1
|
Scheerer D, Levy D, Casier R, Riven I, Mazal H, Haran G. Interplay between conformational dynamics and substrate binding regulates enzymatic activity: a single-molecule FRET study. Chem Sci 2025:d4sc06819j. [PMID: 39877815 PMCID: PMC11770808 DOI: 10.1039/d4sc06819j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025] Open
Abstract
Proteins often harness extensive motions of domains and subunits to promote their function. Deciphering how these movements impact activity is key for understanding life's molecular machinery. The enzyme adenylate kinase is an intriguing example for this relationship; it ensures efficient catalysis by large-scale domain motions that lead to the enclosure of the bound substrates ATP and AMP. Surprisingly, the enzyme is activated by urea, a compound commonly acting as a denaturant. We utilize this phenomenon to decipher the involvement of conformational dynamics in the mechanism of action of the enzyme. Combining single-molecule FRET spectroscopy and enzymatic activity studies, we find that urea promotes the open conformation of the enzyme, aiding the proper positioning of the substrates. Further, urea decreases AMP affinity, paradoxically facilitating a more efficient progression towards the catalytically active complex. These results allow us to define a complete kinetic scheme that includes the open/close transitions of the enzyme and to unravel the important interplay between conformational dynamics and chemical steps, a general property of enzymes. State-of-the-art tools, such as single-molecule fluorescence spectroscopy, offer new insights into how enzymes balance different conformations to regulate activity.
Collapse
Affiliation(s)
- David Scheerer
- Department of Chemical and Biological Physics, Weizmann Institute of Science Rehovot 761001 Israel
| | - Dorit Levy
- Department of Chemical and Biological Physics, Weizmann Institute of Science Rehovot 761001 Israel
| | - Remi Casier
- Department of Chemical and Biological Physics, Weizmann Institute of Science Rehovot 761001 Israel
| | - Inbal Riven
- Department of Chemical and Biological Physics, Weizmann Institute of Science Rehovot 761001 Israel
| | - Hisham Mazal
- Department of Chemical and Biological Physics, Weizmann Institute of Science Rehovot 761001 Israel
- Max Planck Institute for the Science of Light Erlangen 91058 Germany
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science Rehovot 761001 Israel
| |
Collapse
|
2
|
Scheerer D, Levy D, Casier R, Riven I, Mazal H, Haran G. Enzyme activation by urea reveals the interplay between conformational dynamics and substrate binding: a single-molecule FRET study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.01.610662. [PMID: 39257823 PMCID: PMC11384010 DOI: 10.1101/2024.09.01.610662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Proteins often harness extensive motions of domains and subunits to promote their function. Deciphering how these movements impact activity is key for understanding life's molecular machinery. The enzyme adenylate kinase is an intriguing example for this relationship; it ensures efficient catalysis by large-scale domain motions that lead to the enclosure of the bound substrates ATP and AMP. At high concentrations, AMP also operates as an allosteric inhibitor of the protein. Surprisingly, the enzyme is activated by urea, a compound commonly acting as a denaturant. Combining single-molecule FRET spectroscopy and enzymatic activity studies, we find that urea interferes with two key mechanisms that contribute to enzyme efficacy. First, urea promotes the open conformation of the enzyme, aiding the proper positioning of the substrates. Second, urea decreases AMP affinity, paradoxically facilitating a more efficient progression towards the catalytically active complex. These results signify the important interplay between conformational dynamics and chemical steps, including binding, in the activity of enzymes. State-of-the-art tools, such as single-molecule fluorescence spectroscopy, offer new insights into how enzymes balance different conformations to regulate activity.
Collapse
Affiliation(s)
- David Scheerer
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Dorit Levy
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Remi Casier
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Inbal Riven
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Hisham Mazal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
- Max Planck Institute for the Science of Light, Erlangen 91058, Germany
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| |
Collapse
|
3
|
Scheerer D, Adkar BV, Bhattacharyya S, Levy D, Iljina M, Riven I, Dym O, Haran G, Shakhnovich EI. Allosteric communication between ligand binding domains modulates substrate inhibition in adenylate kinase. Proc Natl Acad Sci U S A 2023; 120:e2219855120. [PMID: 37094144 PMCID: PMC10160949 DOI: 10.1073/pnas.2219855120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/22/2023] [Indexed: 04/26/2023] Open
Abstract
Enzymes play a vital role in life processes; they control chemical reactions and allow functional cycles to be synchronized. Many enzymes harness large-scale motions of their domains to achieve tremendous catalytic prowess and high selectivity for specific substrates. One outstanding example is provided by the three-domain enzyme adenylate kinase (AK), which catalyzes phosphotransfer between ATP to AMP. Here we study the phenomenon of substrate inhibition by AMP and its correlation with domain motions. Using single-molecule FRET spectroscopy, we show that AMP does not block access to the ATP binding site, neither by competitive binding to the ATP cognate site nor by directly closing the LID domain. Instead, inhibitory concentrations of AMP lead to a faster and more cooperative domain closure by ATP, leading in turn to an increased population of the closed state. The effect of AMP binding can be modulated through mutations throughout the structure of the enzyme, as shown by the screening of an extensive AK mutant library. The mutation of multiple conserved residues reduces substrate inhibition, suggesting that substrate inhibition is an evolutionary well conserved feature in AK. Combining these insights, we developed a model that explains the complex activity of AK, particularly substrate inhibition, based on the experimentally observed opening and closing rates. Notably, the model indicates that the catalytic power is affected by the microsecond balance between the open and closed states of the enzyme. Our findings highlight the crucial role of protein motions in enzymatic activity.
Collapse
Affiliation(s)
- David Scheerer
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Bharat V Adkar
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | | | - Dorit Levy
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Marija Iljina
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Inbal Riven
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Orly Dym
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
4
|
Zhang Y, Chen M, Lu J, Li W, Wolynes PG, Wang W. Frustration and the Kinetic Repartitioning Mechanism of Substrate Inhibition in Enzyme Catalysis. J Phys Chem B 2022; 126:6792-6801. [PMID: 36044985 PMCID: PMC9483917 DOI: 10.1021/acs.jpcb.2c03832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
Substrate inhibition, whereby enzymatic activity decreases
with
excess substrate after reaching a maximum turnover rate, is among
the most elusive phenomena in enzymatic catalysis. Here, based on
a dynamic energy landscape model, we investigate the underlying mechanism
by performing molecular simulations and frustration analysis for a
model enzyme adenylate kinase (AdK), which catalyzes the phosphoryl
transfer reaction ATP + AMP ⇋ ADP + ADP. Intriguingly, these
reveal a kinetic repartitioning mechanism of substrate inhibition,
whereby excess substrate AMP suppresses the population of an energetically
frustrated, but kinetically activated, catalytic pathway going through
a substrate (ATP)-product (ADP) cobound complex with steric incompatibility.
Such a frustrated pathway plays a crucial role in facilitating the
bottleneck product ADP release, and its suppression by excess substrate
AMP leads to a slow down of product release and overall turnover.
The simulation results directly demonstrate that substrate inhibition
arises from the rate-limiting product-release step, instead of the
steps for populating the catalytically competent complex as often
suggested in previous works. Furthermore, there is a tight interplay
between the enzyme conformational equilibrium and the extent of substrate
inhibition. Mutations biasing to more closed conformations tend to
enhance substrate inhibition. We also characterized the key features
of single-molecule enzyme kinetics with substrate inhibition effect.
