1
|
Courbon GM, Rubinstein JL. CryoEM Reveals the Complexity and Diversity of ATP Synthases. Front Microbiol 2022; 13:864006. [PMID: 35783400 PMCID: PMC9244403 DOI: 10.3389/fmicb.2022.864006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/30/2022] [Indexed: 11/14/2022] Open
Abstract
During respiration, adenosine triphosphate (ATP) synthases harness the electrochemical proton motive force (PMF) generated by the electron transport chain (ETC) to synthesize ATP. These macromolecular machines operate by a remarkable rotary catalytic mechanism that couples transmembrane proton translocation to rotation of a rotor subcomplex, and rotation to ATP synthesis. Initially, x-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cross-linking were the only ways to gain insights into the three-dimensional (3D) structures of ATP synthases and, in particular, provided ground-breaking insights into the soluble parts of the complex that explained the catalytic mechanism by which rotation is coupled to ATP synthesis. In contrast, early electron microscopy was limited to studying the overall shape of the assembly. However, advances in electron cryomicroscopy (cryoEM) have allowed determination of high-resolution structures, including the membrane regions of ATP synthases. These studies revealed the high-resolution structures of the remaining ATP synthase subunits and showed how these subunits work together in the intact macromolecular machine. CryoEM continues to uncover the diversity of ATP synthase structures across species and has begun to show how ATP synthases can be targeted by therapies to treat human diseases.
Collapse
Affiliation(s)
- Gautier M. Courbon
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, ON, Canada
| | - John L. Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ON, Canada
- *Correspondence: John L. Rubinstein
| |
Collapse
|
2
|
Abstract
A helium atom superfluid was originally discovered by Kapitsa and Allen. Biological channels in such a fluid allow ultrafast molecule and ion transport, defined as a quantum-confined superfluid (QSF). In the process of enzymatic biosynthesis, unique performances can be achieved with high flux, 100% selectivity and low reaction activation energy at room temperature, under atmospheric pressure in an aqueous environment. Such reactions are considered as QSF reactions. In this perspective, we introduce the concept of QSF reactions in artificial systems. Through designing the channel size at the van der Waals equilibrium distance (r0) for molecules or the Debye length (λD) for ions, and arranging the reactants orderly in the channel to satisfy symmetry-matching principles, QSF reactions in artificial systems can be realized with high flux, 100% selectivity and low reaction activation energy. Several types of QSF-like molecular reactions are summarized, including quantum-confined polymerizations, quasi-superfluid-based reactions and superfluid-based molecular reactions, followed by the discussion of QSF ion redox reactions. We envision in the future that chemical engineering, based on multi-step QSF reactions, and a tubular reactor with continuous nanochannel membranes taking advantage of high flux, high selectivity and low energy consumption, will replace the traditional tower reactor, and bring revolutionary technology to both chemistry and chemical engineering. The concept of quantum-confined superfluid reactions is introduced into artificial systems, which is expected to be useful in future chemical engineering.![]()
Collapse
Affiliation(s)
- Yuwei Hao
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University Beijing 100191 P. R. China
| | - Shuai Pang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xiqi Zhang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University Beijing 100191 P. R. China .,CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China .,School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
3
|
Jiang M, Feng L, Zheng X, Chen Y. Bio-denitrification performance enhanced by graphene-facilitated iron acquisition. WATER RESEARCH 2020; 180:115916. [PMID: 32438140 DOI: 10.1016/j.watres.2020.115916] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/21/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Bio-denitrification is widely used for remediation of nitrate contaminated site or removal of nitrate from wastewater, but its efficiency is not always satisfied and high nitrite accumulation and nitrous oxide emission occur frequently. Iron plays an important role in achieving efficient biological denitrification. Nevertheless, its concentration in cells is usually inadequate, and additional supply of iron to denitrification system has been adopted in the literature. In this study, a novel approach to increase the intracellular iron concentration of denitrifying microbes by using graphene to accelerate iron transport, which significantly enhanced bio-denitrification and decreased intermediates accumulations, was reported, and the underlying mechanisms were explored. The presence of 50 mg/L of graphene was observed to not only significantly promote nitrate removal efficiency by 67.3%, but also decrease nitrite and nitrous oxide generation by 49.0% and 63.9%, respectively. It was found that graphene promoted the generation, transfer and consumption of electrons, increased the activities or gene expressions of Fe-containing enzymes (such as complex I, complex III, various cytochromes, and most denitrification reductases), and enhanced the growth of denitrifiers due to iron acquisition by denitrifying bacteria being remarkably facilitated, leading to a significant increment of intracellular iron concentration. Meanwhile, the intracellular proton-motive force and ATP levels were promoted as well. This study provided a new approach to enhancing bio-denitrification and revealed a novel insight into biological iron acquisition.
Collapse
Affiliation(s)
- Meng Jiang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
4
|
Müller N, Timmers P, Plugge CM, Stams AJM, Schink B. Syntrophy in Methanogenic Degradation. (ENDO)SYMBIOTIC METHANOGENIC ARCHAEA 2018. [DOI: 10.1007/978-3-319-98836-8_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Dibrova DV, Galperin MY, Koonin EV, Mulkidjanian AY. Ancient Systems of Sodium/Potassium Homeostasis as Predecessors of Membrane Bioenergetics. BIOCHEMISTRY (MOSCOW) 2016; 80:495-516. [PMID: 26071768 DOI: 10.1134/s0006297915050016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cell cytoplasm of archaea, bacteria, and eukaryotes contains substantially more potassium than sodium, and potassium cations are specifically required for many key cellular processes, including protein synthesis. This distinct ionic composition and requirements have been attributed to the emergence of the first cells in potassium-rich habitats. Different, albeit complementary, scenarios have been proposed for the primordial potassium-rich environments based on experimental data and theoretical considerations. Specifically, building on the observation that potassium prevails over sodium in the vapor of inland geothermal systems, we have argued that the first cells could emerge in the pools and puddles at the periphery of primordial anoxic geothermal fields, where the elementary composition of the condensed vapor would resemble the internal milieu of modern cells. Marine and freshwater environments generally contain more sodium than potassium. Therefore, to invade such environments, while maintaining excess of potassium over sodium in the cytoplasm, primordial cells needed means to extrude sodium ions. The foray into new, sodium-rich habitats was the likely driving force behind the evolution of diverse redox-, light-, chemically-, or osmotically-dependent sodium export pumps and the increase of membrane tightness. Here we present a scenario that details how the interplay between several, initially independent sodium pumps might have triggered the evolution of sodium-dependent membrane bioenergetics, followed by the separate emergence of the proton-dependent bioenergetics in archaea and bacteria. We also discuss the development of systems that utilize the sodium/potassium gradient across the cell membranes.
