1
|
Hauck JS, Moon D, Jiang X, Wang ME, Zhao Y, Xu L, Quang H, Butler W, Chen M, Macias E, Gao X, He Y, Huang J. Heat shock factor 1 directly regulates transsulfuration pathway to promote prostate cancer proliferation and survival. Commun Biol 2024; 7:9. [PMID: 38172561 PMCID: PMC10764307 DOI: 10.1038/s42003-023-05727-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
There are limited therapeutic options for patients with advanced prostate cancer (PCa). We previously found that heat shock factor 1 (HSF1) expression is increased in PCa and is an actionable target. In this manuscript, we identify that HSF1 regulates the conversion of homocysteine to cystathionine in the transsulfuration pathway by altering levels of cystathionine-β-synthase (CBS). We find that HSF1 directly binds the CBS gene and upregulates CBS mRNA levels. Targeting CBS decreases PCa growth and induces tumor cell death while benign prostate cells are largely unaffected. Combined inhibition of HSF1 and CBS results in more pronounced inhibition of PCa cell proliferation and reduction of transsulfuration pathway metabolites. Combination of HSF1 and CBS knockout decreases tumor size for a small cell PCa xenograft mouse model. Our study thus provides new insights into the molecular mechanism of HSF1 function and an effective therapeutic strategy against advanced PCa.
Collapse
Affiliation(s)
- J Spencer Hauck
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Room 301M, Duke South DUMC 3712, 40 Duke Medicine Circle, Durham, NC, 27710, USA
| | - David Moon
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Room 301M, Duke South DUMC 3712, 40 Duke Medicine Circle, Durham, NC, 27710, USA
| | - Xue Jiang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Room 301M, Duke South DUMC 3712, 40 Duke Medicine Circle, Durham, NC, 27710, USA
| | - Mu-En Wang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Room 301M, Duke South DUMC 3712, 40 Duke Medicine Circle, Durham, NC, 27710, USA
| | - Yue Zhao
- Department of Pathology, College of Basic Medical Sciences, and the First Hospital of China Medical University, No.77 Puhe Road, Shenyang North New Area, 110122, Shenyang, China
| | - Lingfan Xu
- Urology Department, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, 230001, Hefei, China
| | - Holly Quang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Ave One Baylor Plaza, Houston, TX, 77030, USA
| | - William Butler
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Room 301M, Duke South DUMC 3712, 40 Duke Medicine Circle, Durham, NC, 27710, USA
| | - Ming Chen
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Room 301M, Duke South DUMC 3712, 40 Duke Medicine Circle, Durham, NC, 27710, USA
| | - Everardo Macias
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Room 301M, Duke South DUMC 3712, 40 Duke Medicine Circle, Durham, NC, 27710, USA
| | - Xia Gao
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Ave One Baylor Plaza, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, 1100 Bates Ave Baylor College of Medicine, Houston, TX, USA
| | - Yiping He
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Room 301M, Duke South DUMC 3712, 40 Duke Medicine Circle, Durham, NC, 27710, USA
| | - Jiaoti Huang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Room 301M, Duke South DUMC 3712, 40 Duke Medicine Circle, Durham, NC, 27710, USA.
| |
Collapse
|
2
|
Hu C, Yang J, Qi Z, Wu H, Wang B, Zou F, Mei H, Liu J, Wang W, Liu Q. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm (Beijing) 2022; 3:e161. [PMID: 35928554 PMCID: PMC9345296 DOI: 10.1002/mco2.161] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
The heat shock proteins (HSPs) are ubiquitous and conserved protein families in both prokaryotic and eukaryotic organisms, and they maintain cellular proteostasis and protect cells from stresses. HSP protein families are classified based on their molecular weights, mainly including large HSPs, HSP90, HSP70, HSP60, HSP40, and small HSPs. They function as molecular chaperons in cells and work as an integrated network, participating in the folding of newly synthesized polypeptides, refolding metastable proteins, protein complex assembly, dissociating protein aggregate dissociation, and the degradation of misfolded proteins. In addition to their chaperone functions, they also play important roles in cell signaling transduction, cell cycle, and apoptosis regulation. Therefore, malfunction of HSPs is related with many diseases, including cancers, neurodegeneration, and other diseases. In this review, we describe the current understandings about the molecular mechanisms of the major HSP families including HSP90/HSP70/HSP60/HSP110 and small HSPs, how the HSPs keep the protein proteostasis and response to stresses, and we also discuss their roles in diseases and the recent exploration of HSP related therapy and diagnosis to modulate diseases. These research advances offer new prospects of HSPs as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chen Hu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Jing Yang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
- Precision Medicine Research Laboratory of Anhui ProvinceHefeiAnhuiP. R. China
| |
Collapse
|
3
|
Maiti S, Picard D. Cytosolic Hsp90 Isoform-Specific Functions and Clinical Significance. Biomolecules 2022; 12:1166. [PMID: 36139005 PMCID: PMC9496497 DOI: 10.3390/biom12091166] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
The heat shock protein 90 (Hsp90) is a molecular chaperone and a key regulator of proteostasis under both physiological and stress conditions. In mammals, there are two cytosolic Hsp90 isoforms: Hsp90α and Hsp90β. These two isoforms are 85% identical and encoded by two different genes. Hsp90β is constitutively expressed and essential for early mouse development, while Hsp90α is stress-inducible and not necessary for survivability. These two isoforms are known to have largely overlapping functions and to interact with a large fraction of the proteome. To what extent there are isoform-specific functions at the protein level has only relatively recently begun to emerge. There are studies indicating that one isoform is more involved in the functionality of a specific tissue or cell type. Moreover, in many diseases, functionally altered cells appear to be more dependent on one particular isoform. This leaves space for designing therapeutic strategies in an isoform-specific way, which may overcome the unfavorable outcome of pan-Hsp90 inhibition encountered in previous clinical trials. For this to succeed, isoform-specific functions must be understood in more detail. In this review, we summarize the available information on isoform-specific functions of mammalian Hsp90 and connect it to possible clinical applications.
