grip of Algal Genomics. TRANSGENIC MICROALGAE AS GREEN CELL FACTORIES 2008; 616:54-76. [DOI: 10.1007/978-0-387-75532-8_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
26
|
Voytsekh O, Seitz SB, Iliev D, Mittag M. Both subunits of the circadian RNA-binding protein CHLAMY1 can integrate temperature information. PLANT PHYSIOLOGY 2008; 147:2179-93. [PMID: 18567830 PMCID: PMC2492650 DOI: 10.1104/pp.108.118570] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The circadian RNA-binding protein CHLAMY1 from the green alga Chlamydomonas reinhardtii consists of two subunits named C1 and C3. Changes in the C1 level cause arrhythmicity of the phototaxis rhythm, while alterations in the level of C3 lead to acrophase shifts. Thus, CHLAMY1 is involved in maintaining period and phase of the circadian clock. Here, we analyzed the roles of the two subunits in the integration of temperature information, the basis for other key properties of circadian clocks, including entrainment by temperature cycles and temperature compensation. Applied temperatures (18 degrees C and 28 degrees C) were in the physiological range of C. reinhardtii. While C1 is hyperphosphorylated at low temperature, the C3 expression level is up-regulated at 18 degrees C. An inhibitor experiment showed that this up-regulation occurs at the transcriptional level. Promoter analysis studies along with single promoter element mutations revealed that individual replacement of two DREB1A-boxes lowered the amplitude of c3 up-regulation at 18 degrees C, while replacement of an E-box abolished it completely. Replacement of the E-box also caused arrhythmicity of circadian-controlled c3 expression. Thus, the E-box has a dual function for temperature-dependent up-regulation of c3 as well as for its circadian expression. We also found that the temperature-dependent regulation of C1 and C3 as well as temperature entrainment are altered in the clock mutant per1, indicating that a temperature-controlled network of C1, C3, and PER1 exists.
Collapse
Affiliation(s)
- Olga Voytsekh
- Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | | | | | | |
Collapse
|
27
|
Misumi O, Yoshida Y, Nishida K, Fujiwara T, Sakajiri T, Hirooka S, Nishimura Y, Kuroiwa T. Genome analysis and its significance in four unicellular algae, Cyanidioschyzon [corrected] merolae, Ostreococcus tauri, Chlamydomonas reinhardtii, and Thalassiosira pseudonana. JOURNAL OF PLANT RESEARCH 2008; 121:3-17. [PMID: 18074102 DOI: 10.1007/s10265-007-0133-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 10/30/2007] [Indexed: 05/19/2023]
Abstract
Algae play a more important role than land plants in the maintenance of the global environment and productivity. Progress in genome analyses of these organisms means that we can now obtain information on algal genomes, global annotation and gene expression. The full genome information for several algae has already been analyzed. Whole genomes of the red alga Cyanidioschyzon [corrected] merolae, the green algae Ostreococcus tauri and Chlamydomonas reinhardtii, and the diatom Thalassiosira pseudonana have been sequenced. Genome composition and the features of cells among the four algae were compared. Each alga maintains basic genes as photosynthetic eukaryotes and possesses additional gene groups to represent their particular characteristics. This review discusses and introduces the latest research that makes the best use of the particular features of each organism and the significance of genome analysis to study biological phenomena. In particular, examples of post-genome studies of organelle multiplication in C. merolae based on analyzed genome information are presented.
Collapse
Affiliation(s)
- Osami Misumi
- Department of Life Science, Graduate School of Science, Rikkyo University, Tokyo 171-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
This review examines the connections between circadian and metabolic rhythms. Examples from a wide variety of well-studied organisms are used to illustrate some of the genetic and molecular pathways linking circadian timekeeping to metabolism. The principles underlying biological timekeeping by intrinsic circadian clocks are discussed briefly. Genetic and molecular studies have unambiguously identified the importance of gene expression feedback circuits to the generation of overt circadian rhythms. This is illustrated particularly well by the results of genome-wide expression studies, which have uncovered hundreds of clock-controlled genes in cyanobacteria, fungi, plants, and animals. The potential connections between circadian oscillations in gene expression and circadian oscillations in metabolic activity are a major focus of this review.