Collapse
Affiliation(s)
- D V Dibrova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | | | | | | |
Collapse
|
6
|
Abstract
The F1F0-ATP synthase (EC 3.6.1.34) is a remarkable enzyme that functions as a rotary motor. It is found in the inner membranes of Escherichia coli and is responsible for the synthesis of ATP in response to an electrochemical proton gradient. Under some conditions, the enzyme functions reversibly and uses the energy of ATP hydrolysis to generate the gradient. The ATP synthase is composed of eight different polypeptide subunits in a stoichiometry of α3β3γδεab2c10. Traditionally they were divided into two physically separable units: an F1 that catalyzes ATP hydrolysis (α3β3γδε) and a membrane-bound F0 sector that transports protons (ab2c10). In terms of rotary function, the subunits can be divided into rotor subunits (γεc10) and stator subunits (α3β3δab2). The stator subunits include six nucleotide binding sites, three catalytic and three noncatalytic, formed primarily by the β and α subunits, respectively. The stator also includes a peripheral stalk composed of δ and b subunits, and part of the proton channel in subunit a. Among the rotor subunits, the c subunits form a ring in the membrane, and interact with subunit a to form the proton channel. Subunits γ and ε bind to the c-ring subunits, and also communicate with the catalytic sites through interactions with α and β subunits. The eight subunits are expressed from a single operon, and posttranscriptional processing and translational regulation ensure that the polypeptides are made at the proper stoichiometry. Recent studies, including those of other species, have elucidated many structural and rotary properties of this enzyme.
Collapse
|
7
|
ten Harkel B, Schoenmaker T, Picavet DI, Davison NL, de Vries TJ, Everts V. The Foreign Body Giant Cell Cannot Resorb Bone, But Dissolves Hydroxyapatite Like Osteoclasts. PLoS One 2015; 10:e0139564. [PMID: 26426806 PMCID: PMC4591016 DOI: 10.1371/journal.pone.0139564] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/15/2015] [Indexed: 12/22/2022] Open
Abstract
Foreign body multinucleated giant cells (FBGCs) and osteoclasts share several characteristics, like a common myeloid precursor cell, multinuclearity, expression of tartrate-resistant acid phosphatase (TRAcP) and dendritic cell-specific transmembrane protein (DC-STAMP). However, there is an important difference: osteoclasts form and reside in the vicinity of bone, while FBGCs form only under pathological conditions or at the surface of foreign materials, like medical implants. Despite similarities, an important distinction between these cell types is that osteoclasts can resorb bone, but it is unknown whether FBGCs are capable of such an activity. To investigate this, we differentiated FBGCs and osteoclasts in vitro from their common CD14+ monocyte precursor cells, using different sets of cytokines. Both cell types were cultured on bovine bone slices and analyzed for typical osteoclast features, such as bone resorption, presence of actin rings, formation of a ruffled border, and characteristic gene expression over time. Additionally, both cell types were cultured on a biomimetic hydroxyapatite coating to discriminate between bone resorption and mineral dissolution independent of organic matrix proteolysis. Both cell types differentiated into multinucleated cells on bone, but FBGCs were larger and had a higher number of nuclei compared to osteoclasts. FBGCs were not able to resorb bone, yet they were able to dissolve the mineral fraction of bone at the surface. Remarkably, FBGCs also expressed actin rings, podosome belts and sealing zones--cytoskeletal organization that is considered to be osteoclast-specific. However, they did not form a ruffled border. At the gene expression level, FBGCs and osteoclasts expressed similar levels of mRNAs that are associated with the dissolution of mineral (e.g., anion exchange protein 2 (AE2), carbonic anhydrase 2 (CAII), chloride channel 7 (CIC7), and vacuolar-type H+-ATPase (v-ATPase)), in contrast the matrix degrading enzyme cathepsin K, which was hardly expressed by FBGCs. Functionally, the latter cells were able to dissolve a biomimetic hydroxyapatite coating in vitro, which was blocked by inhibiting v-ATPase enzyme activity. These results show that FBGCs have the capacity to dissolve the mineral phase of bone, similar to osteoclasts. However, they are not able to digest the matrix fraction of bone, likely due to the lack of a ruffled border and cathepsin K.
Collapse
Affiliation(s)
- Bas ten Harkel
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), MOVE Research Institute, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| | - Ton Schoenmaker
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), MOVE Research Institute, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Daisy I. Picavet
- Department of Cell Biology and Histology, Center for Advanced Microscopy, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Noel L. Davison
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
- Xpand Biotechnology BV, Bilthoven, The Netherlands
| | - Teun J. de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), MOVE Research Institute, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Vincent Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), MOVE Research Institute, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Głogocka D, Przybyło M, Langner M. Molecular machines - a new dimension of biological sciences. Cell Mol Biol Lett 2015. [PMID: 26204406 DOI: 10.1515/cmble-2015-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Biological systems are characterized by directional and precisely controlled flow of matter and information along with the maintenance of their structural patterns. This is possible thanks to sequential transformations of information, energy and structure carried out by molecular machines. The new perception of biological systems, including their mechanical aspects, requires the implementation of tools and approaches previously developed for engineering sciences. In this review paper, a biological system is presented in a new perspective as an ensemble of coordinated molecular devices functioning in the limited space confined by the biological membrane. The working of a molecular machine is presented using the example of F0F1 ATPase, and the general conditions necessary for the coordination of a large number of functional units are described.