Collapse
Affiliation(s)
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH-1211 Geneve, Switzerland
| |
Collapse
|
4
|
Chen C, Wang YS, Zhang ET, Li GA, Liu WY, Li Y, Jin YH. (20S) Ginsenoside Rh2 Exerts Its Anti-Tumor Effect by Disrupting the HSP90A-Cdc37 System in Human Liver Cancer Cells. Int J Mol Sci 2021; 22:ijms222313170. [PMID: 34884975 PMCID: PMC8658384 DOI: 10.3390/ijms222313170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
(20S) ginsenoside Rh2 (G-Rh2), a major bioactive metabolite of ginseng, effectively inhibits the survival and proliferation of human liver cancer cells. However, its molecular targets and working mechanism remain largely unknown. Excitingly, we screened out heat shock protein 90 alpha (HSP90A), a key regulatory protein associated with liver cancer, as a potential target of (20S) G-Rh2 by phage display analysis and mass spectrometry. The molecular docking and thermal shift analyses demonstrated that (20S) G-Rh2 directly bound to HSP90A, and this binding was confirmed to inhibit the interaction between HSP90A and its co-chaperone, cell division cycle control protein 37 (Cdc37). It is well-known that the HSP90A-Cdc37 system aids in the folding and maturation of cyclin-dependent kinases (CDKs). As expected, CDK4 and CDK6, the two G0-G1 phase promoting kinases as well as CDK2, a key G1-S phase transition promoting kinase, were significantly downregulated with (20S) G-Rh2 treatment, and these downregulations were mediated by the proteasome pathway. In the same condition, the cell cycle was arrested at the G0-G1 phase and cell growth was inhibited significantly by (20S) G-Rh2 treatment. Taken together, this study for the first time reveals that (20S) G-Rh2 exerts its anti-tumor effect by targeting HSP90A and consequently disturbing the HSP90A-Cdc37 chaperone system. HSP90A is frequently overexpressed in human hepatoma cells and the higher expression is closely correlated to the poor prognosis of liver cancer patients. Thus, (20S) G-Rh2 might become a promising alternative drug for liver cancer therapy.
Collapse
|
5
|
Dahiya V, Buchner J. Functional principles and regulation of molecular chaperones. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 114:1-60. [PMID: 30635079 DOI: 10.1016/bs.apcsb.2018.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To be able to perform their biological function, a protein needs to be correctly folded into its three dimensional structure. The protein folding process is spontaneous and does not require the input of energy. However, in the crowded cellular environment where there is high risk of inter-molecular interactions that may lead to protein molecules sticking to each other, hence forming aggregates, protein folding is assisted. Cells have evolved robust machinery called molecular chaperones to deal with the protein folding problem and to maintain proteins in their functional state. Molecular chaperones promote efficient folding of newly synthesized proteins, prevent their aggregation and ensure protein homeostasis in cells. There are different classes of molecular chaperones functioning in a complex interplay. In this review, we discuss the principal characteristics of different classes of molecular chaperones, their structure-function relationships, their mode of regulation and their involvement in human disorders.
Collapse
Affiliation(s)
- Vinay Dahiya
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany.
| |
Collapse
|
6
|
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that is involved in the activation of disparate client proteins. This implicates Hsp90 in diverse biological processes that require a variety of co-ordinated regulatory mechanisms to control its activity. Perhaps the most important regulator is heat shock factor 1 (HSF1), which is primarily responsible for upregulating Hsp90 by binding heat shock elements (HSEs) within Hsp90 promoters. HSF1 is itself subject to a variety of regulatory processes and can directly respond to stress. HSF1 also interacts with a variety of transcriptional factors that help integrate biological signals, which in turn regulate Hsp90 appropriately. Because of the diverse clientele of Hsp90 a whole variety of co-chaperones also regulate its activity and some are directly responsible for delivery of client protein. Consequently, co-chaperones themselves, like Hsp90, are also subject to regulatory mechanisms such as post translational modification. This review, looks at the many different levels by which Hsp90 activity is ultimately regulated.
Collapse
|
7
|
Abstract
The heat shock protein 90 (HSP90) chaperone machinery is a key regulator of proteostasis under both physiological and stress conditions in eukaryotic cells. As HSP90 has several hundred protein substrates (or 'clients'), it is involved in many cellular processes beyond protein folding, which include DNA repair, development, the immune response and neurodegenerative disease. A large number of co-chaperones interact with HSP90 and regulate the ATPase-associated conformational changes of the HSP90 dimer that occur during the processing of clients. Recent progress has allowed the interactions of clients with HSP90 and its co-chaperones to be defined. Owing to the importance of HSP90 in the regulation of many cellular proteins, it has become a promising drug target for the treatment of several diseases, which include cancer and diseases associated with protein misfolding.
Collapse
Affiliation(s)
- Florian H Schopf
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching, Germany
| | - Maximilian M Biebl
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching, Germany
| |
Collapse
|
8
|
Toneatto J, Charó NL, Galigniana NM, Piwien-Pilipuk G. Adipogenesis is under surveillance of Hsp90 and the high molecular weight Immunophilin FKBP51. Adipocyte 2015; 4:239-47. [PMID: 26451279 DOI: 10.1080/21623945.2015.1049401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 01/21/2023] Open
Abstract
Adipose tissue plays a central role in the control of energy balance as well as in the maintenance of metabolic homeostasis. It was not until recently that the first evidences of the role of heat shock protein (Hsp) 90 and high molecular weight immunophilin FKBP51 have been described in the process of adipocyte differentiation. Recent reports describe their role in the regulation of PPARγ, a key transcription factor in the control of adipogenesis and the maintenance of the adipocyte phenotype. In addition, novel roles have been uncovered for FKBP51 in the organization of the architecture of the nucleus through its participation in the reorganization of the nuclear lamina. Therefore, the aim of this review is to integrate and discuss the recent advances in the field, with special emphasis on the roles of Hsp90 and FKBP51 in the process of adipocyte differentiation.
Collapse
|
9
|
Haase M, Fitze G. HSP90AB1: Helping the good and the bad. Gene 2015; 575:171-86. [PMID: 26358502 DOI: 10.1016/j.gene.2015.08.063] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/30/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Michael Haase
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Guido Fitze
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
10
|
Yang C, Wang L, Liu C, Zhou Z, Zhao X, Song L. The polymorphisms in the promoter of HSP90 gene and their association with heat tolerance of bay scallop. Cell Stress Chaperones 2015; 20:297-308. [PMID: 25261233 PMCID: PMC4326393 DOI: 10.1007/s12192-014-0546-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 12/11/2022] Open
Abstract
The heat shock protein 90 (HSP90) is a highly abundant and ubiquitous molecular chaperone which plays essential roles in many cellular processes. In the present study, the messenger RNA (mRNA) expressions of HSP90 after acute heat stress were investigated in two bay scallop populations (Argopecten irradians irradians and Argopecten irradians concentricus). The heat-resistant scallop A. i. concentricus, which is distributed in Zhanjiang, China, exhibited significantly higher induction of HSP90 compared with that of the heat-sensitive scallop A. i. irradians, which is distributed in Qinhuangdao, China. The promoter sequence of HSP90 gene from bay scallop (AiHSP90) was cloned, and the polymorphisms within this region were investigated by sequencing to analyze their association with heat tolerance. A total of six single nucleotide polymorphisms (SNPs), including -1167 T-C, -1023 A-C, -799 C-T, -774 A-G, -686 C-T, and -682 A-C, were identified in the amplified promoter region, and most of them affected the putative transcription factor binding sites except for locus -1167. All the six SNP sites were found to be associated with heat tolerance after Hardy-Weinberg equilibrium (HWE) and association analysis. Moreover, haplotypes CACACC and TCTATC were also found to be associated with heat tolerance based on the result of linkage disequilibrium and association analysis. The results provided insights into the molecular mechanisms underlying the thermal adaptation of different congener endemic bay scallops, which suggested that the increased heat tolerance of A. i. concentricus (compared with A. i. irradians) was associated with the higher expression of AiHSP90. Meanwhile, the six genotypes (-1167 TT, -1023 CC, -799 TT, -774 GG, -686 CC, and -682 AA) and two haplotypes (CACACC and TCTATC) could be used as potential markers for scallop selection breeding with higher heat tolerance.