Collapse
Affiliation(s)
- Herman Wijnen
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904-4328, USA.
| | | |
Collapse
|
29
|
|
30
|
Gillet S, Decottignies P, Chardonnet S, Le Maréchal P. Cadmium response and redoxin targets in Chlamydomonas reinhardtii: a proteomic approach. PHOTOSYNTHESIS RESEARCH 2006; 89:201-11. [PMID: 17103236 DOI: 10.1007/s11120-006-9108-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 09/15/2006] [Indexed: 05/12/2023]
Abstract
A proteomic approach including two-dimensional electrophoresis and MALDI-TOF analysis has been developed to identify the soluble proteins of the unicellular photosynthetic algae Chlamydomonas reinhardtii. We first described the partial 2D-picture of soluble proteome obtained from whole cells grown on acetate. Then we studied the effects of the exposure of these cells to 150 muM cadmium (Cd). The most drastic effect was the decrease in abundance of both large and small subunits of the ribulose-1,5-bisphosphate carboxylase/oxygenase, in correlation with several other enzymes involved in photosynthesis, Calvin cycle and chlorophyll biosynthesis. Other down-regulated processes were fatty acid biosynthesis, aminoacid and protein biosynthesis. On the other hand, proteins involved in glutathione synthesis, ATP metabolism, response to oxidative stress and protein folding were up-regulated in the presence of cadmium. In addition, we observed that most of the cadmium-sensitive proteins were also regulated via two major cellular thiol redox systems, thioredoxin and glutaredoxin.
Collapse
Affiliation(s)
- Sylvie Gillet
- IBBMC, CNRS UMR 8619, Bat 430, Univ Paris-Sud, Orsay cedex, 91405, France
| | | | | | | |
Collapse
|
31
|
Schmidt M, Gessner G, Luff M, Heiland I, Wagner V, Kaminski M, Geimer S, Eitzinger N, Reissenweber T, Voytsekh O, Fiedler M, Mittag M, Kreimer G. Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements. THE PLANT CELL 2006; 18:1908-30. [PMID: 16798888 PMCID: PMC1533972 DOI: 10.1105/tpc.106.041749] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Flagellate green algae have developed a visual system, the eyespot apparatus, which allows the cell to phototax. To further understand the molecular organization of the eyespot apparatus and the phototactic movement that is controlled by light and the circadian clock, a detailed understanding of all components of the eyespot apparatus is needed. We developed a procedure to purify the eyespot apparatus from the green model alga Chlamydomonas reinhardtii. Its proteomic analysis resulted in the identification of 202 different proteins with at least two different peptides (984 in total). These data provide new insights into structural components of the eyespot apparatus, photoreceptors, retina(l)-related proteins, members of putative signaling pathways for phototaxis and chemotaxis, and metabolic pathways within an algal visual system. In addition, we have performed a functional analysis of one of the identified putative components of the phototactic signaling pathway, casein kinase 1 (CK1). CK1 is also present in the flagella and thus is a promising candidate for controlling behavioral responses to light. We demonstrate that silencing CK1 by RNA interference reduces its level in both flagella and eyespot. In addition, we show that silencing of CK1 results in severe disturbances in hatching, flagellum formation, and circadian control of phototaxis.
Collapse
Affiliation(s)
- Melanie Schmidt
- Institute of Biology, Friedrich-Alexander-University, D-91058 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Förster B, Mathesius U, Pogson BJ. Comparative proteomics of high light stress in the model algaChlamydomonas reinhardtii. Proteomics 2006; 6:4309-20. [PMID: 16800035 DOI: 10.1002/pmic.200500907] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
High light (HL) stress adversely affects growth, productivity and viability of photosynthetic organisms. The green alga Chlamydomonas reinhardtii is a model system to study photosynthesis and light stress. Comparative proteomics of wild-type and two very high light (VHL)-resistant mutants, VHL(R)-S4 and VHL(R)-S9, revealed complex alterations in response to excess light. A two-dimensional reference map of the soluble subproteome was constructed representing about 1500 proteins. A total of 83 proteins from various metabolic pathways were identified by peptide mass fingerprinting. Quantitative comparisons of 444 proteins showed 105 significantly changed proteins between wild type and mutants under different light conditions. Commonly, more proteins were decreased than increased, but different proteins were affected in each genotype. Proteins uniquely altered in either VHL(R) mutant may be involved in VHL resistance. Such candidate proteins similarly altered without light stress, thus possibly contributing to "pre-adaptation" of mutants to VHL, included decreased levels of a DEAD box RNA helicase (VHL(R)-S4) and NAB1 and RB38 proteins (VHL(R)-S9), and increased levels of an oxygen evolving enhancer 1 (OEE1) isoform and an unknown protein (VHL(R)-S4). Changes from increased levels in HL to decreased levels in excess light, included OEE1 (VHL(R)-S9) or the reverse change for NAB1, RB38, beta-carbonic anhydrase and an ABC transporter-like protein (VHL(R)-S4).