Collapse
|
9
|
The nonlinear chemo-mechanic coupled dynamics of the F 1 -ATPase molecular motor. J Biol Phys 2013; 38:209-27. [PMID: 23449163 DOI: 10.1007/s10867-011-9231-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 06/21/2011] [Indexed: 10/17/2022] Open
Abstract
The ATP synthase consists of two opposing rotary motors, F0 and F1, coupled to each other. When the F1 motor is not coupled to the F0 motor, it can work in the direction hydrolyzing ATP, as a nanomotor called F1-ATPase. It has been reported that the stiffness of the protein varies nonlinearly with increasing load. The nonlinearity has an important effect on the rotating rate of the F1-ATPase. Here, considering the nonlinearity of the γ shaft stiffness for the F1-ATPase, a nonlinear chemo-mechanical coupled dynamic model of F1 motor is proposed. Nonlinear vibration frequencies of the γ shaft and their changes along with the system parameters are investigated. The nonlinear stochastic response of the elastic γ shaft to thermal excitation is analyzed. The results show that the stiffness nonlinearity of the γ shaft causes an increase of the vibration frequency for the F1 motor, which increases the motor's rotation rate. When the concentration of ATP is relatively high and the load torque is small, the effects of the stiffness nonlinearity on the rotating rates of the F1 motor are obvious and should be considered. These results are useful for improving calculation of the rotating rate for the F1 motor and provide insight about the stochastic wave mechanics of F1-ATPase.
Collapse
|
10
|
Xu L, Liu F. The chemo-mechanical coupled model for F1F0-motor. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 108:139-48. [DOI: 10.1016/j.pbiomolbio.2012.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 03/20/2011] [Accepted: 01/31/2012] [Indexed: 10/14/2022]
|
11
|
Konno H, Nakane T, Yoshida M, Ueoka-Nakanishi H, Hara S, Hisabori T. Thiol modulation of the chloroplast ATP synthase is dependent on the energization of thylakoid membranes. PLANT & CELL PHYSIOLOGY 2012; 53:626-34. [PMID: 22362842 DOI: 10.1093/pcp/pcs018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Thiol modulation of the chloroplast ATP synthase γ subunit has been recognized as an important regulatory system for the activation of ATP hydrolysis activity, although the physiological significance of this regulation system remains poorly characterized. Since the membrane potential required by this enzyme to initiate ATP synthesis for the reduced enzyme is lower than that needed for the oxidized form, reduction of this enzyme was interpreted as effective regulation for efficient photophosphorylation. However, no concrete evidence has been obtained to date relating to the timing and mode of chloroplast ATP synthase reduction and oxidation in green plants. In this study, thorough analysis of the redox state of regulatory cysteines of the chloroplast ATP synthase γ subunit in intact chloroplasts and leaves shows that thiol modulation of this enzyme is pivotal in prohibiting futile ATP hydrolysis activity in the dark. However, the physiological importance of efficient ATP synthesis driven by the reduced enzyme in the light could not be demonstrated. In addition, we investigated the significance of the electrochemical proton gradient in reducing the γ subunit by the reduced form of thioredoxin in chloroplasts, providing strong insights into the molecular mechanisms underlying the formation and reduction of the disulfide bond on the γ subunit in vivo.
Collapse
Affiliation(s)
- Hiroki Konno
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-Ku, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Gerle C. Stabilization of Fo/Vo/Ao by a radial electric field. Biophysics (Nagoya-shi) 2011; 7:99-104. [PMID: 27857597 PMCID: PMC5036770 DOI: 10.2142/biophysics.7.99] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/26/2011] [Indexed: 12/01/2022] Open
Abstract
The membrane domain of rotary ATPases (Fo/Vo/Ao) contains a membrane-embedded rotor ring which rotates against an adjacent cation channel-forming subunit during catalysis. The mechanism that allows stabilization of the highly mobile and yet tightly connected domains during operation while not impeding rotation is unknown. Remarkably, all known ATPase rotor rings are filled by lipids. In the crystal structure of the rotor ring of a V-ATPase from Enterococcus hirae the ring filling lipids form a proper membrane that is lower with respect to the embedding membrane surrounding both subunits. I propose first, that a vertical shift between lumenal lipids and embedding outside membrane is a general feature of rotor rings and second that it leads to a radial potential fall-off between rotor ring and cation channel, creating attractive forces that impact rotor-stator interaction in Fo/Vo/Ao during rotation.
Collapse
Affiliation(s)
- Christoph Gerle
- Career Path Promotion Unit for Young Life Scientists, Kyoto University, Bldg. E, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
13
|
ATP synthase superassemblies in animals and plants: Two or more are better. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1185-97. [PMID: 21679683 DOI: 10.1016/j.bbabio.2011.05.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/30/2011] [Accepted: 05/31/2011] [Indexed: 12/11/2022]
|
14
|
|
15
|
von Ballmoos C, Wiedenmann A, Dimroth P. Essentials for ATP synthesis by F1F0 ATP synthases. Annu Rev Biochem 2009; 78:649-72. [PMID: 19489730 DOI: 10.1146/annurev.biochem.78.081307.104803] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The majority of cellular energy in the form of adenosine triphosphate (ATP) is synthesized by the ubiquitous F(1)F(0) ATP synthase. Power for ATP synthesis derives from an electrochemical proton (or Na(+)) gradient, which drives rotation of membranous F(0) motor components. Efficient rotation not only requires a significant driving force (DeltamuH(+)), consisting of membrane potential (Deltapsi) and proton concentration gradient (DeltapH), but also a high proton concentration at the source P side. In vivo this is maintained by dynamic proton movements across and along the surface of the membrane. The torque-generating unit consists of the interface of the rotating c ring and the stator a subunit. Ion translocation through this unit involves a sophisticated interplay between the c-ring binding sites, the stator arginine, and the coupling ions on both sides of the membrane. c-ring rotation is transmitted to the eccentric shaft gamma-subunit to elicit conformational changes in the catalytic sites of F(1), leading to ATP synthesis.