Collapse
Affiliation(s)
- Chuanyan Yang
- />Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071 China
| | - Lingling Wang
- />Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071 China
| | - Conghui Liu
- />Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071 China
- />University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhi Zhou
- />Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071 China
| | - Xin Zhao
- />Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071 China
| | - Linsheng Song
- />Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071 China
| |
Collapse
|
11
|
Ramirez VP, Stamatis M, Shmukler A, Aneskievich BJ. Basal and stress-inducible expression of HSPA6 in human keratinocytes is regulated by negative and positive promoter regions. Cell Stress Chaperones 2015; 20:95-107. [PMID: 25073946 PMCID: PMC4255259 DOI: 10.1007/s12192-014-0529-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 01/08/2023] Open
Abstract
Epidermal keratinocytes serve as the primary barrier between the body and environmental stressors. They are subjected to numerous stress events and are likely to respond with a repertoire of heat shock proteins (HSPs). HSPA6 (HSP70B') is described in other cell types with characteristically low to undetectable basal expression, but is highly stress induced. Despite this response in other cells, little is known about its control in keratinocytes. We examined endogenous human keratinocyte HSPA6 expression and localized some responsible transcription factor sites in a cloned HSPA6 3 kb promoter. Using promoter 5' truncations and deletions, negative and positive regulatory regions were found throughout the 3 kb promoter. A region between -346 and -217 bp was found to be crucial to HSPA6 basal expression and stress inducibility. Site-specific mutations and DNA-binding studies show that a previously uncharacterized AP1 site contributes to the basal expression and maximal stress induction of HSPA6. Additionally, a new heat shock element (HSE) within this region was defined. While this element mediates increased transcriptional response in thermally stressed HaCaT keratinocytes, it preferentially binds a stress-inducible factor other than heat shock factor (HSF)1 or HSF2. Intriguingly, this newly characterized HSPA6 HSE competes HSF1 binding a consensus HSE and binds both HSF1 and HSF2 from other epithelial cells. Taken together, our results demonstrate that the HSPA6 promoter contains essential negative and positive promoter regions and newly identified transcription factor targets, which are key to the basal and stress-inducible expression of HSPA6. Furthermore, these results suggest that an HSF-like factor may preferentially bind this newly identified HSPA6 HSE in HaCaT cells.
Collapse
Affiliation(s)
- Vincent P. Ramirez
- />Graduate Program in Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092 USA
| | - Michael Stamatis
- />Doctor of Pharmacy Program, School of Pharmacy, University of Connecticut, Storrs, CT 06269-3092 USA
| | - Anastasia Shmukler
- />Doctor of Pharmacy Program, School of Pharmacy, University of Connecticut, Storrs, CT 06269-3092 USA
| | - Brian J. Aneskievich
- />Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, U-3092, 69 North Eagleville Road, Storrs, CT 06269-3092 USA
- />University of Connecticut Stem Cell Institute, Storrs, CT 06269-3092 USA
| |
Collapse
|
12
|
Identification of a novel strong and ubiquitous promoter/enhancer in the silkworm Bombyx mori. G3-GENES GENOMES GENETICS 2014; 4:1347-57. [PMID: 24875626 PMCID: PMC4455783 DOI: 10.1534/g3.114.011643] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transgenic techniques offer a valuable tool for determining gene functions. Although various promoters are available for use in gene overexpression, gene knockdown, and identification of transgenic individuals, there is nevertheless a lack of versatile promoters for such studies, and this dearth acts as a bottleneck, especially with regard to nonmodel organisms. Here, we succeeded in identifying a novel strong and ubiquitous promoter/enhancer in the silkworm. We identified a unique silkworm strain whose reporter gene showed strong and ubiquitous expression during the establishment of enhancer trap strains. In this strain, the transposon was inserted into the 5'UTR of hsp90, a housekeeping gene that is abundantly expressed in a range of tissues. To determine whether the promoter/enhancer of hsp90 could be used to induce strong gene expression, a 2.9-kb upstream genomic fragment of hsp90 was isolated (hsp90(P2.9k)), and its transcriptional activation activity was examined. Strikingly, hsp90(P2.9k) induced strong gene expression in silkworm cell cultures and also strongly induced gene expression in various tissues and developmental stages of the silkworm. hsp90(P2.9k) also exhibited significant promoter/enhancer activity in Sf9, a cell culture from the armyworm, suggesting that this fragment might possibly be used as a gene expression tool in other Lepidoptera. We further found that 2.0 kb of hsp90(P2.9k) is sufficient for the induction of strong gene expression. We believe that this element will be of value for a range of studies such as targeted gene overexpression, gene knockdown and marker gene expression, not only in the silkworm but also in other insect species.
Collapse
|
13
|
Astakhova LN, Zatsepina OG, Przhiboro AA, Evgen'ev MB, Garbuz DG. Novel arrangement and comparative analysis of hsp90 family genes in three thermotolerant species of Stratiomyidae (Diptera). INSECT MOLECULAR BIOLOGY 2013; 22:284-296. [PMID: 23521688 DOI: 10.1111/imb.12020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The heat shock proteins belonging to the Hsp90 family (Hsp83 in Diptera) play a crucial role in the protection of cells due to their chaperoning functions. We sequenced hsp90 genes from three species of the family Stratiomyidae (Diptera) living in thermally different habitats and characterized by extraordinarily high thermotolerance. The sequence variation and structure of the hsp90 family genes were compared with previously described features of hsp70 copies isolated from the same species. Two functional hsp83 genes were found in the species studied, that are arranged in tandem orientation at least in one of them. This organization was not previously described. Stratiomyidae hsp83 genes share a high level of identity with hsp83 of Drosophila, and the deduced protein possesses five conserved amino acid sequence motifs characteristic of the Hsp90 family as well as the C-terminus MEEVD sequence characteristic of the cytosolic isoform. A comparison of the hsp83 promoters of two Stratiomyidae species from thermally contrasting habitats demonstrated that while both species contain canonical heat shock elements in the same position, only one of the species contains functional GAF-binding elements. Our data indicate that in the same species, hsp83 family genes show a higher evolution rate than the hsp70 family.