We propose that the above molecular mechanism of substrate inhibition
may be relevant to other multisubstrate enzymes in which product release
is the bottleneck step.
Collapse
Affiliation(s)
- Yangyang Zhang
- Department of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Mingchen Chen
- Department of Research and Development, neoX Biotech, Beijing 102206, China.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Jiajun Lu
- Department of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wenfei Li
- Department of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Wei Wang
- Department of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
5
|
Finger Y, Habich M, Gerlich S, Urbanczyk S, van de Logt E, Koch J, Schu L, Lapacz KJ, Ali M, Petrungaro C, Salscheider SL, Pichlo C, Baumann U, Mielenz D, Dengjel J, Brachvogel B, Hofmann K, Riemer J. Proteasomal degradation induced by DPP9-mediated processing competes with mitochondrial protein import. EMBO J 2020; 39:e103889. [PMID: 32815200 PMCID: PMC7527813 DOI: 10.15252/embj.2019103889] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Plasticity of the proteome is critical to adapt to varying conditions. Control of mitochondrial protein import contributes to this plasticity. Here, we identified a pathway that regulates mitochondrial protein import by regulated N-terminal processing. We demonstrate that dipeptidyl peptidases 8/9 (DPP8/9) mediate the N-terminal processing of adenylate kinase 2 (AK2) en route to mitochondria. We show that AK2 is a substrate of the mitochondrial disulfide relay, thus lacking an N-terminal mitochondrial targeting sequence and undergoing comparatively slow import. DPP9-mediated processing of AK2 induces its rapid proteasomal degradation and prevents cytosolic accumulation of enzymatically active AK2. Besides AK2, we identify more than 100 mitochondrial proteins with putative DPP8/9 recognition sites and demonstrate that DPP8/9 influence the cellular levels of a number of these proteins. Collectively, we provide in this study a conceptual framework on how regulated cytosolic processing controls levels of mitochondrial proteins as well as their dual localization to mitochondria and other compartments.
Collapse
Affiliation(s)
- Yannik Finger
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Markus Habich
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Sarah Gerlich
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Sophia Urbanczyk
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Erik van de Logt
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Julian Koch
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Laura Schu
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Kim Jasmin Lapacz
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Muna Ali
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Carmelina Petrungaro
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | | | - Christian Pichlo
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Joern Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Kay Hofmann
- Institute of Genetics, University of Cologne, Cologne, Germany
| | - Jan Riemer
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
Substrate inhibition imposes fitness penalty at high protein stability. Proc Natl Acad Sci U S A 2019; 116:11265-11274. [PMID: 31097595 DOI: 10.1073/pnas.1821447116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteins are only moderately stable. It has long been debated whether this narrow range of stabilities is solely a result of neutral drift toward lower stability or purifying selection against excess stability-for which no experimental evidence was found so far-is also at work. Here, we show that mutations outside the active site in the essential Escherichia coli enzyme adenylate kinase (Adk) result in a stability-dependent increase in substrate inhibition by AMP, thereby impairing overall enzyme activity at high stability. Such inhibition caused substantial fitness defects not only in the presence of excess substrate but also under physiological conditions. In the latter case, substrate inhibition caused differential accumulation of AMP in the stationary phase for the inhibition-prone mutants. Furthermore, we show that changes in flux through Adk could accurately describe the variation in fitness effects. Taken together, these data suggest that selection against substrate inhibition and hence excess stability may be an important factor determining stability observed for modern-day Adk.
Collapse
|
7
|
The Inescapable Effects of Ribosomes on In-Cell NMR Spectroscopy and the Implications for Regulation of Biological Activity. Int J Mol Sci 2019; 20:ijms20061297. [PMID: 30875837 PMCID: PMC6471074 DOI: 10.3390/ijms20061297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/05/2019] [Accepted: 03/09/2019] [Indexed: 12/16/2022] Open
Abstract
The effects of RNA on in-cell NMR spectroscopy and ribosomes on the kinetic activity of several metabolic enzymes are reviewed. Quinary interactions between labelled target proteins and RNA broaden in-cell NMR spectra yielding apparent megadalton molecular weights in-cell. The in-cell spectra can be resolved by using cross relaxation-induced polarization transfer (CRINEPT), heteronuclear multiple quantum coherence (HMQC), transverse relaxation-optimized, NMR spectroscopy (TROSY). The effect is reproduced in vitro by using reconstituted total cellular RNA and purified ribosome preparations. Furthermore, ribosomal binding antibiotics alter protein quinary structure through protein-ribosome and protein-mRNA-ribosome interactions. The quinary interactions of Adenylate kinase, Thymidylate synthase and Dihydrofolate reductase alter kinetic properties of the enzymes. The results demonstrate that ribosomes may specifically contribute to the regulation of biological activity.
Collapse
|
8
|
DeMott CM, Majumder S, Burz DS, Reverdatto S, Shekhtman A. Ribosome Mediated Quinary Interactions Modulate In-Cell Protein Activities. Biochemistry 2017; 56:4117-4126. [PMID: 28715177 DOI: 10.1021/acs.biochem.7b00613] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribosomes are present inside bacterial cells at micromolar concentrations and occupy up to 20% of the cell volume. Under these conditions, even weak quinary interactions between ribosomes and cytosolic proteins can affect protein activity. By using in-cell and in vitro NMR spectroscopy, and biophysical techniques, we show that the enzymes, adenylate kinase and dihydrofolate reductase, and the respective coenzymes, ATP and NADPH, bind to ribosomes with micromolar affinity, and that this interaction suppresses the enzymatic activities of both enzymes. Conversely, thymidylate synthase, which works together with dihydrofolate reductase in the thymidylate synthetic pathway, is activated by ribosomes. We also show that ribosomes impede diffusion of green fluorescent protein in vitro and contribute to the decrease in diffusion in vivo. These results strongly suggest that ribosome-mediated quinary interactions contribute to the differences between in vitro and in vivo protein activities and that ribosomes play a previously under-appreciated nontranslational role in regulating cellular biochemistry.
Collapse
Affiliation(s)
- Christopher M DeMott
- Department of Chemistry, State University of New York at Albany , Albany, New York 12222, United States
| | - Subhabrata Majumder
- Department of Chemistry, State University of New York at Albany , Albany, New York 12222, United States
| | - David S Burz
- Department of Chemistry, State University of New York at Albany , Albany, New York 12222, United States
| | - Sergey Reverdatto
- Department of Chemistry, State University of New York at Albany , Albany, New York 12222, United States
| | - Alexander Shekhtman
- Department of Chemistry, State University of New York at Albany , Albany, New York 12222, United States
| |
Collapse
|
9
|
Esteban-Martín S, Fenwick RB, Ådén J, Cossins B, Bertoncini CW, Guallar V, Wolf-Watz M, Salvatella X. Correlated inter-domain motions in adenylate kinase. PLoS Comput Biol 2014; 10:e1003721. [PMID: 25078441 PMCID: PMC4117416 DOI: 10.1371/journal.pcbi.1003721] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/28/2014] [Indexed: 11/18/2022] Open
Abstract
Correlated inter-domain motions in proteins can mediate fundamental biochemical processes such as signal transduction and allostery. Here we characterize at structural level the inter-domain coupling in a multidomain enzyme, Adenylate Kinase (AK), using computational methods that exploit the shape information encoded in residual dipolar couplings (RDCs) measured under steric alignment by nuclear magnetic resonance (NMR). We find experimental evidence for a multi-state equilibrium distribution along the opening/closing pathway of Adenylate Kinase, previously proposed from computational work, in which inter-domain interactions disfavour states where only the AMP binding domain is closed. In summary, we provide a robust experimental technique for study of allosteric regulation in AK and other enzymes.