Collapse
Affiliation(s)
- Christoph von Ballmoos
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden.
| | | | | |
Collapse
|
16
|
Fillingame RH, Jiang W, Dmitriev OY. The oligomeric subunit C rotor in the fo sector of ATP synthase: unresolved questions in our understanding of function. J Bioenerg Biomembr 2009; 32:433-9. [PMID: 15254378 DOI: 10.1023/a:1005604722178] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have proposed a model for the oligomeric c-rotor of the F(o) sector of ATP synthase and its interaction with subunit a during H+-transport driven rotation. The model is based upon the solution structure of monomeric subunit c, determined by NMR, and an extensive series of cross-linking distance constraints between c subunits and between subunits c and a. To explain the complete set of cross-linking data, we have suggested that the second transmembrane helix rotates during its interaction with subunit a in the course of the H+-translocation cycle. The H+-transport coupled rotation of this helix is proposed to drive the stepwise movement of the c-oligomeric rotor. The model is testable and provides a useful framework for addressing questions raised by other experiments.
Collapse
Affiliation(s)
- R H Fillingame
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, 1300 University Avenue, Madison, Wisconsin 53706, USA.
| | | | | |
Collapse
|
17
|
Devenish RJ, Prescott M, Boyle GM, Nagley P. The oligomycin axis of mitochondrial ATP synthase: OSCP and the proton channel. J Bioenerg Biomembr 2009; 32:507-15. [PMID: 15254386 DOI: 10.1023/a:1005621125812] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Oligomycin has long been known as an inhibitor of mitochondrial ATP synthase, putatively binding the F(o) subunits 9 and 6 that contribute to proton channel function of the complex. As its name implies, OSCP is the oligomycin sensitivity-conferring protein necessary for the intact enzyme complex to display sensitivity to oligomycin. Recent advances concerning the structure and mechanism of mitochondrial ATP synthase have led to OSCP now being considered a component of the peripheral stator stalk rather than a central stalk component. How OSCP confers oligomycin sensitivity on the enzyme is unknown, but probably reflects important protein-protein interactions made within the assembled complex and transmitted down the stator stalk, thereby influencing proton channel function. We review here our studies directed toward establishing the stoichiometry, assembly, and function of OSCP in the context of knowledge of the organization of the stator stalk and the proton channel.
Collapse
Affiliation(s)
- R J Devenish
- Department of Biochemistry and Molecular Biology, P.O. Box 13D, Monash University, Victoria 3800, Australia
| | | | | | | |
Collapse
|
18
|
Xu L. The coupled chemomechanics of the F(1)-ATPase molecular motor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1422-31. [PMID: 18823935 DOI: 10.1016/j.bbabio.2008.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 08/20/2008] [Accepted: 08/21/2008] [Indexed: 10/21/2022]
Abstract
The enzyme F(1)-ATPase is a rotary nanomotor in which the central gamma subunit rotates inside the cavity made of alpha(3)beta(3) subunits. The experiments showed that the rotation proceeds in steps of 120 degrees and each 120 degrees step consists of 80 degrees and 40 degrees substeps. Here the Author proposes a stochastic wave mechanics of the F(1)-ATPase motor and combines it with the structure-based kinetics of the F(1)-ATPase to form a chemomechanic coupled model. The model can reproduce quantitatively and explain the experimental observations about the F(1) motor. Using the model, several rate-limited situations about gamma subunit rotation are proposed, the effects of the friction and the load on the substeps are investigated and the chemomechanic coupled time during ATP hydrolysis cycle is determined.
Collapse
Affiliation(s)
- Lizhong Xu
- Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|
19
|
Abstract
Recent progress in proteomics suggests that the cell can be conceived as a large network of highly refined, nanomachine-like protein complexes. This working hypothesis calls for new methods capable of analyzing individual protein complexes in living cells and tissues at high speed. Here, we examine whether single-molecule fluorescence (SMF) analysis can satisfy that demand. First, recent technical progress in the visualization, localization, tracking, conformational analysis, and true resolution of individual protein complexes is highlighted. Second, results obtained by the SMF analysis of protein complexes are reviewed, focusing on the nuclear pore complex as an instructive example. We conclude that SMF methods provide powerful, indispensable tools for the structural and functional characterization of protein complexes. However, the transition from in vitro systems to living cells is in the initial stages. We discuss how current limitations in the nanoscopic analysis of living cells and tissues can be overcome to create a new paradigm, nanoscopic biomedicine.
Collapse
Affiliation(s)
- Reiner Peters
- Institute of Medical Physics and Biophysics, and Center for Nanotechnology (CeNTech), University of Münster, 48149 Münster, Germany.
| |
Collapse
|
20
|
Langemeyer L, Engelbrecht S. Essential arginine in subunit a and aspartate in subunit c of FoF1 ATP synthase: effect of repositioning within helix 4 of subunit a and helix 2 of subunit c. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:998-1005. [PMID: 17583672 DOI: 10.1016/j.bbabio.2007.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 05/10/2007] [Accepted: 05/21/2007] [Indexed: 10/23/2022]
Abstract
FoF1 ATP synthase couples proton flow through the integral membrane portion Fo (ab2c10) to ATP-synthesis in the extrinsic F1-part ((alphabeta)3gammadeltaepsilon) (Escherichia coli nomenclature and stoichiometry). Coupling occurs by mechanical rotation of subunits c10gammaepsilon relative to (alphabeta)3deltaab2. Two residues were found to be essential for proton flow through ab2c10, namely Arg210 in subunit a (aR210) and Asp61 in subunits c (cD61). Their deletion abolishes proton flow, but "horizontal" repositioning, by anchoring them in adjacent transmembrane helices, restores function. Here, we investigated the effects of "vertical" repositioning aR210, cD61, or both by one helical turn towards the N- or C-termini of their original helices. Other than in the horizontal the vertical displacement changes the positions of the side chains within the depth of the membrane. Mutant aR210A/aN214R appeared to be short-circuited in that it supported proton conduction only through EF1-depleted EFo, but not in EFoEF1, nor ATP-driven proton pumping. Mutant cD61N/cM65D grew on succinate, retained the ability to synthesize ATP and supported passive proton conduction but apparently not ATP hydrolysis-driven proton pumping.