Collapse
|
14
|
Cheng MB, Zhang Y, Zhong X, Sutter B, Cao CY, Chen XS, Cheng XK, Zhang Y, Xiao L, Shen YF. Stat1 mediates an auto-regulation of hsp90β gene in heat shock response. Cell Signal 2010; 22:1206-13. [DOI: 10.1016/j.cellsig.2010.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 11/30/2022]
|
15
|
Pantzartzi C, Drosopoulou E, Yiangou M, Drozdov I, Tsoka S, Ouzounis CA, Scouras ZG. Promoter complexity and tissue-specific expression of stress response components in Mytilus galloprovincialis, a sessile marine invertebrate species. PLoS Comput Biol 2010; 6:e1000847. [PMID: 20628614 PMCID: PMC2900285 DOI: 10.1371/journal.pcbi.1000847] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 06/02/2010] [Indexed: 11/19/2022] Open
Abstract
The mechanisms of stress tolerance in sessile animals, such as molluscs, can offer fundamental insights into the adaptation of organisms for a wide range of environmental challenges. One of the best studied processes at the molecular level relevant to stress tolerance is the heat shock response in the genus Mytilus. We focus on the upstream region of Mytilus galloprovincialis Hsp90 genes and their structural and functional associations, using comparative genomics and network inference. Sequence comparison of this region provides novel evidence that the transcription of Hsp90 is regulated via a dense region of transcription factor binding sites, also containing a region with similarity to the Gamera family of LINE-like repetitive sequences and a genus-specific element of unknown function. Furthermore, we infer a set of gene networks from tissue-specific expression data, and specifically extract an Hsp class-associated network, with 174 genes and 2,226 associations, exhibiting a complex pattern of expression across multiple tissue types. Our results (i) suggest that the heat shock response in the genus Mytilus is regulated by an unexpectedly complex upstream region, and (ii) provide new directions for the use of the heat shock process as a biosensor system for environmental monitoring.
Collapse
Affiliation(s)
- Chrysa Pantzartzi
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Elena Drosopoulou
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Minas Yiangou
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ignat Drozdov
- Centre for Bioinformatics, School of Physical Sciences & Engineering, King's College London, London, United Kingdom
- BHF Centre of Research Excellence, Cardiovascular Division, School of Medicine, James Black Centre, Denmark Hill Campus, King's College London, London, United Kingdom
| | - Sophia Tsoka
- Centre for Bioinformatics, School of Physical Sciences & Engineering, King's College London, London, United Kingdom
| | - Christos A. Ouzounis
- Centre for Bioinformatics, School of Physical Sciences & Engineering, King's College London, London, United Kingdom
- Computational Genomics Unit, Institute of Agrobiotechnology, Centre for Research & Technology Hellas, Thessaloniki, Greece
- * E-mail: (CAO); (ZGS)
| | - Zacharias G. Scouras
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- * E-mail: (CAO); (ZGS)
| |
Collapse
|
16
|
Lo CW, Chang YS, Chao CC, Chang MDT, Chang KC, Lai YK. Control mechanisms of differential translation of Hsp90 isoforms in 9L rat gliosarcoma cells. J Cell Biochem 2009; 107:418-27. [PMID: 19308988 DOI: 10.1002/jcb.22138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although the differential expression of heat shcok proteins, Hsp90alpha and Hsp90beta was extensively studied in many kinds of cells, the post-transcriptional regulation of Hsp90 isoforms remains unclear. In control and GA-treated rat gliosarcoma cells, it has been reported that the translational efficiency of hsp90alpha is higher than hsp90beta. In this study, we present evidences identifying the roles for leaky scanning and 5'-UTR sequence in translational regulation of Hsp90beta. The result of in vitro transcription and translation (IVTT) experiment showed that hsp90alpha exhibited higher translation efficiency than hsp90beta. Sequence analysis revealed that there is an out-of-frame downstream AUG codon in hsp90beta gene. However, elimination of the downstream AUG by site-directly mutagenesis or introducing Kozak context sequence around the initiator AUG of hsp90beta open reading frame increased its translational efficiency, which indicated that leaky scanning might be a possible mechanism regulating hsp90beta. Furthermore, we also constructed a firefly luciferase reporter system to verify the effect of subsequent translation at the downstream out-of-frame AUG codon in 9L and A549 cells. Furthermore, it is believed that 5'-untranslated region (5'-UTR) also plays a significant role in translational control. We showed hsp90beta 5'-UTR gives rise to the reduction of the translation efficiency in IVTT experiment. Additionally, the reductive effect of hsp90beta 5'-UTR was further confirmed by luciferase reporter assay using truncated deletion analyses of 5'-UTR of hsp90beta. Our results support the hypothesis that ribosome leaky scanning mechanism and 5'-UTR sequence acts as negative regulators in hsp90beta mRNA.
Collapse
Affiliation(s)
- Chih-Wei Lo
- Department of Life Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
17
|
De Luca F, Di Vito M, Fanelli E, Reyes A, Greco N, De Giorgi C. Characterization of the heat shock protein 90 gene in the plant parasitic nematode Meloidogyne artiellia and its expression as related to different developmental stages and temperature. Gene 2009; 440:16-22. [PMID: 19348876 DOI: 10.1016/j.gene.2009.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 03/27/2009] [Accepted: 03/30/2009] [Indexed: 10/20/2022]
Abstract
The full-length cDNA and the corresponding gene of the heat shock protein 90, Mt-Hsp90, were isolated and characterized in the plant parasitic nematode Meloidogyne artiellia. The full-length Mt-Hsp90 cDNA contained a 5' untranslated region (UTR) of 45 bp with the 22 bp trans-spliced leader SL1, an ORF of 2172 bp encoding a polypeptide of 723 amino acids and a 3' UTR of 191 bp. The deduced amino acid sequence of Mt-hsp90 showed high similarity with other known Hsp90s. Five conserved amino acid signatures indicated that Mt-hsp90 is a cytosolic member of the Hsp90 family. The gene consists of 10 exons and 9 introns, a more expanded gene structure compared to the corresponding Caenorhabditis elegans gene, daf-21. Mt-hsp90 gene was constitutively expressed at high levels in all developmental stages of M. artiellia. Egg masses and second stage juveniles (J2s) were exposed at 5 degrees and 30 degrees C for different periods of times in order to explore the impact of adverse temperature on Mt-hsp90 gene expression. Expression levels of Mt-hsp90 were examined by fluorescent real-time PCR. At 30 degrees C a burst of expression for Mt-hsp90 was observed in J2s after 2 h of heat shock treatment, then expression dropped with longer exposing times, although remaining still relatively high after 24 h. This temperature did not affect Mt-hsp90 gene expression in the egg masses. However, egg masses exposed at 5 degrees C showed a little but gradual increase in the mRNA level with time. By contrast, no significant changes in the Mt-hsp90 level were observed in J2s exposed to cold. These data show that egg masses and J2s exposed to cold and heat stresses have different expression profiles suggesting that Mt-Hsp90 may provide a link between environmental conditions and the life cycle of the nematode.