Collapse
Affiliation(s)
- Santiago Esteban-Martín
- Joint BSC-CRG-IRB Research Programme in Computational Biology, Barcelona Supercomputing Center - BSC, Barcelona, Spain
- * E-mail: (SEM); (XS)
| | - Robert Bryn Fenwick
- Joint BSC-CRG-IRB Research Programme in Computational Biology, Institute for Research in Biomedicine – IRB Barcelona, Barcelona, Spain
| | - Jörgen Ådén
- Department of Chemistry, Chemical Biological Centre, Umeå University, Umeå, Sweden
| | - Benjamin Cossins
- Joint BSC-CRG-IRB Research Programme in Computational Biology, Barcelona Supercomputing Center - BSC, Barcelona, Spain
| | - Carlos W. Bertoncini
- Joint BSC-CRG-IRB Research Programme in Computational Biology, Institute for Research in Biomedicine – IRB Barcelona, Barcelona, Spain
| | - Victor Guallar
- Joint BSC-CRG-IRB Research Programme in Computational Biology, Barcelona Supercomputing Center - BSC, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats - ICREA, Barcelona, Spain
| | - Magnus Wolf-Watz
- Department of Chemistry, Chemical Biological Centre, Umeå University, Umeå, Sweden
| | - Xavier Salvatella
- Joint BSC-CRG-IRB Research Programme in Computational Biology, Institute for Research in Biomedicine – IRB Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats - ICREA, Barcelona, Spain
- * E-mail: (SEM); (XS)
| |
Collapse
|
10
|
Ådén J, Weise CF, Brännström K, Olofsson A, Wolf-Watz M. Structural topology and activation of an initial adenylate kinase-substrate complex. Biochemistry 2013; 52:1055-61. [PMID: 23339454 DOI: 10.1021/bi301460k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enzymatic activity is ultimately defined by the structure, chemistry, and dynamics of the Michaelis complex. A large number of experimentally determined structures between enzymes and substrates, substrate analogues, or inhibitors exist. However, transient, short-lived encounter and equilibrium structures also play fundamental roles during enzymatic reaction cycles. Such structures are inherently difficult to study with conventional experimental techniques. The enzyme adenylate kinase undergoes major conformational rearrangements in response to binding of its substrates, ATP and AMP. ATP is sandwiched between two binding surfaces in the closed and active enzyme conformation. Thus, adenylate kinase harbors two spatially distant surfaces in the substrate free open conformation, of which one is responsible for the initial interaction with ATP. Here, we have performed primarily nuclear magnetic resonance experiments on Escherichia coli adenylate kinase (AK(eco)) variants that allowed identification of the site responsible for the initial ATP interaction. This allowed a characterization of the structural topology of an initial equilibrium complex between AK(eco) and ATP. On the basis of the results, we suggest that the ATP binding mechanism for AK(eco) is a mixture between "induced fit" and "conformational selection" models. It is shown that ATP is activated in the initial enzyme-bound complex because it displays an appreciable rate of nonproductive ATP hydrolysis. In summary, our results provide novel structural and functional insights into adenylate kinase catalysis.
Collapse
Affiliation(s)
- Jörgen Ådén
- Department of Chemistry, Chemical Biological Center, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | |
Collapse
|
11
|
Ravilious GE, Westfall CS, Jez JM. Redox-linked gating of nucleotide binding by the N-terminal domain of adenosine 5'-phosphosulfate kinase. J Biol Chem 2013; 288:6107-15. [PMID: 23322773 DOI: 10.1074/jbc.m112.439414] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenosine 5'-phosphosulfate kinase (APSK) catalyzes the phosphorylation of adenosine 5'-phosphosulfate (APS) to 3'-phosphoadenosine-5'-phosphosulfate (PAPS). Crystallographic studies of APSK from Arabidopsis thaliana revealed the presence of a regulatory intersubunit disulfide bond (Cys(86)-Cys(119)). The reduced enzyme displayed improved catalytic efficiency and decreased effectiveness of substrate inhibition by APS compared with the oxidized form. Here we examine the effect of disulfide formation and the role of the N-terminal domain on nucleotide binding using isothermal titration calorimetry (ITC) and steady-state kinetics. Formation of the disulfide bond in A. thaliana APSK (AtAPSK) inverts the binding affinities at the ATP/ADP and APS/PAPS sites from those observed in the reduced enzyme, consistent with initial binding of APS as inhibitory, and suggests a role for the N-terminal domain in guiding nucleotide binding order. To test this, an N-terminal truncation variant (AtAPSKΔ96) was generated. The resulting protein was completely insensitive to substrate inhibition by APS. ITC analysis of AtAPSKΔ96 showed decreased affinity for APS binding, although the N-terminal domain does not directly interact with this ligand. Moreover, AtAPSKΔ96 displayed reduced affinity for ADP, which corresponds to a loss of substrate inhibition by formation of an E·ADP·APS dead end complex. Examination of the AtAPSK crystal structure suggested Arg(93) as important for positioning of the N-terminal domain. ITC and kinetic analysis of the R93A mutant also showed a complete loss of substrate inhibition and altered nucleotide binding affinities, which mimics the effect of the N-terminal deletion. These results show how thiol-linked changes in AtAPSK alter the energetics of binding equilibria to control its activity.
Collapse
|
12
|
Meena LS, Dhakate SR, Sahare PD. Elucidation of Mg²⁺ binding activity of adenylate kinase from Mycobacterium tuberculosis H₃₇Rv using fluorescence studies. Biotechnol Appl Biochem 2012; 59:429-36. [PMID: 23586951 DOI: 10.1002/bab.1043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/28/2012] [Indexed: 11/10/2022]
Abstract
Adenylate kinase (AK) is a small ubiquitous enzyme that catalyzes the reversible transfer of the terminal phosphate group from adenine triphosphate (ATP): magnesium ion (Mg²⁺) to adenine monophosphate (AMP) to form two molecules of adenine diphosphate (ADP). AK thus maintains the homeostasis of adenine nucleotides in eukaryotes and prokaryotes. Because the [ATP]/[ADP] ratio is an important parameter in energy regulation in cells, Mg²⁺-activated AK has an important biological role, particularly in the case of bacteria, as imbalance in the ratio of [ATP]/[ADP] has been associated with alteration in its DNA supercoiling state. In the present study, magnesium-binding assays were carried out by systematically varying the concentrations of Mg²⁺, protein, AMP, ATP, and indicator in kinetic experiments. We report evidence that during magnesium-binding assay, the fluorescence level of the indicator "Mag-Indo-1" changes with protein concentration, suggesting that magnesium ions are binding to AK. The dual activity of AK both as nucleoside monophosphate and diphosphate kinases suggests that this enzyme may have a role in RNA and DNA biosynthesis in addition to its role in intracellular nucleotide metabolism. According to the proposed model, the magnesium-activated AK exhibits an increase in its forward reaction rate compared with the inactivated form. These findings imply that Mg²⁺ could be an important regulator in the energy signaling network in cells.