Collapse
Affiliation(s)
- Lars Langemeyer
- Universität Osnabrück, Fachbereich Biologie, Biochemie, Barbarastr. 13, 49076 Osnabrück, Germany
| | | |
Collapse
|
21
|
Strohm TO, Griffin B, Zumft WG, Schink B. Growth yields in bacterial denitrification and nitrate ammonification. Appl Environ Microbiol 2007; 73:1420-4. [PMID: 17209072 PMCID: PMC1828769 DOI: 10.1128/aem.02508-06] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Denitrification and nitrate ammonification are considered the highest-energy-yielding respiration systems in anoxic environments after oxygen has been consumed. The corresponding free energy changes are 7 and 35% lower than that of aerobic respiration, respectively. Growth yield determinations with pure cultures of Paracoccus denitrificans and Pseudomonas stutzeri revealed that far less energy is converted via ATP into cell mass than expected from the above calculations. Denitrification with formate or hydrogen as electron donor yielded about 2.4 to 3.0 g dry matter per mol formate or hydrogen and 15 to 18 g dry matter per mol acetate. Similar yields with acetate were obtained with Pseudomonas stutzeri. Wolinella succinogenes and Sulfurospirillum deleyianum, which reduce nitrate to ammonia, both exhibited similar yield values with formate or H2 plus nitrate. The results indicate that ATP synthesis in denitrification is far lower than expected from the free energy changes and even lower than in nitrate ammonification. The results are discussed against the background of our present understanding of electron flow in denitrification and with respect to the importance of denitrification and nitrate ammonification in the environment.
Collapse
Affiliation(s)
- Tobin O Strohm
- Fachbereich Biologie, Universität Konstanz, D-78457 Konstanz, Germany
| | | | | | | |
Collapse
|
22
|
Ren Q, Zhao YP, Yue JC, Cui YB. Biological application of multi-component nanowires in hybrid devices powered by F1-ATPase motors. Biomed Microdevices 2006; 8:201-8. [PMID: 16718405 DOI: 10.1007/s10544-006-8173-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In this paper, construction of hybrid device by integrating nanowires with F(1)-ATPase motors is described. The nickel nanowires and multi-segment nanowires, including gold and nickel, were fabricated by electrochemical deposition in nanoporous templates. The nickel nanowires functionalized by biotinylated peptide can be assembled directly onto F(1)-ATPase motors to act as the propellers. If the multi-component nanowires, including gold and nickel, were selectively functionalized by the thiol group modified ssDNA and the synthetic peptide, respectively, the biotinylated F(1)-ATPase motors can be attached to the biotinylated peptide on nickel segment of the nanowires. Then, the multi-component nanowires can also be used as the propellers, and one may observe the rotations of the multi-component nanowires driven by F(1)-ATPase motors. Therefore, introduction of multiple segments along the length of a nanowire can lead to a variety of multiple chemical functionalities, which can be selectively bound to cells and special biomolecules. This method provides an insight for the construction of other hybrid devices with its controlling arrangement of different biomolecule on designed nanometer scale structures.
Collapse
Affiliation(s)
- Quan Ren
- State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | |
Collapse
|
23
|
Schink B. Syntrophic associations in methanogenic degradation. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2006; 41:1-19. [PMID: 16623386 DOI: 10.1007/3-540-28221-1_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bernhard Schink
- Lehrstuhl für Mikrobielle Okologie, Fakultät für Biologie, Universität Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany.
| |
Collapse
|
24
|
Application of rigid body mechanics to theoretical description of rotation within F0F1-ATP synthase. J Theor Biol 2006; 242:300-8. [PMID: 16603197 DOI: 10.1016/j.jtbi.2006.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Revised: 02/24/2006] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
ATP synthase catalyses the formation of ATP from ADP and P(i) and is powered by the diffusion of protons throughout membranes down the proton electrochemical gradient. The protein consists of a water-soluble F(1) and a transmembrane F(0) proton transporter part. It was previously shown that the ring of membrane subunits rotates past a fixed subunit during catalytic cycle of the enzyme. However, many parameters of this movement are still unknown. In the present study the mutual protein movement in the membrane part of F(0)F(1)-ATP syntase has been analysed within the framework of rigid body mechanics. On the base of available experimental data it was shown that electrostatic interaction of two charged amino acids residues is able to supply quite enough energy for the rotation. The initial torque, which caused the rotation, was estimated as 3.7 pN nm and for this pattern the angular movement of c subunits complex could not physically have a period less than 10(-9)s. If membrane viscosity and elastic resistance were taken into account then the time of a whole turnover could rise up to 6.3 x 10(-3)s. It is remarkable that rotation will take place only under condition when the elasticity (Young's) module of the central stalk (gamma subunit and other minor subunits) is less than 5.0 x 10(7)N/m(2). Thus, for generally accepted structural parameters of ATP synthase, two-charge electrostatic interaction model does not permit rotation of the rotor if elastic properties of the central stalk are tougher than mentioned above. In order to explain the rotation under that condition one should either suppose a shorter distance between subunit a and c subunits complex or assume interaction of more than two charged amino acids residues.
Collapse
|
25
|
Abstract
The extraordinary progress that has taken place in cell science and optical nanoscale microscopy has led recently to the concept of medical nanoscopy. Here, we lay out a concept for developing live cell nanoscopy into a comprehensive diagnostic and therapeutic scheme referred to as nanoscopic medicine, which integrates live cell nanoscopy with the structural and functional studies of nanoscopic protein machines (NPMs), the systems biology of NPMs, fluorescent labeling, nanoscopic analysis, and nanoscopic intervention, in order to advance the medical frontier toward the nanoscopic fundament of the cell. It aims at the diagnosis and therapy of diseases by directly visualizing, analyzing, and modifying NPMs and their networks in living cells and tissues.