Collapse
Affiliation(s)
- Francesca De Luca
- Istituto per la Protezione delle Piante, CNR, Via Amendola 122/D, 70126 Bari, Italy.
| | | | | | | | | | | |
Collapse
|
18
|
Matsumiya T, Imaizumi T, Yoshida H, Satoh K, Topham MK, Stafforini DM. The levels of retinoic acid-inducible gene I are regulated by heat shock protein 90-alpha. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:2717-25. [PMID: 19234166 PMCID: PMC2722243 DOI: 10.4049/jimmunol.0802933] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Retinoic acid-inducible gene I (RIG-I) is an intracellular pattern recognition receptor that plays important roles during innate immune responses to viral dsRNAs. The mechanisms and signaling molecules that participate in the downstream events that follow activation of RIG-I are incompletely characterized. In addition, the factors that define intracellular availability of RIG-I and determine its steady-state levels are only partially understood but are likely to play a major role during innate immune responses. It was recently reported that the antiviral activity of RIG-I is negatively regulated by specific E3 ubiquitin ligases, suggesting participation of the proteasome in the regulation of RIG-I levels. In this study, we used immunoprecipitation combined with mass spectrometry to identify RIG-I-interacting proteins and found that RIG-I forms part of a protein complex that includes heat shock protein 90-alpha (HSP90-alpha), a molecular chaperone. Biochemical studies using purified systems demonstrated that the association between RIG-I and HSP90-alpha is direct but does not involve participation of the CARD domain. Inhibition of HSP90 activity leads to the dissociation of the RIG-I-HSP90 complex, followed by ubiquitination and proteasomal degradation of RIG-I. In contrast, the levels of RIG-I mRNA are unaffected. Our studies also show that the ability of RIG-I to respond to stimulation with polyinosinic:polycytidylic acid is abolished when its interaction with HSP90 is inhibited. These novel findings point to HSP90-alpha as a chaperone that shields RIG-I from proteasomal degradation and modulates its activity. These studies identify a new mechanism whose dysregulation may seriously compromise innate antiviral responses in mammals.
Collapse
Affiliation(s)
- Tomoh Matsumiya
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112-5550, U.S.A
- Department of Vascular Biology, Institute of Brain Sciences, Hirosaki University Graduate School of Medicine, Hirosaki City, 036-8562, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Institute of Brain Sciences, Hirosaki University Graduate School of Medicine, Hirosaki City, 036-8562, Japan
| | - Hidemi Yoshida
- Department of Vascular Biology, Institute of Brain Sciences, Hirosaki University Graduate School of Medicine, Hirosaki City, 036-8562, Japan
| | - Kei Satoh
- Department of Vascular Biology, Institute of Brain Sciences, Hirosaki University Graduate School of Medicine, Hirosaki City, 036-8562, Japan
| | - Matthew K. Topham
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112-5550, U.S.A
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah 84112-5550, U.S.A
| | - Diana M. Stafforini
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112-5550, U.S.A
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah 84112-5550, U.S.A
| |
Collapse
|
19
|
Isolation and characterization of two cytoplasmic hsp90s from Mytilus galloprovincialis (Mollusca: Bivalvia) that contain a complex promoter with a p53 binding site. Gene 2008; 431:47-54. [PMID: 19061940 DOI: 10.1016/j.gene.2008.10.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 10/29/2008] [Accepted: 10/31/2008] [Indexed: 11/21/2022]
Abstract
The commercially important marine bivalve Mytilus galloprovincialis (Mediterranean mussel) is considered a valuable bioindicator, due to its exposure to various pollutants and extreme environmental conditions. Environmental responsive genes, such as the hsp90s, protect the structure and function of cells and accomplish a significant task in cellular homeostasis. To study the hsp90s in M. galloprovincialis a genomic library was screened and two hsp90s were isolated. Sequence analysis revealed that the two genes exhibit great similarities in both the 5' non-coding and the coding region but differ in the 3' non-coding region, as well as in three introns, due to the presence of repeated sequences. Few synonymous substitutions in the coding region of the genes result to an identical predicted polypeptide, which belongs to the cytoplasmic HSP90 subfamily. The 5' non-coding region contains a non-translated exon and multiple binding sites for various transcription factors. The presence of a p53 binding site in the promoter of the isolated genes raises questions about the possible implication of hsp90s in the molluscan leukemia.
Collapse
|
20
|
J. To-Figueras, M. Gene, J. Gomez-C. Polymorphism of glutathione S-transferase M3: interaction with glutathione S-transferase M1 and lung cancer susceptibility. Biomarkers 2008; 5:73-80. [DOI: 10.1080/135475000230550] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Singh IS, Gupta A, Nagarsekar A, Cooper Z, Manka C, Hester L, Benjamin IJ, He JR, Hasday JD. Heat shock co-activates interleukin-8 transcription. Am J Respir Cell Mol Biol 2008; 39:235-42. [PMID: 18367728 DOI: 10.1165/rcmb.2007-0294oc] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The heat shock (HS) response is a phylogenetically ancient cellular response to stress, including heat, that shifts gene expression to a set of conserved HS protein (HSP) genes. In our earlier studies, febrile-range hyperthermia (FRH) not only activated HSP gene expression, but also increased expression of CXC chemokines in mice, leading us to hypothesize that the CXC chemokine family of genes might be HS-responsive. To address this hypothesis we analyzed the effect of HS on the expression of IL-8/CXCL-8, a member of the human CXC family of ELR(+) chemokines. HS markedly enhanced TNF-alpha-induced IL-8 secretion in human A549 respiratory epithelial-like cells and in primary human small airway epithelial cells. IL-8 mRNA was also up-regulated by HS, but the stability of IL-8 mRNA was not affected. TNF-alpha-induced reporter activity of an IL-8 promoter construct IL8(-1471/+44)-luc stably transfected in A549 cells was also enhanced by HS. Electrophoretic mobility and chromatin immunoprecipitation assays showed that the stress-activated transcription factor heat shock factor-1 (HSF-1) binds to at least two putative heat shock response elements (HSE) present in the IL-8 promoter. Deletional reporter constructs lacking either one or both of these sites showed reduced HS responsiveness. Furthermore, depletion of HSF-1 using siRNA also reduced the effects HS on TNF-alpha-induced IL-8 expression, demonstrating that HSF-1 could also act to regulate IL-8 gene transcription. We speculate that during evolution the CXC chemokine genes may have co-opted elements of the HS response to amplify their expression and enhance neutrophil delivery during febrile illnesses.
Collapse
Affiliation(s)
- Ishwar S Singh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chen XS, Zhang Y, Wang JS, Li XY, Cheng XK, Zhang Y, Wu NH, Shen YF. Diverse effects of Stat1 on the regulation of hsp90alpha gene under heat shock. J Cell Biochem 2008; 102:1059-66. [PMID: 17427945 DOI: 10.1002/jcb.21342] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Stat1 has been known as a regulator of gene expression and a mediator of IFNgamma signaling in mammalian cells, while its effect in a heat shock response remains unclear. We used RNAi knockdown, point mutations, ChIP and promoter activity assays to study the effect of Stat1 on the heat-shock induction of the hsp90alpha gene under heat shock conditions. We found that Stat1 regulates the heat shock induction of its target genes, the hsp90alpha gene in a heat shock response while the constitutive activity of the gene remains unaffected. The result of Stat1 in complex with Stat3 and HSF1 that bound at the GAS to lead a moderate heat shock induction was designated as an "intrinsic" induction of the hsp90alpha gene. Additionally a reduced or an elevated level of heat shock induction was also controlled by the Stat1 on hsp90alpha. These diverse effects on the hsp90alpha gene were a "reduced" induction with over-expressed Stat1 elicited by transfection of wild-type Stat1 or IFNgamma treatment, bound at the GAS as homodimer; and an "enhanced" heat shock induction with a mutation-mediated prohibition of Stat1/GAS binding. In conclusion, the status and efficacy of Stat1 bound at the GAS of its target gene are pivotal in determining the impact of Stat1 under heat shock. The results provided the first evidence on the tumor suppressor Stat1 that it could play diverse roles on its target genes under heat shock that also shed lights on patients with fever or under thermotherapy.