Collapse
Affiliation(s)
- Laxman S Meena
- CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India.
| | | | | |
Collapse
|
13
|
Wang Y, Gan L, Wang E, Wang J. Exploring the Dynamic Functional Landscape of Adenylate Kinase Modulated by Substrates. J Chem Theory Comput 2012; 9:84-95. [PMID: 26589012 DOI: 10.1021/ct300720s] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adenylate kinase (ADK) has been explored widely, through both experimental and theoretical studies. However, still less is known about how the functional dynamics of ADK is modulated explicitly by its natural substrates. Here, we report a quantitative study of the dynamic energy landscape for ADK responding to the substrate binding by integrating both experimental investigations and theoretical modeling. We make theoretical predictions which are in remarkable agreement with the single molecule experiments on the substrate-bound complex. With our combined models of ADK in its apo form, in the presence of AMP or ATP, and in complex with both substrates, we specifically address the following key questions: (1) Are there intermediate state(s) during their catalytic cycle and if so how many? (2) How many pathways are there along the open-to-closed transitions and what are their corresponding weights? (3) How do substrates influence the pathway weights and the stability of the intermediates? (4) Which lid's motion is rate-limiting along the turnover cycle, the NMP or the LID domain? Our models predict two major parallel stepwise pathways and two on-pathway intermediates which are denoted as IN (NMP domain open while LID domain closed) and IL (LID domain open and NMP domain closed), respectively. Further investigation of temperature effects suggests that the IN pathway is dominant at room temperature, but the IL pathway is dominant at the optimal temperature. This leads us to propose that the IL pathway is more dominant by entropy and IN pathway by enthalpy. Remarkably, our results show that even with maximum concentrations of natural substrates, ADK still fluctuates between multiple functional states, reflecting an intrinsic capability of large-scale conformational fluctuations which may be essential to its biological function. The results based on the dual-ligands model provide the theoretical validation of random bisubstrate biproducts (Bi-Bi) mechanism for the enzymatic reaction of ADK. Additionally, the pathway flux analysis strongly suggests that the motion of the NMP domain is the rate-determining step for the conformational cycle (opening and closing).
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P.R. China
| | - Linfeng Gan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P.R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P.R. China
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P.R. China.,College of Physics, Jilin University, Changchun, Jilin, P.R. China.,Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
14
|
Matsunaga Y, Fujisaki H, Terada T, Furuta T, Moritsugu K, Kidera A. Minimum free energy path of ligand-induced transition in adenylate kinase. PLoS Comput Biol 2012; 8:e1002555. [PMID: 22685395 PMCID: PMC3369945 DOI: 10.1371/journal.pcbi.1002555] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 04/27/2012] [Indexed: 02/01/2023] Open
Abstract
Large-scale conformational changes in proteins involve barrier-crossing transitions on the complex free energy surfaces of high-dimensional space. Such rare events cannot be efficiently captured by conventional molecular dynamics simulations. Here we show that, by combining the on-the-fly string method and the multi-state Bennett acceptance ratio (MBAR) method, the free energy profile of a conformational transition pathway in Escherichia coli adenylate kinase can be characterized in a high-dimensional space. The minimum free energy paths of the conformational transitions in adenylate kinase were explored by the on-the-fly string method in 20-dimensional space spanned by the 20 largest-amplitude principal modes, and the free energy and various kinds of average physical quantities along the pathways were successfully evaluated by the MBAR method. The influence of ligand binding on the pathways was characterized in terms of rigid-body motions of the lid-shaped ATP-binding domain (LID) and the AMP-binding (AMPbd) domains. It was found that the LID domain was able to partially close without the ligand, while the closure of the AMPbd domain required the ligand binding. The transition state ensemble of the ligand bound form was identified as those structures characterized by highly specific binding of the ligand to the AMPbd domain, and was validated by unrestrained MD simulations. It was also found that complete closure of the LID domain required the dehydration of solvents around the P-loop. These findings suggest that the interplay of the two different types of domain motion is an essential feature in the conformational transition of the enzyme.
Collapse
|
15
|
Nagarajan S, Amir D, Grupi A, Goldenberg D, Minton A, Haas E. Modulation of functionally significant conformational equilibria in adenylate kinase by high concentrations of trimethylamine oxide attributed to volume exclusion. Biophys J 2011; 100:2991-9. [PMID: 21689533 PMCID: PMC3123985 DOI: 10.1016/j.bpj.2011.03.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/04/2011] [Accepted: 03/14/2011] [Indexed: 11/26/2022] Open
Abstract
The effect of an inert small molecule osmolyte, trimethyl amine N-oxide (TMAO), upon the conformational equilibria of Escherichia coli adenylate kinase was studied using time-resolved FRET. The relative populations of open and closed clefts between the LID and the CORE domains were measured as functions of the concentrations of the substrate ATP over the concentration range 0-18 mM and TMAO over the concentration range 0-4 M. A model was constructed according to which the enzyme exists in equilibrium among four conformational states, corresponding to combinations of open and closed conformations of the LID-CORE and AMP-CORE clefts. ATP is assumed to bind only to those conformations with the closed LID-CORE cleft, and TMAO is assumed to be differentially excluded as a hard spherical particle from each of the four conformations in accordance with calculations based upon x-ray crystallographic structures. This model was found to describe quantitatively the dependence of the fraction of the closed LID-CORE cleft upon the concentrations of both ATP and TMAO over the entire range of concentrations with just five undetermined parameters.
Collapse
Affiliation(s)
| | - Dan Amir
- The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Asaf Grupi
- The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | | | - Allen P. Minton
- Section on Physical Biochemistry, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Elisha Haas
- The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
16
|
Meirovitch E, Shapiro YE, Polimeno A, Freed JH. Structural dynamics of bio-macromolecules by NMR: the slowly relaxing local structure approach. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2010; 56:360-405. [PMID: 20625480 PMCID: PMC2899824 DOI: 10.1016/j.pnmrs.2010.03.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- Eva Meirovitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar–Ilan University, Ramat-Gan 52900 Israel
| | - Yury E. Shapiro
- The Mina and Everard Goodman Faculty of Life Sciences, Bar–Ilan University, Ramat-Gan 52900 Israel
| | - Antonino Polimeno
- Department of Physical Chemistry, University of Padua, 35131 Padua, Italy
| | - Jack H. Freed
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301, U.S.A
| |
Collapse
|
17
|
Shapiro YE, Kahana E, Meirovitch E. Domain Mobility in Proteins from NMR/SRLS. J Phys Chem B 2009; 113:12050-60. [DOI: 10.1021/jp901522c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yury E. Shapiro
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Edith Kahana
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Eva Meirovitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
18
|
Tan YW, Hanson JA, Yang H. Direct Mg(2+) binding activates adenylate kinase from Escherichia coli. J Biol Chem 2009; 284:3306-3313. [PMID: 19029291 PMCID: PMC3837426 DOI: 10.1074/jbc.m803658200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 11/07/2008] [Indexed: 01/23/2023] Open
Abstract
We report evidence that adenylate kinase (AK) from Escherichia coli can be activated by the direct binding of a magnesium ion to the enzyme, in addition to ATP-complexed Mg(2+). By systematically varying the concentrations of AMP, ATP, and magnesium in kinetic experiments, we found that the apparent substrate inhibition of AK, formerly attributed to AMP, was suppressed at low magnesium concentrations and enhanced at high magnesium concentrations. This previously unreported magnesium dependence can be accounted for by a modified random bi-bi model in which Mg(2+) can bind to AK directly prior to AMP binding. A new kinetic model is proposed to replace the conventional random bi-bi mechanism with substrate inhibition and is able to describe the kinetic data over a physiologically relevant range of magnesium concentrations. According to this model, the magnesium-activated AK exhibits a 23- +/- 3-fold increase in its forward reaction rate compared with the unactivated form. The findings imply that Mg(2+) could be an important affecter in the energy signaling network in cells.