Collapse
Affiliation(s)
- Reiner Peters
- Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Strasse 31, 48149 Münster, Germany.
| |
Collapse
|
26
|
Zimmermann B, Diez M, Zarrabi N, Gräber P, Börsch M. Movements of the epsilon-subunit during catalysis and activation in single membrane-bound H(+)-ATP synthase. EMBO J 2005; 24:2053-63. [PMID: 15920483 PMCID: PMC1150879 DOI: 10.1038/sj.emboj.7600682] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 04/26/2005] [Indexed: 11/08/2022] Open
Abstract
F0F1-ATP synthases catalyze proton transport-coupled ATP synthesis in bacteria, chloroplasts, and mitochondria. In these complexes, the epsilon-subunit is involved in the catalytic reaction and the activation of the enzyme. Fluorescence-labeled F0F1 from Escherichia coli was incorporated into liposomes. Single-molecule fluorescence resonance energy transfer (FRET) revealed that the epsilon-subunit rotates stepwise showing three distinct distances to the b-subunits in the peripheral stalk. Rotation occurred in opposite directions during ATP synthesis and hydrolysis. Analysis of the dwell times of each FRET state revealed different reactivities of the three catalytic sites that depended on the relative orientation of epsilon during rotation. Proton transport through the enzyme in the absence of nucleotides led to conformational changes of epsilon. When the enzyme was inactive (i.e. in the absence of substrates or without membrane energization), three distances were found again, which differed from those of the active enzyme. The three states of the inactive enzyme were unequally populated. We conclude that the active-inactive transition was associated with a conformational change of epsilon within the central stalk.
Collapse
Affiliation(s)
- Boris Zimmermann
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Manuel Diez
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Nawid Zarrabi
- 3. Physikalisches Institut, Universität Stuttgart, Stuttgart, Germany
| | - Peter Gräber
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Michael Börsch
- 3. Physikalisches Institut, Universität Stuttgart, Stuttgart, Germany
| |
Collapse
|
27
|
Petoukhov MV, Svergun DI. Global rigid body modeling of macromolecular complexes against small-angle scattering data. Biophys J 2005; 89:1237-50. [PMID: 15923225 PMCID: PMC1366608 DOI: 10.1529/biophysj.105.064154] [Citation(s) in RCA: 742] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
New methods to automatically build models of macromolecular complexes from high-resolution structures or homology models of their subunits or domains against x-ray or neutron small-angle scattering data are presented. Depending on the complexity of the object, different approaches are employed for the global search of the optimum configuration of subunits fitting the experimental data. An exhaustive grid search is used for hetero- and homodimeric particles and for symmetric oligomers formed by identical subunits. For the assemblies or multidomain proteins containing more then one subunit/domain per asymmetric unit, heuristic algorithms based on simulated annealing are used. Fast computational algorithms based on spherical harmonics representation of scattering amplitudes are employed. The methods allow one to construct interconnected models without steric clashes, to account for the particle symmetry and to incorporate information from other methods, on distances between specific residues or nucleotides. For multidomain proteins, addition of missing linkers between the domains is possible. Simultaneous fitting of multiple scattering patterns from subcomplexes or deletion mutants is incorporated. The efficiency of the methods is illustrated by their application to complexes of different types in several simulated and practical examples. Limitations and possible ambiguity of rigid body modeling are discussed and simplified docking criteria are provided to rank multiple models. The methods described are implemented in publicly available computer programs running on major hardware platforms.
Collapse
|
28
|
Steigmiller S, Börsch M, Gräber P, Huber M. Distances between the b-subunits in the tether domain of F(0)F(1)-ATP synthase from E. coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:143-53. [PMID: 15907787 DOI: 10.1016/j.bbabio.2005.03.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 03/15/2005] [Accepted: 03/16/2005] [Indexed: 11/23/2022]
Abstract
The arrangement of the b-subunits in the holo-enzyme F(0)F(1)-ATP synthase from E. coli is investigated by site-directed mutagenesis spin-label EPR. F(0)F(1)-ATP synthases couple proton translocation with the synthesis of ATP from ADP and phosphate. The hydrophilic F(1)-part and the hydrophobic membrane-integrated F(0)-part are connected by a central and a peripheral stalk. The peripheral stalk consists of two b-subunits. Cysteine mutations are introduced in the tether domain of the b-subunit at b-40, b-51, b-53, b-62 or b-64 and labeled with a nitroxide spin label. Conventional (9 GHz), high-field (95 GHz) and pulsed EPR spectroscopy reveal: All residues are in a relatively polar environment, with mobilities consistent with helix sites. The distance between the spin labels at each b-subunit is 2.9 nm in each mutant, revealing a parallel arrangement of the two helices. They can be in-register but separated by a large distance (1.9 nm), or at close contact and displaced along the helix axes by maximally 2.7 nm, which excludes an in-register coiled-coil model suggested previously for the b-subunit. Binding of the non-hydrolysable nucleotide AMPPNP to the spin-labeled enzyme had no significant influence on the distances compared to that in the absence of nucleotides.
Collapse
|
29
|
Abstract
Oxygenic photosynthesis is the principal producer of both oxygen and organic matter on earth. The primary step in this process - the conversion of sunlight into chemical energy - is driven by four, multisubunit, membrane-protein complexes that are known as photosystem I, photosystem II, cytochrome b(6)f and F-ATPase. Structural insights into these complexes are now providing a framework for the exploration not only of energy and electron transfer, but also of the evolutionary forces that shaped the photosynthetic apparatus.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
30
|
Steigmiller S, Zimmermann B, Diez M, Börsch M, Gräber P. Binding of single nucleotides to H+-ATP synthases observed by fluorescence resonance energy transfer. Bioelectrochemistry 2004; 63:79-85. [PMID: 15110252 DOI: 10.1016/j.bioelechem.2003.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Revised: 08/11/2003] [Accepted: 08/27/2003] [Indexed: 11/17/2022]
Abstract
F(0)F(1)-ATP synthases couple proton translocation with the synthesis of ATP from ADP and phosphate. The enzyme has three catalytic nucleotide binding sites, one on each beta-subunit; three non-catalytic binding sites are located mainly on each alpha-subunit. In order to observe substrate binding to the enzyme, the H(+)-ATP synthase from Escherichia coli was labelled selectively with the fluorescence donor tetramethylrhodamine (TMR) at position T106C of the gamma-subunit. The labelled enzymes were incorporated into liposomes and catalysed proton-driven ATP synthesis. The substrate ATP-Alexa Fluor 647 was used as the fluorescence acceptor to perform intermolecular fluorescence resonance energy transfer (FRET). Single molecules are detected with a confocal set-up. When one ATP-Alexa Fluor 647 binds to the enzyme, FRET can be observed. Five stable states with different intermolecular FRET efficiencies were distinguished for enzyme-bound ATP-Alexa Fluor 647 indicating binding to different binding sites. Consecutive hydrolysis of excess ATP resulted in stepwise changes of the FRET efficiency. Thereby, gamma-subunit movement during catalysis was directly monitored with respect to the binding site with bound ATP-Alexa Fluor 647.