Collapse
Affiliation(s)
- Xue-song Chen
- National Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Theodoraki M, Tatari M, Chrysanthis G, Zacharopoulou A, Mintzas AC. Structural characterization of the medfly hsp83 gene and functional analysis of its proximal promoter region in vivo by germ-line transformation. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2008; 67:20-35. [PMID: 18064699 DOI: 10.1002/arch.20216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In order to define the regulatory elements responsible for the expression of the medfly hsp83 (Cchsp83) gene, we determined the sequence of a genomic region of the gene that included 3,536 bp upstream of the transcription initiation site, the first untranslated exon of 144 bp, a 275-bp intron, and 516 bp of the second coding exon. Structural analysis of the 5' flanking region revealed the presence of a typical TATA box, 28 bp upstream of the transcription start site, and seven putative heat shock elements (HSEs) further upstream. The 5' untranslated region of the Cchsp83 mRNA was found to contain extensive secondary structure in the first 126 nucleotides. We carried out deletion functional analysis of the proximal promoter region (-380/+139) in vivo by germ line transformation using the lacZ as a reporter gene. We found that sequences in the -380/-86 region are essential for the constitutive expression of the Cchsp83 gene. Under normal conditions, the -380/+139 region was able to drive significant levels of transgene expression in all developmental stages of the medfly as well as in the ovaries and testis. In most stages, the temporal expression pattern of the reporter gene was similar to the respective pattern of the endogenous Cchsp83 gene. Although the -380/+139 promoter region contained two putative HSEs, it was found unable to confer any heat-induced expression in the reporter gene.
Collapse
Affiliation(s)
- Maria Theodoraki
- Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | | | | | | | | |
Collapse
|
24
|
Chang YS, Lo CW, Sun FC, Chang MDT, Lai YK. Differential expression of Hsp90 isoforms in geldanamycin-treated 9L cells. Biochem Biophys Res Commun 2006; 344:37-44. [PMID: 16630568 DOI: 10.1016/j.bbrc.2006.03.157] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 03/24/2006] [Indexed: 12/20/2022]
Abstract
In mammals, two major Hsp90 isoforms (Hsp90alpha and Hsp90beta) have been identified and found to be highly conserved among different species. However, the expression control of Hsp90 isoforms at both transcriptional and translational levels is largely unknown. Herein, we quantitatively investigate the changes in the total mRNA and inductive protein levels of Hsp90alpha and Hsp90beta in rat gliosarcoma cells treated with geldanamycin (GA). The stability of mRNA and protein was estimated. The translational efficiency of Hsp90 isoforms was measured employing in vitro translation techniques. It was found that Hsp90alpha was more inducible than Hsp90beta after GA treatment, whereas the hsp90alpha mRNA level was lower than that of hsp90beta. In addition, higher translational efficiency of hsp90alpha mRNA was observed, suggesting that translational control played an important role. Taken together, our results indicate that differential expression between Hsp90alpha and Hsp90beta is a consequence of both distinct mRNA profiles and differential translation processes.
Collapse
Affiliation(s)
- Yuo-Sheng Chang
- Institute of Biotechnology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 30013, ROC
| | | | | | | | | |
Collapse
|
25
|
Yin H, Wang H, Zong H, Chen X, Wang Y, Yun X, Wu Y, Wang J, Gu J. SGT, a Hsp90β binding partner, is accumulated in the nucleus during cell apoptosis. Biochem Biophys Res Commun 2006; 343:1153-8. [PMID: 16580629 DOI: 10.1016/j.bbrc.2006.03.090] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 03/15/2006] [Indexed: 11/16/2022]
Abstract
In this study, we reported that small glutamine-rich TPR-containing protein (SGT) interacted with not only Hsp90alpha but also Hsp90beta. Confocal analysis showed that treatment of cells with Hsp90-specific inhibitor geldanamycin (GA) disrupted the interaction of SGT with Hsp90beta and this contributed to the increase of nuclear localization of SGT in HeLa cells. The increased nuclear localization of SGT was further confirmed by the Western blotting in GA-treated HeLa cells and H1299 cells. In our previous study, SGT was found to be a new pro-apoptotic factor, so we wondered whether the sub-cellular localization of SGT was related with cell apoptosis. By confocal analysis we found that the nuclear import of SGT was significantly increased in STS-induced apoptotic HeLa cells, which implied that the sub-cellular localization of SGT was closely associated with Hsp90beta and apoptosis.
Collapse
Affiliation(s)
- Hongyan Yin
- Key Laboratory of Medical Molecular Virology Ministry of Education and Health, Gene Research Center, Shanghai Medical College and Institutes of Biomedical Sciences of Fudan University, Shanghai 200032, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hubler TR, Scammell JG. Intronic hormone response elements mediate regulation of FKBP5 by progestins and glucocorticoids. Cell Stress Chaperones 2005; 9:243-52. [PMID: 15544162 PMCID: PMC1065283 DOI: 10.1379/csc-32r.1] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Expression of FKBP51, a large molecular weight immunophilin, is strongly enhanced by glucocorticoids, progestins, and androgens. However, the activity of a 3.4-kb fragment of the FKBP51 gene (FKBP5) promoter was only weakly increased by progestin and we show here that it is unresponsive to glucocorticoids and androgens. The entire FKBP5 was scanned for consensus hormone response elements (HREs) using MatInspector. We found that 2 regions of intron E, which are conserved in rat and mouse FKBP5, contain HRE-like sequences with high match scores. Deoxyribonucleic acid fragments (approximately 1 kb in length) containing these regions were amplified and tested in reporter gene assays for steroid responsiveness. One region of intron E of FKBP5 (pIE2) conferred both glucocorticoid and progestin responsiveness to 2 heterologous reporter genes, whereas the other, less-conserved region of intron E (pIE1) was responsive only to progestins. The inclusion of pIE1 upstream of pIE2 (pIE1IE2) enhanced progestin but not glucocorticoid responsiveness. None of the constructs containing intronic sequences was responsive to androgens. Mutation of the putative HREs within pIE1 and pIE2 eliminated hormone responsiveness. Electrophoretic mobility shift assays demonstrated that progesterone receptors (PR) bound to the HRE in pIE1, whereas both PR and glucocorticoid receptors interacted with the HRE in pIE2. These data suggest that distal intronic elements significantly contribute to transcriptional regulation of FKBP5 by glucocorticoids and progestins.