Collapse
Affiliation(s)
- Yan-Wen Tan
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720
| | - Jeffrey A Hanson
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720
| | - Haw Yang
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720.
| |
Collapse
|
19
|
Borbas KE, Kee HL, Holten D, Lindsey JS. A compact water-soluble porphyrin bearing an iodoacetamido bioconjugatable site. Org Biomol Chem 2008; 6:187-94. [DOI: 10.1039/b715072e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
20
|
Adén J, Wolf-Watz M. NMR identification of transient complexes critical to adenylate kinase catalysis. J Am Chem Soc 2007; 129:14003-12. [PMID: 17935333 DOI: 10.1021/ja075055g] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A fundamental question in protein chemistry is how the native energy landscape of enzymes enables efficient catalysis of chemical reactions. Adenylate kinase is a small monomeric enzyme that catalyzes the reversible conversion of AMP and ATP into two ADP molecules. Previous structural studies have revealed that substrate binding is accompanied by large rate-limiting spatial displacements of both the ATP and AMP binding motifs. In this report a solution-state NMR approach was used to probe the native energy landscape of adenylate kinase in its free form, in complex with its natural substrates, and in the presence of a tight binding inhibitor. Binding of ATP induces a dynamic equilibrium in which the ATP binding motif populates both the open and the closed conformations with almost equal populations. A similar scenario is observed for AMP binding, which induces an equilibrium between open and closed conformations of the AMP binding motif. These ATP- and AMP-bound structural ensembles represent complexes that exist transiently during catalysis. Simultaneous binding of AMP and ATP is required to force both substrate binding motifs to close cooperatively. In addition, a previously unknown unidirectional energetic coupling between the ATP and AMP binding sites was discovered. On the basis of these and previous results, we propose that adenylate kinase belongs to a group of enzymes whose substrates act to shift pre-existing equilibria toward catalytically active states.
Collapse
Affiliation(s)
- Jörgen Adén
- Department of Chemistry, University of Umeå, SE-901 87 Umeå, Sweden
| | | |
Collapse
|
21
|
Evrin C, Straut M, Slavova-Azmanova N, Bucurenci N, Onu A, Assairi L, Ionescu M, Palibroda N, Bârzu O, Gilles AM. Regulatory mechanisms differ in UMP kinases from gram-negative and gram-positive bacteria. J Biol Chem 2007; 282:7242-53. [PMID: 17210578 DOI: 10.1074/jbc.m606963200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this work, we examined the regulation by GTP and UTP of the UMP kinases from eight bacterial species. The enzyme from Gram-positive organisms exhibited cooperative kinetics with ATP as substrate. GTP decreased this cooperativity and increased the affinity for ATP. UTP had the opposite effect, as it decreased the enzyme affinity for ATP. The nucleotide analogs 5-bromo-UTP and 5-iodo-UTP were 5-10 times stronger inhibitors than the parent compound. On the other hand, UMP kinases from the Gram-negative organisms did not show cooperativity in substrate binding and catalysis. Activation by GTP resulted mainly from the reversal of inhibition caused by excess UMP, and inhibition by UTP was accompanied by a strong increase in the apparent K(m) for UMP. Altogether, these results indicate that, depending on the bacteria considered, GTP and UTP interact with different enzyme recognition sites. In Gram-positive bacteria, GTP and UTP bind to a single site or largely overlapping sites, shifting the T R equilibrium to either the R or T form, a scenario corresponding to almost all regulatory proteins, commonly called K systems. In Gram-negative organisms, the GTP-binding site corresponds to the unique allosteric site of the Gram-positive bacteria. In contrast, UTP interacts cooperatively with a site that overlaps the catalytic center, i.e. the UMP-binding site and part of the ATP-binding site. These characteristics make UTP an original regulator of UMP kinases from Gram-negative organisms, beyond the common scheme of allosteric control.
Collapse
Affiliation(s)
- Cécile Evrin
- UnitédeGénétique des Génomes Bactériens, Institut Pasteur, 75724 Paris Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Temiz NA, Meirovitch E, Bahar I. Escherichia coli adenylate kinase dynamics: comparison of elastic network model modes with mode-coupling (15)N-NMR relaxation data. Proteins 2005; 57:468-80. [PMID: 15382240 PMCID: PMC1752299 DOI: 10.1002/prot.20226] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The dynamics of adenylate kinase of Escherichia coli (AKeco) and its complex with the inhibitor AP(5)A, are characterized by correlating the theoretical results obtained with the Gaussian Network Model (GNM) and the anisotropic network model (ANM) with the order parameters and correlation times obtained with Slowly Relaxing Local Structure (SRLS) analysis of (15)N-NMR relaxation data. The AMPbd and LID domains of AKeco execute in solution large amplitude motions associated with the catalytic reaction Mg(+2)*ATP + AMP --> Mg(+2)*ADP + ADP. Two sets of correlation times and order parameters were determined by NMR/SRLS for AKeco, attributed to slow (nanoseconds) motions with correlation time tau( perpendicular) and low order parameters, and fast (picoseconds) motions with correlation time tau( parallel) and high order parameters. The structural connotation of these patterns is examined herein by subjecting AKeco and AKeco*AP(5)A to GNM analysis, which yields the dynamic spectrum in terms of slow and fast modes. The low/high NMR order parameters correlate with the slow/fast modes of the backbone elucidated with GNM. Likewise, tau( parallel) and tau( perpendicular) are associated with fast and slow GNM modes, respectively. Catalysis-related domain motion of AMPbd and LID in AKeco, occurring per NMR with correlation time tau( perpendicular), is associated with the first and second collective slow (global) GNM modes. The ANM-predicted deformations of the unliganded enzyme conform to the functional reconfiguration induced by ligand-binding, indicating the structural disposition (or potential) of the enzyme to bind its substrates. It is shown that NMR/SRLS and GNM/ANM analyses can be advantageously synthesized to provide insights into the molecular mechanisms that control biological function.