Collapse
Affiliation(s)
- S Steigmiller
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 23a, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
31
|
Müller M, Gumbiowski K, Cherepanov DA, Winkler S, Junge W, Engelbrecht S, Pänke O. Rotary F1-ATPase. Is the C-terminus of subunit gamma fixed or mobile? ACTA ACUST UNITED AC 2004; 271:3914-22. [PMID: 15373837 DOI: 10.1111/j.1432-1033.2004.04328.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
F-ATP synthase synthesizes ATP at the expense of ion motive force by a rotary coupling mechanism. A central shaft, subunit gamma, functionally connects the ion-driven rotary motor, F(O), with the rotary chemical reactor, F(1). Using polarized spectrophotometry we have demonstrated previously the functional rotation of the C-terminal alpha-helical portion of gamma in the supposed 'hydrophobic bearing' formed by the (alpha beta)(3) hexagon. In apparent contradiction with these spectroscopic results, an engineered disulfide bridge between the alpha-helix of gamma and subunit alpha did not impair enzyme activity. Molecular dynamics simulations revealed the possibility of a 'functional unwinding' of the alpha-helix to form a swivel joint. Furthermore, they suggested a firm clamping of that part of gamma even without the engineered cross-link, i.e. in the wild-type enzyme. Here, we rechecked the rotational mobility of the C-terminal portion of gamma relative to (alpha beta)(3). Non-fluorescent, engineered F(1) (alpha P280C/gamma A285C) was oxidized to form a (nonfluorescent) alpha gamma heterodimer. In a second mutant, containing just the point mutation within alpha, all subunits were labelled with a fluorescent dye. Following disassembly and reassembly of the combined preparations and cystine reduction, the enzyme was exposed to ATP or 5'-adenylyl-imidodiphosphate (AMP-PNP). After reoxidation, we found fluorescent alpha gamma dimers in all cases in accordance with rotary motion of the entire gamma subunit under these conditions. Molecular dynamics simulations covering a time range of nanoseconds therefore do not necessarily account for motional freedom in microseconds. The rotation of gamma within hours is compatible with the spectroscopically detected blockade of rotation in the AMP-PNP-inhibited enzyme in the time-range of seconds.
Collapse
Affiliation(s)
- Martin Müller
- Universität Osnabrück, FB Biologie/Chemie, Abt. Biophysik, D-49076 Osnabrück, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Rexroth S, Meyer Zu Tittingdorf JMW, Schwassmann HJ, Krause F, Seelert H, Dencher NA. Dimeric H+-ATP synthase in the chloroplast of Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1658:202-11. [PMID: 15450958 DOI: 10.1016/j.bbabio.2004.05.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 05/28/2004] [Accepted: 05/28/2004] [Indexed: 11/18/2022]
Abstract
H+-ATP synthase is the dominant ATP production site in mitochondria and chloroplasts. So far, dimerization of ATP synthase has been observed only in mitochondria by biochemical and electron microscopic investigations. Although the physiological relevance remains still enigmatic, dimerization was proposed to be a unique feature of the mitochondrion [Biochim. Biophys. Acta 1555 (2002) 154]. It is hard to imagine, however, that closely related protein complexes of mitochondria and chloroplast should show such severe differences in structural organization. We present the first evidences for dimerization of chloroplast ATP synthases within the thylakoid membrane. By investigation of the thylakoid membrane of Chlamydomonas reinhardtii by blue-native polyacrylamide gel electrophoresis, dimerization of the chloroplast ATP synthase was detected. Chloroplast ATP synthase dimer dissociates into monomers upon incubation with vanadate or phosphate but not by incubation with molybdate, while the mitochondrial dimer is not affected by the incubation. This suggests a distinct dimerization mechanism for mitochondrial and chloroplast ATP synthase. Since vanadate and phosphate bind to the active sites, contact sites located on the hydrophilic CF1 part are suggested for the chloroplast ATP synthase dimer. As the degree of dimerization varies with phosphate concentration, dimerization might be a response to low phosphate concentrations.
Collapse
Affiliation(s)
- Sascha Rexroth
- Physical Biochemistry, Department of Chemistry, Darmstadt University of Technology, Petersenstrasse 22, Darmstadt D-64287, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Diez M, Börsch M, Zimmermann B, Turina P, Dunn SD, Gräber P. Binding of the b-subunit in the ATP synthase from Escherichia coli. Biochemistry 2004; 43:1054-64. [PMID: 14744151 DOI: 10.1021/bi0357098] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rotary mechanism of ATP synthase requires a strong binding within stator subunits. In this work we studied the binding affinity of the b-subunit to F(1)-ATPase of Escherichia coli. The dimerization of the truncated b-subunit without amino acids 1-33, b(34-156)T62C, was investigated by analytical ultracentrifugation, resulting in a dissociation constant of 1.8 microM. The binding of b-subunit monomeric and dimeric forms to the isolated F(1) part was investigated by fluorescence correlation spectroscopy and steady-state fluorescence. The mutants b(34-156)T62C and EF(1)-gammaT106C were labeled with several fluorophores. Fluorescence correlation spectroscopy was used to measure translational diffusion times of the labeled b-subunit, labeled F(1), and a mixture of the labeled b-subunit with unlabeled F(1). Data analysis revealed a dissociation constant of 0.2 nM of the F(1)b(2) complex, yielding a Gibbs free energy of binding of DeltaG(o)= -55 kJ mol(-1). In steady-state fluorescence resonance energy transfer (FRET) measurements it was found that binding of the b-subunit to EF(1)-gammaT106C-Alexa488 resulted in a fluorescence decrease of one-third of the initial FRET donor fluorescence intensity. The decrease of fluorescence was measured as a function of b-concentration, and data were described by a model including equilibria for dimerization of the b-subunit and binding of b and b(2) to F(1). For a quantitative description of fluorescence decrease we used two different models: the binding of the first and the second b-subunit causes the same fluorescence decrease (model 1) or only the binding of the first b-subunit causes fluorescence decrease (model 2). Data evaluation revealed a dissociation constant for the F(1)b(2) complex of 0.6 nM (model 1) or 14 nM (model 2), giving DeltaG(o)= -52 kJ mol(-1) and DeltaG(o)= -45 kJ mol(-1), respectively. The maximal DeltaG observed for ATP synthesis in cells is approximately DeltaG= 55 kJ mol(-1). Therefore, the binding energy of the b-subunit seems to be too low for models in which the free energy for ATP synthesis is accumulated in the elastic strain between rotor and stator subunits and then transduced to the catalytic site in one single step. Models in which energy transduction takes place in at least two steps are favored.