Collapse
Affiliation(s)
- Tina R Hubler
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | | |
Collapse
|
27
|
Zhang Y, Wang JS, Chen LL, Zhang Y, Cheng XK, Heng FY, Wu NH, Shen YF. Repression of hsp90β Gene by p53 in UV Irradiation-induced Apoptosis of Jurkat Cells. J Biol Chem 2004; 279:42545-51. [PMID: 15284248 DOI: 10.1074/jbc.m314213200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor suppressor p53 has been implicated in cell stress response and determines cell fate of either growth arrest or apoptosis. Heat shock proteins (Hsps) expressed under stress usually confer survival protection to the cell or interruption in the apoptotic pathways. Although Hsp90 can physically interact with p53, whether or not the hsp90 gene is influenced downstream of p53 in UV irradiation-induced apoptosis remains unclear. We have found that the level of p53 is elevated with the decline of Hsp90 in UV-irradiated cells and that malfunction of Hsp90, as inhibited by geldanamycin, enhances the p53-involved UV irradiation-induced apoptosis. In addition, the expression of the hsp90beta gene was reduced in both UV-irradiated and wild type p53-transfected cells. These results suggest a negative correlation between the trans factor p53 and a chaperone gene hsp90beta in apoptotic cells. Mutation analysis demonstrated that the p53 binding site in the first exon was indispensable for p53 regulation on the hsp90beta gene. In addition, with p53 bound at the promoter of the hsp90beta gene, mSin3a and p300 were differentially recruited in UV irradiation-treated or untreated Jurkat cells in vivo. The evidence of p53-repressed hsp90beta gene expression in UV-irradiated cells shed light on a novel pathway of Hsp90 in the survival control of the stressed cells.
Collapse
Affiliation(s)
- Ye Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The 90 kDa heat shock protein, Hsp90, is a main functional component of an important cytoplasmic chaperone complex, and it is involved in various cellular processes, such as cell proliferation, differentiation and apoptosis. Identification of Hsp90 as a molecular target of various anticancer drugs highlighted its importance from the clinical point of view. Here we summarize the current knowledge of various Hsp90 isoforms regarding their genomic location, molecular evolution, functional differences, differential induction after various environmental stresses and in pathological conditions as well as the growing importance of discriminating between Hsp90 isoforms in clinical practice.
Collapse
Affiliation(s)
- Amere Subbarao Sreedhar
- Department of Medical Chemistry, Semmelweis University School of Medicine, Budapest, Hungary
| | | | | | | |
Collapse
|
29
|
Wu JM, Xiao L, Cheng XK, Cui LX, Wu NH, Shen YF. PKCϵ Is a Unique Regulator for hsp90β Gene in Heat Shock Response. J Biol Chem 2003; 278:51143-9. [PMID: 14532285 DOI: 10.1074/jbc.m305537200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An early event in cellular heat shock response is the transmittance of stress signals from the cell surface into the nuclei, resulting in the induction of heat shock proteins (Hsps). Protein kinase C (PKC) has been implicated as a key player in transducing stress signals. However, mechanism(s) by which PKC regulates heat shock-induced events remains largely unknown. Here we present data that pan-PKC inhibitor GF109203X, but not classic PKC inhibitor Gö6976, specifically repressed heat shock-induced accumulation of mRNA as well as promoter activity of hsp90 beta, but not hsp90 alpha, in Jurkat cells. Subcellular fractionation studies revealed that heat shock exclusively induced PKC-epsilon membrane translocation. Consistently, expression of a constitutively active PKC-epsilon(A159E) resulted in an enhanced promoter activity of hsp90 beta upon heat shock, whereas a dominant-negative PKC-epsilon(K437R) abolished this effect. In contrast, constitutively active-PKC-alpha or dominant-negative-PKC-alpha had no effects on heat shock induction of the gene. The effect of PKC-epsilon on hsp90 beta expression seems to be stimuli-specific, as phorbol myristate acetate-mediated hsp90 beta expression was PKC-epsilon-independent. We conclude that PKC-epsilon is specifically required in the signaling pathway leading to the induction of hsp90 beta gene in response to heat shock.
Collapse
Affiliation(s)
- Jian-Min Wu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | | | | | | | | | | |
Collapse
|
30
|
Liu BS, Wang N, Cheng XK, Wu NH, Shen YF. Differential hypersensitivity to DNase I in the regulatory region of human hsp90 beta gene in heat shock and constitutive expression. Int J Biochem Cell Biol 2003; 35:310-5. [PMID: 12531243 DOI: 10.1016/s1357-2725(02)00197-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
DNase I hypersensitivity analysis is a useful tool to investigate impact of structure changes in chromatin on the expression of a gene. In order to unravel chromatin regulation on human hsp90 beta gene, differential sensitivity to DNase I in non-treated and heat-shocked Jurkat cells are examined. Four major hypersensitive sites at -120/-20 bp (HS1), +360 bp (HS2), +630/+780 bp (HS4) and around +1020 bp (HS5) with respect to the transcription start site of hsp90 beta gene have been identified. The HS1 is shared by both constitutive and heat shock, while the intronic sites of HS4 and HS5 are elicited by heat shock and HS2 is illustrated only in constitutive expression. In addition, distal HSs at around 8.7 kb upstream and 6.8 kb downstream are found in both constitutive and heat shock expression, which indicate that the boundaries of the hsp90 beta gene extend for some 16 kb. The HS patterns confirm chromatin regulation in the expression of hsp90 beta gene under various treatments.
Collapse
Affiliation(s)
- Bing- Sheng Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dongdan Santiao, Beijing 100005, China
| | | | | | | | | |
Collapse
|
31
|
Ramakrishna W, Deng Z, Ding CK, Handa AK, Ozminkowski RH. A novel small heat shock protein gene, vis1, contributes to pectin depolymerization and juice viscosity in tomato fruit. PLANT PHYSIOLOGY 2003; 131:725-35. [PMID: 12586896 PMCID: PMC166848 DOI: 10.1104/pp.012401] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2002] [Revised: 09/20/2002] [Accepted: 11/04/2002] [Indexed: 05/05/2023]
Abstract
We have characterized a novel small heat shock protein gene, viscosity 1 (vis1) from tomato (Lycopersicon esculentum) and provide evidence that it plays a role in pectin depolymerization and juice viscosity in ripening fruits. Expression of vis1 is negatively associated with juice viscosity in diverse tomato genotypes. vis1 exhibits DNA polymorphism among tomato genotypes, and the alleles vis1-hta (high-transcript accumulator; accession no. AY128101) and vis1-lta (low transcript accumulator; accession no. AY128102) are associated with thinner and thicker juice, respectively. Segregation of tomato lines heterogeneous for vis1 alleles indicates that vis1 influences pectin depolymerization and juice viscosity in ripening fruits. vis1 is regulated by fruit ripening and high temperature and exhibits a typical heat shock protein chaperone function when expressed in bacterial cells. We propose that VIS1 contributes to physiochemical properties of juice, including pectin depolymerization, by reducing thermal denaturation of depolymerizing enzymes during daytime elevated temperatures.