Collapse
Affiliation(s)
- N. Alpay Temiz
- Center for Computational Biology & Bioinformatics,
Department of Biochemistry and Molecular Genetics, School of Medicine,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eva Meirovitch
- Center for Computational Biology & Bioinformatics,
Department of Biochemistry and Molecular Genetics, School of Medicine,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900,
Israel
| | - Ivet Bahar
- Center for Computational Biology & Bioinformatics,
Department of Biochemistry and Molecular Genetics, School of Medicine,
University of Pittsburgh, Pittsburgh, Pennsylvania
- *Correspondence to: Ivet Bahar, Center for
Computational Biology and Bioinformatics, Department of Biochemistry and
Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA
15261. E-mail:
| |
Collapse
|
23
|
Castellanos M, Wilson DB, Shuler ML. A modular minimal cell model: purine and pyrimidine transport and metabolism. Proc Natl Acad Sci U S A 2004; 101:6681-6. [PMID: 15090651 PMCID: PMC404105 DOI: 10.1073/pnas.0400962101] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Indexed: 12/27/2022] Open
Abstract
A more complete understanding of the relationship of cell physiology to genomic structure is desirable. Because of the intrinsic complexity of biological organisms, only the simplest cells will allow complete definition of all components and their interactions. The theoretical and experimental construction of a minimal cell has been suggested as a tool to develop such an understanding. Our ultimate goal is to convert a "coarse-grain" lumped parameter computer model of Escherichia coli into a genetically and chemically detailed model of a "minimal cell." The base E. coli model has been converted into a generalized model of a heterotrophic bacterium. This coarse-grain minimal cell model is functionally complete, with growth rate, composition, division, and changes in cell morphology as natural outputs from dynamic simulations where only the initial composition of the cell and of the medium are specified. A coarse-grain model uses pseudochemical species (or modules) that are aggregates of distinct chemical species that share similar chemistry and metabolic dynamics. This model provides a framework in which these modules can be "delumped" into chemical and genetic descriptions while maintaining connectivity to all other functional elements. Here we demonstrate that a detailed description of nucleotide precursors transport and metabolism is successfully integrated into the whole-cell model. This nucleotide submodel requires fewer (12) genes than other theoretical predictions in minimal cells. The demonstration of modularity suggests the possibility of developing modules in parallel and recombining them into a fully functional chemically and genetically detailed model of a prokaryote cell.
Collapse
Affiliation(s)
- M. Castellanos
- School of Chemical and Biomolecular Engineering and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-5201
| | - D. B. Wilson
- School of Chemical and Biomolecular Engineering and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-5201
| | - M. L. Shuler
- School of Chemical and Biomolecular Engineering and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-5201
| |
Collapse
|
24
|
Meirovitch E, Shapiro YE, Tugarinov V, Liang Z, Freed JH. Mode-Coupling Analysis of 15N CSA−15N-1H Dipolar Cross-Correlation in Proteins. Rhombic Potentials at the N−H Bond. J Phys Chem B 2003. [DOI: 10.1021/jp030501h] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eva Meirovitch
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel, Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301
| | - Yury E. Shapiro
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel, Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301
| | - Vitali Tugarinov
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel, Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301
| | - Zhichun Liang
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel, Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301
| | - Jack H. Freed
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel, Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301
| |
Collapse
|
25
|
Ramírez O, Jiménez E. Sexual dimorphism in rat cerebrum and cerebellum: different patterns of catalytically active creatine kinase isoenzymes during postnatal development and aging. Int J Dev Neurosci 2002; 20:627-39. [PMID: 12526893 DOI: 10.1016/s0736-5748(02)00102-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
During postnatal development, maturation and aging the Wistar rat cerebrum and cerebellum synthesize, in a different sex-dependent manner, catalytically active dimeric cytosolic (c) muscle-type (MM) and heart-type (MB) creatine kinase (CK), besides the supposedly sole type brain-specific (BB) CK. In both sexes, typical and atypical neuromuscular cCK isoenzymes were present during the study for 26 months. As in rat heart, females showed more cerebral cCK variants (41%) in comparison to males. Female rats exhibited about 93% more cerebellar variants of cCK isoenzymes as compared to males. The male cerebellum showed predominantly BB- and MB-CK during the whole study in comparison to the female one that contained all neuromuscular cCK variants. Only female rats showed decreases and increases of cerebral CK specific activity. In contrast to males, coinciding with the weaning period, cerebral female CK activity decreased 45% from 14 to 21 days and increased about 3-fold in female rats and only 1.3-fold in males from 21 to 45 days of age. Contrary to the remarkable 4-fold increase of chicken brain CK specific activity exhibited at old age, the rat did not show another cerebral CK activity increase during senescence in either sex. However, sex differences of CK specific activity appeared in the cerebellum at all ages. From the sex-specific plateau phase at 45-60 days until 2.2 years of age, about a 41% independent increase of cerebellar CK specific activity was observed in both sexes. After puberty, the differential cerebellum-cerebrum values of CK specific activity were higher for female rats than males during youth, adulthood and senescence. The present work shows that in rat cerebrum and cerebellum, production of ATP through anaerobic transphosphorylation by the CK/PC system is sex-and age-specific, especially in the cerebellum, when glycolysis and the Krebs cycle lose capacity. As in rat heart, under physiological conditions at all ages the several cCK isoenzymes do participate in a gender-specific manner, in favor of females, in diverse functions of the different cell compartments of glial and neuronal cells with regard to their high and fluctuating energy demands not completely covered by anaerobic and aerobic glycolysis.
Collapse
Affiliation(s)
- Oscar Ramírez
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional 2508, México DF 07340, Mexico.
| | | |
Collapse
|
26
|
Shapiro YE, Kahana E, Tugarinov V, Liang Z, Freed JH, Meirovitch E. Domain flexibility in ligand-free and inhibitor-bound Escherichia coli adenylate kinase based on a mode-coupling analysis of 15N spin relaxation. Biochemistry 2002; 41:6271-81. [PMID: 12009888 DOI: 10.1021/bi012132q] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adenylate kinase from Escherichia coli (AKeco), consisting of a 23.6-kDa polypeptide chain folded into domains CORE, AMPbd, and LID catalyzes the reaction AMP + ATP <--> 2ADP. The domains AMPbd and LID execute large-amplitude movements during catalysis. Backbone dynamics of ligand-free and AP(5)A-inhibitor-bound AKeco is studied with slowly relaxing local structure (SRLS) (15)N relaxation, an approach particularly suited when the global (tau(m)) and the local (tau) motions are likely to be coupled. For AKeco tau(m) = 15.1 ns, whereas for AKeco*AP(5)A tau(m) = 11.6 ns. The CORE domain of AKeco features an average squared order parameter, <S(2)>, of 0.84 and correlation times tau(f) = 5-130 ps. Most of the AKeco*AP(5)A backbone features <S(2)> = 0.90 and tau(f) = 33-193 ps. These data are indicative of relative rigidity. Domains AMPbd and LID of AKeco, and loops beta(1)/alpha(1), alpha(2)/alpha(3), alpha(4)/beta(3), alpha(5)/beta(4), and beta(8)/alpha(7) of AKeco*AP(5)A, feature a novel type of protein flexibility consisting of nanosecond peptide plane reorientation about the C(i-1)(alpha)-C(i)(alpha) axis, with correlation time tau(perpendicular) = 5.6-11.3 ns. The other microdynamic parameters underlying this dynamic model include S(2) = 0.13-0.5, tau(parallel) on the ps time scale, and a diffusion tilt beta(MD) ranging from 12 to 21 degrees. For the ligand-free enzyme the tau(perpendicular) mode was shown to represent segmental domain motion, accompanied by conformational exchange contributions R(ex) < or = 4.4 s(-1). Loop alpha(4)/beta(3) and alpha(5)/beta(4) dynamics in AKeco*AP(5)A is related to the "energetic counter-balancing of substrate binding" effect apparently driving kinase catalysis. The other flexible AKeco*AP(5)A loops may relate to domain motion toward product release.