Collapse
Affiliation(s)
- Britta Förster
- ARC Centre of Excellence in Plant Energy Biology, School of Biochemistry and Molecular Biology, The Australian National University, Canberra, Australia
| | | | | |
Collapse
|
33
|
Wagner V, Gessner G, Heiland I, Kaminski M, Hawat S, Scheffler K, Mittag M. Analysis of the phosphoproteome of Chlamydomonas reinhardtii provides new insights into various cellular pathways. EUKARYOTIC CELL 2006; 5:457-68. [PMID: 16524901 PMCID: PMC1398068 DOI: 10.1128/ec.5.3.457-468.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The unicellular flagellated green alga Chlamydomonas reinhardtii has emerged as a model organism for the study of a variety of cellular processes. Posttranslational control via protein phosphorylation plays a key role in signal transduction, regulation of gene expression, and control of metabolism. Thus, analysis of the phosphoproteome of C. reinhardtii can significantly enhance our understanding of various regulatory pathways. In this study, we have grown C. reinhardtii cultures in the presence of an inhibitor of Ser/Thr phosphatases to increase the phosphoprotein pool. Phosphopeptides from these cells were enriched by immobilized metal-ion affinity chromatography and analyzed by nano-liquid chromatography-electrospray ionization-mass spectrometry (MS) with MS-MS as well as neutral-loss-triggered MS-MS-MS spectra. In this way, we were able to identify 360 phosphopeptides from 328 different phosphoproteins of C. reinhardtii, thus providing new insights into a variety of cellular processes, including metabolic and signaling pathways. Comparative analysis of the phosphoproteome also yielded new functional information on proteins controlled by redox regulation (thioredoxin target proteins) and proteins of the chloroplast 70S ribosome, the centriole, and especially the flagella, for which 32 phosphoproteins were identified. The high yield of phosphoproteins of the latter correlates well with the presence of several flagellar kinases and indicates that phosphorylation/dephosphorylation represents one of the key regulatory mechanisms of eukaryotic cilia. Our data also provide new insights into certain cilium-related mammalian diseases.
Collapse
Affiliation(s)
- Volker Wagner
- Institut für Allgemeine Botanik, Friedrich-Schiller-Universität Jena, Am Planetarium 1, 07743 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Eberhard S, Jain M, Im CS, Pollock S, Shrager J, Lin Y, Peek AS, Grossman AR. Generation of an oligonucleotide array for analysis of gene expression in Chlamydomonas reinhardtii. Curr Genet 2005; 49:106-24. [PMID: 16333659 DOI: 10.1007/s00294-005-0041-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 10/24/2005] [Accepted: 10/25/2005] [Indexed: 01/08/2023]
Abstract
The availability of genome sequences makes it possible to develop microarrays that can be used for profiling gene expression over developmental time, as organisms respond to environmental challenges, and for comparison between wild-type and mutant strains under various conditions. The desired characteristics of microarrays (intense signals, hybridization specificity and extensive coverage of the transcriptome) were not fully met by the previous Chlamydomonas reinhardtii microarray: probes derived from cDNA sequences (approximately 300 bp) were prone to some nonspecific cross-hybridization and coverage of the transcriptome was only approximately 20%. The near completion of the C. reinhardtii nuclear genome sequence and the availability of extensive cDNA information have made it feasible to improve upon these aspects. After developing a protocol for selecting a high-quality unigene set representing all known expressed sequences, oligonucleotides were designed and a microarray with approximately 10,000 unique array elements (approximately 70 bp) covering 87% of the known transcriptome was developed. This microarray will enable researchers to generate a global view of gene expression in C. reinhardtii. Furthermore, the detailed description of the protocol for selecting a unigene set and the design of oligonucleotides may be of interest for laboratories interested in developing microarrays for organisms whose genome sequences are not yet completed (but are nearing completion).
Collapse
Affiliation(s)
- Stephan Eberhard
- Department of Plant Biology, The Carnegie Institution, 260 Panama Street, Stanford, CA, 94305, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhao B, Schneid C, Iliev D, Schmidt EM, Wagner V, Wollnik F, Mittag M. The circadian RNA-binding protein CHLAMY 1 represents a novel type heteromer of RNA recognition motif and lysine homology domain-containing subunits. EUKARYOTIC CELL 2005; 3:815-25. [PMID: 15190002 PMCID: PMC420122 DOI: 10.1128/ec.3.3.815-825.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The RNA-binding protein CHLAMY 1 from Chlamydomonas reinhardtii binds specifically to UG> or =7 repeat sequences situated in the 3' untranslated regions of several mRNAs. Its binding activity is controlled by the circadian clock. The biochemical purification and characterization of CHLAMY 1 revealed a novel type of RNA-binding protein. It includes two different subunits (named C1 and C3), whose interaction appears necessary for RNA binding. One of them (C3) belongs to the proteins of the CELF (CUG-BP-ETR-3-like factors) family and thus bears three RNA recognition motif domains. The other is composed of three lysine homology domains and a protein-protein interaction domain (WW). The subunits C1 and C3 have theoretical molecular masses of 45 and 52 kDa, respectively, and are present in nearly equal amounts during the circadian cycle. At the beginning of the subjective night, both can be found in protein complexes of 100 to 160 kDa. However, during subjective day when binding activity of CHLAMY 1 is low, the C1 subunit in addition is present in a high-molecular-mass protein complex of more than 680 kDa. These data indicate posttranslational control of the circadian binding activity of CHLAMY 1. Notably, the C3 subunit shows significant homology to the rat CUG-binding protein 2. Anti-C3 antibodies can recognize the rat homologue, which can also be found in a protein complex in this vertebrate.