Collapse
|
32
|
Qin W, Tyshenko MG, Wu BS, Walker VK, Robertson RM. Cloning and characterization of a member of the hsp70 gene family from Locusta migratoria, a highly thermotolerant insect. Cell Stress Chaperones 2003; 8:144-52. [PMID: 14627200 PMCID: PMC514866 DOI: 10.1379/1466-1268(2003)008<0144:cacoam>2.0.co;2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A complementary deoxyribonucleic acid (cDNA) and the corresponding gene segment encoding a member of the 70-kDa heat shock protein (Hsp70) family have been cloned and sequenced from Locusta migratoria, the African migratory locust. These animals are noted for their thermotolerance, which can exceed temperatures of 50 degrees C. Conceptually translated, the sequence shows a 654-residue protein with theoretical molecular weight of 71.4 kDa, which more closely resembles the mammalian Hsp70 (84-85% similarity) than Hsp70 from other insects, with approximately 75% similarity to the sequence from the fruit fly. Comparisons of cDNA and genomic sequences show that the gene contains 2 introns, a 245-bp intron located in the 5' untranslated region and a 91-bp intron in the coding region. Transcript abundance, as estimated by Northern blot analysis and reverse transcription-polymerase chain reaction, shows that heat shock treatment (45 degrees C for 3 hours) does not elevate hsp70 messenger ribonucleic acid levels in fat bodies or in neural tissues. Immunological assays of Hsp70 show that the protein is constitutively expressed, with a modest, approximately 2-fold induction after a 3-hour heat shock in fat body preparations. Although this sequence could be an hsc70 rather than an hsp70, it was the only cDNA isolated from heat-shocked tissue. Whatever the formal designation, such modest induction and constitutive expression may be ideally suited as an adaptation to the locust's chronic exposure to heat shock temperatures and the consequent demand for chaperone proteins.
Collapse
Affiliation(s)
- Wensheng Qin
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6 Canada
| | | | | | | | | |
Collapse
|
33
|
Liu B, Wu N, Shen Y. Cyclic AMP response element binding protein (CREB) participates in the heat-inducible expression of humanhsp90β gene. CHINESE SCIENCE BULLETIN 2001. [DOI: 10.1007/bf02900627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Cooper LF, Uoshima K, Guo Z. Transcriptional regulation involving the intronic heat shock element of the rat hsp27 gene. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1490:348-54. [PMID: 10684980 DOI: 10.1016/s0167-4781(00)00005-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
While sequencing the first intron of the rat heat shock protein 27 gene (hsp27), we identified a consensus heat shock regulatory element (HSE). This intronic HSE (i-HSE) is conserved among mammalian hsp27 genes. The aim of this study was to investigate possible effects of this intronic HSE (i-HSE) on transcription from the rat hsp27 promoter. Gel mobility shift assays indicated that the i-HSE bound heat shock transcription factor 1 (HSF1) in a manner equivalent to that of HSE present in hsp27 promoter (p-HSE). The effect of i-HSE on transcription from the hsp27 promoter was evaluated using reporter constructs transiently transfected in the osteosarcoma cell line ROS17/2.8. When inserted 5' to a 145 bp fragment of the hsp27 promoter not containing p-HSE, a 215 bp fragment of hsp27 intron 1 containing i-HSE enhanced CAT activity and conferred heat shock-inducible activity to the construct. This intronic fragment containing i-HSE also enhanced CAT activity in either normal or heat-shocked culture conditions when inserted 3' to the CAT open reading frame. However, in chimeric reporter constructs with a 273 bp hsp27 promoter containing p-HSE directly 5' to CAT reporter, and with a 215 bp fragment containing i-HSE inserted 3' to the CAT open reading frame, transcription from hsp27 promoter was reduced under normal and heat-stressed culture conditions. Mutation of the i-HSE reversed this effect. Further study is required to define the mechanism by which the i-HSE-containing region of the hsp27 promoter may mediate negative regulation of hsp27 transcription.
Collapse
Affiliation(s)
- L F Cooper
- Department of Biochemistry and Biophysics, School of Medicine, 308 Brauer Hall, CB #7450, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
35
|
Kubota H, Matsumoto S, Yokota S, Yanagi H, Yura T. Transcriptional activation of mouse cytosolic chaperonin CCT subunit genes by heat shock factors HSF1 and HSF2. FEBS Lett 1999; 461:125-9. [PMID: 10561509 DOI: 10.1016/s0014-5793(99)01437-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The chaperonin containing TCP-1 (CCT) is a eukaryotic molecular chaperone consisting of eight subunit species and assists in the folding of cytosolic proteins. We show here that all eight mouse CCT subunit genes contain sequences called heat shock elements for binding heat shock transcription factors (HSFs) by electrophoretic mobility shift assays and that these genes are transcriptionally activated by HSFs in reporter gene assays using HeLa cells transiently overexpressing HSFs. These results suggest that HSF1 and/or HSF2 play a role in Cct gene expression.
Collapse
Affiliation(s)
- H Kubota
- HSP Research Institute, Kyoto Research Park, 17 Chudoji Minami-machi, Shimogyo-ku, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
36
|
Zhang SL, Yu J, Cheng XK, Ding L, Heng FY, Wu NH, Shen YF. Regulation of human hsp90alpha gene expression. FEBS Lett 1999; 444:130-5. [PMID: 10037161 DOI: 10.1016/s0014-5793(99)00044-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mammalian HSP90alpha and HSP90beta are encoded by two individual genes. On the basis of the upstream sequences of the human hsp90alpha gene, GenBank accession number U25822, we have constructed CAT reporter plasmids driven by individual fragments of the hsp90alpha gene. We found that (1) the proximal heat shock element complex located at -96/-60 enhances hsp90alpha promoter expression; (2) heat shock induction depends upon the coexistence of distal heat shock element at -1031/-1022 and the proximal heat shock element complex of the hsp90alpha gene; (3) unlike hsp90beta, downstream sequences of the transcription start site inhibit hsp90alpha expression. We conclude that the regulatory mechanisms for the expression of hsp90alpha and hsp90beta genes are different.
Collapse
Affiliation(s)
- S L Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | | | | | | | | | | | | |
Collapse
|
37
|
Csermely P, Schnaider T, Soti C, Prohászka Z, Nardai G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 1998; 79:129-68. [PMID: 9749880 DOI: 10.1016/s0163-7258(98)00013-8] [Citation(s) in RCA: 743] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The 90-kDa molecular chaperone family (which comprises, among other proteins, the 90-kDa heat-shock protein, hsp90 and the 94-kDa glucose-regulated protein, grp94, major molecular chaperones of the cytosol and of the endoplasmic reticulum, respectively) has become an increasingly active subject of research in the past couple of years. These ubiquitous, well-conserved proteins account for 1-2% of all cellular proteins in most cells. However, their precise function is still far from being elucidated. Their involvement in the aetiology of several autoimmune diseases, in various infections, in recognition of malignant cells, and in antigen-presentation already demonstrates the essential role they likely will play in clinical practice of the next decade. The present review summarizes our current knowledge about the cellular functions, expression, and clinical implications of the 90-kDa molecular chaperone family and some approaches for future research.
Collapse
Affiliation(s)
- P Csermely
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | | | | | | | | |
Collapse
|