Collapse
Affiliation(s)
- Yury E Shapiro
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | |
Collapse
|
27
|
Tugarinov V, Shapiro YE, Liang Z, Freed JH, Meirovitch E. A novel view of domain flexibility in E. coli adenylate kinase based on structural mode-coupling (15)N NMR relaxation. J Mol Biol 2002; 315:155-70. [PMID: 11779236 DOI: 10.1006/jmbi.2001.5231] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adenylate kinase from Escherichia coli (AKeco), consisting of a single 23.6 kDa polypeptide chain folded into domains CORE, AMPbd and LID, catalyzes the reaction AMP+ATP-->2ADP. In the ligand-free enzyme the domains AMPbd and LID execute large-amplitude movements controlling substrate binding and product release during catalysis. Domain flexibility is investigated herein with the slowly relaxing local structure (SRLS) model for (15)N relaxation. SRLS accounts rigorously for coupling between the global and local N-H motions through a local ordering potential exerted by the protein structure at the N-H bond. The latter reorients with respect to its protein surroundings, which reorient on the slower time scale associated with the global protein tumbling. AKeco diffuses globally with correlation time tau(m)=15.1 ns, while locally two different dynamic cases prevail. The domain CORE features ordering about the equilibrium N-H bond orientation with order parameters, S(2), of 0.8-0.9 and local motional correlation times, tau, mainly between 5-130 ps. This represents a conventional rigid protein structure with rapid small-amplitude N-H fluctuations. The domains AMPbd and LID feature small parallel (Z(M)) ordering of S(2)=0.2-0.5 which can be reinterpreted as high perpendicular (Y(M)) ordering. M denotes the local ordering/local diffusion frame. Local motion about Z(M) is given by tau( parallel) approximately 5 ps and local motion of the effective Z(M) axis about Y(M) by tau( perpendicular)=6-11 ns. Z(M) is tilted at approximately 20 degrees from the N-H bond. The orientation of the Y(M) axis may be considered parallel to the C(alpha)(i-1)-C(alpha)(i) axis. The tau( perpendicular) mode reflects collective nanosecond peptide-plane motions, interpretable as domain motion. A powerful new model of protein flexibility/domain motion has been established. Conformational exchange (R(ex)) processes accompany the tau( perpendicular) mode. The SRLS analysis is compared with the conventional model-free analysis.
Collapse
Affiliation(s)
- Vitali Tugarinov
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | | | | | | | | |
Collapse
|
28
|
Tugarinov V, Liang Z, Shapiro YE, Freed JH, Meirovitch E. A structural mode-coupling approach to 15N NMR relaxation in proteins. J Am Chem Soc 2001; 123:3055-63. [PMID: 11457016 DOI: 10.1021/ja003803v] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The two-body Slowly Relaxing Local Structure (SRLS) model was applied to (15)N NMR spin relaxation in proteins and compared with the commonly used original and extended model-free (MF) approaches. In MF, the dynamic modes are assumed to be decoupled, local ordering at the N-H sites is represented by generalized order parameters, and internal motions are described by effective correlation times. SRLS accounts for dynamical coupling between the global diffusion of the protein and the internal motion of the N-H bond vector. The local ordering associated with the coupling potential and the internal N-H diffusion are tensors with orientations that may be tilted relative to the global diffusion and magnetic frames. SRLS generates spectral density functions that differ from the MF formulas. The MF spectral densities can be regarded as limiting cases of the SRLS spectral density. SRLS-based model-fitting and model-selection schemes similar to the currently used MF-based ones were devised, and a correspondence between analogous SRLS and model-free parameters was established. It was found that experimental NMR data are sensitive to the presence of mixed modes. Our results showed that MF can significantly overestimate order parameters and underestimate local motion correlation times in proteins. The extent of these digressions in the derived microdynamic parameters is estimated in the various parameter ranges, and correlated with the time scale separation between local and global motions. The SRLS-based analysis was tested extensively on (15)N relaxation data from several isotropically tumbling proteins. The results of SRLS-based fitting are illustrated with RNase H from E. coli, a protein extensively studied previously with MF.
Collapse
Affiliation(s)
- V Tugarinov
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | |
Collapse
|
29
|
Blaszczyk J, Li Y, Yan H, Ji X. Crystal structure of unligated guanylate kinase from yeast reveals GMP-induced conformational changes. J Mol Biol 2001; 307:247-57. [PMID: 11243817 DOI: 10.1006/jmbi.2000.4427] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of guanylate kinase (GK) from yeast (Saccharomyces cerevisiae) with a non-acetylated N terminus has been determined in its unligated form (apo-GK) as well as in complex with GMP (GK.GMP). The structure of apo-GK was solved with multiwavelength anomalous diffraction data and refined to an R-factor of 0.164 (R(free)=0.199) at 2.3 A resolution. The structure of GK.GMP was determined using the crystal structure of GK with an acetylated N terminus as the search model and refined to an R-factor of 0.156 (R(free)=0.245) at 1.9 A. GK belongs to the family of nucleoside monophosphate (NMP) kinases and catalyzes the reversible phosphoryl transfer from ATP to GMP. Like other NMP kinases, GK consists of three dynamic domains: the CORE, LID, and NMP-binding domains. Dramatic movements of the GMP-binding domain and smaller but significant movements of the LID domain have been revealed by comparing the structures of apo-GK and GK.GMP. apo-GK has a much more open conformation than the GK.GMP complex. Systematic analysis of the domain movements using the program DynDom shows that the large movements of the GMP-binding domain involve a rotation around an effective hinge axis approximately parallel with helix 3, which connects the GMP-binding and CORE domains. The C-terminal portion of helix 3, which connects to the CORE domain, has strikingly higher temperature factors in GK.GMP than in apo-GK, indicating that these residues become more mobile upon GMP binding. The results suggest that helix 3 plays an important role in domain movement. Unlike the GMP-binding domain, which moves toward the active center of the enzyme upon GMP binding, the LID domain moves away from the active center and makes the presumed ATP-binding site more open. Therefore, the LID domain movement may facilitate the binding of MgATP. The structure of the recombinant GK.GMP complex superimposes very well with that of the native GK.GMP complex, indicating that N-terminal acetylation does not have significant impact on the three-dimensional structure of GK.