Collapse
Affiliation(s)
- Bin Zhao
- Institut für Allgemeine Botanik, Friedrich-Schiller-Universität Jena, Am Planetarium 1, 07743 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Kucho KI, Okamoto K, Tabata S, Fukuzawa H, Ishiura M. Identification of novel clock-controlled genes by cDNA macroarray analysis in Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 2005; 57:889-906. [PMID: 15952072 DOI: 10.1007/s11103-005-3248-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Accepted: 03/05/2005] [Indexed: 05/02/2023]
Abstract
Circadian rhythms are self-sustaining oscillations whose period length under constant conditions is about 24 h. Circadian rhythms are widespread and involve functions as diverse as human sleep-wake cycles and cyanobacterial nitrogen fixation. In spite of a long research history, knowledge about clock-controlled genes is limited in Chlamydomonas reinhardtii. Using a cDNA macroarray containing 10 368 nuclear-encoded genes, we examined global circadian regulation of transcription in Chlamydomonas. We identified 269 candidates for circadianly expressed gene. Northern blot analysis confirmed reproducible and sustainable rhythmicity for 12 genes. Most genes exhibited peak expression at the transition point between day and night. One hundred and eighteen genes were assigned predicted annotations. The functions of the cycling genes were diverse and included photosynthesis, respiration, cellular structure, and various metabolic pathways. Surprisingly, 18 genes encoding chloroplast ribosomal proteins showed a coordinated circadian pattern of expression and peaked just at the beginning of subjective day. The co-regulation of genes bearing a similar function was also observed in genes involved in cellular structure. They peaked at the end of the subjective night, which is when the regeneration of cell walls and flagella in daughter cells occurs. Expression of the chlamyopsin gene, which encodes an opsin-type photoreceptor, also exhibited circadian rhythm.
Collapse
Affiliation(s)
- Ken-Ichi Kucho
- Center for Gene Research, , Nagoya University, Furo-cho, 464-8602, Nagoya, Chikusa-ku, Japan
| | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- Arthur R Grossman
- The Carnegie Institution, Department of Plant Biology, Stanford, California 94305, USA.
| |
Collapse
|
38
|
Mittag M, Kiaulehn S, Johnson CH. The circadian clock in Chlamydomonas reinhardtii. What is it for? What is it similar to? PLANT PHYSIOLOGY 2005; 137:399-409. [PMID: 15710681 PMCID: PMC1065344 DOI: 10.1104/pp.104.052415] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 10/04/2004] [Accepted: 10/07/2004] [Indexed: 05/17/2023]
Affiliation(s)
- Maria Mittag
- Institut für Allgemeine Botanik, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | | | | |
Collapse
|
39
|
Stauber EJ, Hippler M. Chlamydomonas reinhardtii proteomics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:989-1001. [PMID: 15707836 DOI: 10.1016/j.plaphy.2004.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Accepted: 09/27/2004] [Indexed: 05/01/2023]
Abstract
Proteomics, based on the expanding genomic resources, has begun to reveal new details of Chlamydomonas reinhardtii biology. In particular, analyses focusing on subproteomes have already provided new insight into the dynamics and composition of the photosynthetic apparatus, the chloroplast ribosome, the oxidative phosphorylation machinery of the mitochondria, and the flagellum. It assisted to discovered putative new components of the circadian clockwork as well as shed a light on thioredoxin protein-protein interactions. In the future, quantitative techniques may allow large scale comparison of protein expression levels. Advances in software algorithms will likely improve the use of genomic databases for mass spectrometry (MS) based protein identification and validation of gene models that have been predicted from the genomic DNA sequences. Although proteomics has only been recently applied for exploring C. reinhardtii biology, it will likely be utilized extensively in the near future due to the already existing genetic, genomic, and biochemical tools.
Collapse
Affiliation(s)
- Einar J Stauber
- Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller Universität Jena, Dornburger Street 159, 07743 Jena, Germany
| | | |
Collapse
|