Collapse
Affiliation(s)
- J Blaszczyk
- National Cancer Institute, Macromolecular Crystallography Laboratory, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
30
|
Li de La Sierra IM, Gallay J, Vincent M, Bertrand T, Briozzo P, Bârzu O, Gilles AM. Substrate-induced fit of the ATP binding site of cytidine monophosphate kinase from Escherichia coli: time-resolved fluorescence of 3'-anthraniloyl-2'-deoxy-ADP and molecular modeling. Biochemistry 2000; 39:15870-8. [PMID: 11123913 DOI: 10.1021/bi0015360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conformation and dynamics of the ATP binding site of cytidine monophosphate kinase from Escherichia coli (CMPK(coli)), which catalyzes specifically the phosphate exchange between ATP and CMP, was studied using the fluorescence properties of 3'-anthraniloyl-2'-deoxy-ADP, a specific ligand of the enzyme. The spectroscopic properties of the bound fluorescent nucleotide change strongly with respect to those in aqueous solution. These changes (red shift of the absorption and excitation spectra, large increase of the excited state lifetime) are compared to those observed in different solvents. These data, as well as acrylamide quenching experiments, suggest that the anthraniloyl moiety is protected from the aqueous solvent upon binding to the ATP binding site, irrespective of the presence of CMP or CDP. The protein-bound ADP analogue exhibits a restricted fast subnanosecond rotational motion, completely blocked by CMP binding. The energy-minimized models of CMPK(coli) complexed with 3'-anthraniloyl-2'-deoxy-ADP using the crystal structures of the ligand-free protein and of its complex with CDP (PDB codes and, respectively) were compared to the crystal structure of UMP/CMP kinase from Dictyostelium discoideum complexed with substrates (PDB code ). The key residues for ATP/ADP binding to CMPK(coli) were identified as R157 and I209, their side chains sandwiching the adenine ring. Moreover, the residues involved in the fixation of the phosphate groups are conserved in both proteins. In the model, the accessibility of the fluorescent ring to the solvent should be substantial if the LID conformation remained unchanged, by contrast to the fluorescence data. These results provide the first experimental arguments about an ATP-mediated induced-fit of the LID in CMPK(coli) modulated by CMP, leading to a closed conformation of the active site, protected from water.
Collapse
Affiliation(s)
- I M Li de La Sierra
- LURE Bâtiment 209D, UMR 130 CNRS Université Paris-Sud, 91898 Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Ramírez O, Jiménez E. Opposite transitions of chick brain catalytically active cytosolic creatine kinase isoenzymes during development. Int J Dev Neurosci 2000; 18:815-23. [PMID: 11154851 DOI: 10.1016/s0736-5748(00)00045-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Postnatally the rat brain synthesizes catalytic forms of muscle type (MM) and heart type (MB) creatine kinase (CK), besides the supposedly sole type vertebrate brain-specific (BB) CK. We intended to demonstrate that in Rhode Island chicken brain, cytosolic (c) CK isoenzymatic transitions. (for example BB-CK is followed by the appearance of MB-CK and MM-CK during muscle differentiation), can also occur during development and aging. Cytosolic post 125000 x g, mitochondrial CK-free, brain samples were obtained for zone electrophoresis separation and identification of catalytically active cCK isoforms. BB-CK was never found during chicken brain ontogeny. Against the accepted view, an opposite isoenzyme transition pattern from MM through BB-CK was found in the chicken embryonic brain from the very early stages of development up to day 2 post-hatching. At very early stages of chicken brain ontogeny constitutive MM- and MB-CK isoenzymes were present before the advent of creatine. It seems to be that typical and atypical brain MM- and MB-CK could be working as ATPases in the absence of creatine before embryonic stage 28 (day 5.5) and/or such CK isoforms may begin to form part of the slow component b in developing early neurons and later in the nuclei of glial cells to be used by the CK/phosphocreatine (PC) system as the neural tissues mature. The post-hatching transition pattern showed simultaneous expression of more than one CK isoenzyme within the same neural sample as in post-natal rat brain, presumably due to regional differential transphosphorylation requirements. Strain-dependent enzymatic specific activities have been reported in several species. Since equivalent values of brain CK specific activity were obtained previously from the embryonic plateau phase of CK activity during White Leghorn development, and those from Rhode Island brain neurons cultured 11 days, we compared if, in vivo, a similar brain CK specific activity pattern was physiologically equivalent during Rhode Island and White Leghorn chicken ontogeny. We found quantitatively different strain-specific CK specific activity patterns during this period. Rhode Island brain CK activity values were approximately 4.5-fold those of White Leghorn ones. This indicates that production of energy from anaerobic metabolism and transphosphorylation by the CK/PC system to synthesize ATP more efficiently is strain-specific. In Rhode Islands, there was an age-dependent increase of CK specific activity, mostly in older animals (440% above the value found during the embryonic plateau), when the Krebs cycle and glycolysis lose capacity. During adult life and aging, under physiological conditions, the three CK isoenzymes may participate in diverse functions of the different cell compartments of brain glia and neurons with regard to their high and fluctuating energy demands that are not completely covered by anaerobic and aerobic glycolisis.
Collapse
Affiliation(s)
- O Ramírez
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico, DF, Mexico.
| | | |
Collapse
|
32
|
Sinev M, Landsmann P, Sineva E, Ittah V, Haas E. Design consideration and probes for fluorescence resonance energy transfer studies. Bioconjug Chem 2000; 11:352-62. [PMID: 10821651 DOI: 10.1021/bc990132l] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spectroscopic properties of two newly synthesized water-soluble thiol-reactive fluorescent probes, 7-(iodoacetamido)-coumarin-4-carboxylic acid (I-Cca) and N-iodoacetyl-beta-(2-naphthyl)alanine (I-Nal), were characterized using single cysteine mutants of Escherichia coli adenylate kinase. Together with two known water-soluble thiol-reactive dyes (Lucifer yellow iodoacetamide and 5-iodoacetamidosalicylic acid) and as well, tryptophan residues (either native or inserted into a protein by site directed mutagenesis), these probes can be arranged pairwise in a molecular tool set for studies of structural transitions in proteins by means of fluorescence resonance energy-transfer (FRET) experiments. A set of seven donor/acceptor pairs which allow determination of intramolecular distances and their distributions over the range 10-40 A in labeled protein derivatives is described. The charged groups present in the probes facilitate the conjugation reaction and improve postlabeling purification. General considerations for design of charged probes and site-directed labeling for applications of FRET methods in studies of protein structure and dynamics are presented.
Collapse
Affiliation(s)
- M Sinev
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | | | | | |
Collapse
|
33
|
Yan H, Tsai MD. Nucleoside monophosphate kinases: structure, mechanism, and substrate specificity. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 1999; 73:103-34, x. [PMID: 10218107 DOI: 10.1002/9780470123195.ch4] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The catalytic mechanisms of adenylate kinase, guanylate kinase, uridylate kinase, and cytidylate kinase are reviewed in terms of kinetic and structural information that has been obtained in recent years. All four kinases share a highly related tertiary structure, characterized by a central five-stranded parallel beta-sheet with helices on both sides, as well as the three regions designated as the CORE, NMPbind, and LID domains. The catalytic mechanism continues to be refined to higher levels of resolution by iterative structure-function studies, and the strengths and limitations of site-directed mutagenesis are well illustrated in the case of adenylate kinase. The identity and roles of active site residues now appear to be resolved, and this review describes how specific site substitutions with unnatural amino acid side-chains have proven to be a major advance. Likewise, there is mounting evidence that phosphoryl transfer occurs by an associative transition state, based on (a) the stereochemical course of phosphoryl transfer, (b) geometric considerations, (c) examination of likely electronic distributions, (d) the orientation of the phosphoryl acceptor relative to the phosphoryl being transferred, (e) the most likely role of magnesium ion, (f) the lack of restricted access of solvent water, and (g) the results of oxygen-18 kinetic isotope. effect experiments.
Collapse
Affiliation(s)
- H Yan
- Department of Biochemistry, Michigan State University, East Lansing 48824, USA
| | | |
Collapse
|