Collapse
Affiliation(s)
- Manuel Diez
- Institut für Physikalische Chemie der Universität Freiburg, Albertstrasse 23a, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Zeng X, Shi X, Shen Y. Effects of truncated mutants of the ε subunit of chloroplast ATP synthase on the fast phase of millisecond delayed light emission of chloroplast and its ATP synthesis ability. CHINESE SCIENCE BULLETIN-CHINESE 2004. [DOI: 10.1007/bf03182809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Diez M, Zimmermann B, Börsch M, König M, Schweinberger E, Steigmiller S, Reuter R, Felekyan S, Kudryavtsev V, Seidel CAM, Gräber P. Proton-powered subunit rotation in single membrane-bound F0F1-ATP synthase. Nat Struct Mol Biol 2004; 11:135-41. [PMID: 14730350 DOI: 10.1038/nsmb718] [Citation(s) in RCA: 327] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Accepted: 11/12/2003] [Indexed: 11/08/2022]
Abstract
Synthesis of ATP from ADP and phosphate, catalyzed by F(0)F(1)-ATP synthases, is the most abundant physiological reaction in almost any cell. F(0)F(1)-ATP synthases are membrane-bound enzymes that use the energy derived from an electrochemical proton gradient for ATP formation. We incorporated double-labeled F(0)F(1)-ATP synthases from Escherichia coli into liposomes and measured single-molecule fluorescence resonance energy transfer (FRET) during ATP synthesis and hydrolysis. The gamma subunit rotates stepwise during proton transport-powered ATP synthesis, showing three distinct distances to the b subunits in repeating sequences. The average durations of these steps correspond to catalytic turnover times upon ATP synthesis as well as ATP hydrolysis. The direction of rotation during ATP synthesis is opposite to that of ATP hydrolysis.
Collapse
Affiliation(s)
- Manuel Diez
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 23 a, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fillingame RH, Angevine CM, Dmitriev OY. Mechanics of coupling proton movements to c-ring rotation in ATP synthase. FEBS Lett 2004; 555:29-34. [PMID: 14630314 DOI: 10.1016/s0014-5793(03)01101-3] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
F1F0 ATP synthases generate ATP by a rotary catalytic mechanism in which H+ transport is coupled to rotation of an oligomeric ring of c subunits extending through the membrane. Protons bind to and then are released from the aspartyl-61 residue of subunit c at the center of the membrane. Subunit a of the F0 sector is thought to provide proton access channels to and from aspartyl-61. Here, we summarize new information on the structural organization of Escherichia coli subunit a and the mapping of aqueous-accessible residues in the second, fourth and fifth transmembrane helices (TMHs). Aqueous-accessible regions of these helices extend to both the cytoplasmic and periplasmic surface. We propose that aTMH4 rotates to alternately expose the periplasmic or cytoplasmic half-channels to aspartyl-61 of subunit c during the proton transport cycle. The concerted rotation of interacting helices in subunit a and subunit c is proposed to be the mechanical force driving rotation of the c-rotor, using a mechanism akin to meshed gears.
Collapse
Affiliation(s)
- Robert H Fillingame
- Department of Biomolecular Chemistry, 1300 University Avenue, University of Wisconsin Medical School, Madison, WI 53706, USA.
| | | | | |
Collapse
|
37
|
Böckmann RA, Grubmüller H. Conformational dynamics of the F1-ATPase beta-subunit: a molecular dynamics study. Biophys J 2003; 85:1482-91. [PMID: 12944266 PMCID: PMC1303325 DOI: 10.1016/s0006-3495(03)74581-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
According to the different nucleotide occupancies of the F(1)-ATPase beta-subunits and due to the asymmetry imposed through the central gamma-subunit, the beta-subunit adopts different conformations in the crystal structures. Recently, a spontaneous and nucleotide-independent closure of the open beta-subunit upon rotation of the gamma-subunit has been proposed. To address the question whether this closure is dictated by interactions to neighbored subunits or whether the open beta-subunit behaves like a prestressed "spring," we report multinanosecond molecular dynamics simulations of the isolated beta-subunit with different start conformations and different nucleotide occupancies. We have observed a fast, spontaneous closure motion of the open beta(E)-subunit, consistent with the available x-ray structures. The motions and kinetics are similar to those observed in simulations of the full (alpha beta)(3)gamma-complex, which support the view of a prestressed "spring," i.e., that forces internal to the beta(E)-subunit dominate possible interactions from adjacent alpha-subunits. Additionally, nucleotide removal is found to trigger conformational transitions of the closed beta(TP)-subunit; this provides evidence that the recently resolved half-closed beta-subunit conformation is an intermediate state before product release. The observed motions provide a plausible explanation why ADP and P(i) are required for the release of bound ATP and why gamma-depleted (alpha beta)(3) has a drastically reduced hydrolysis rate.
Collapse
Affiliation(s)
- Rainer A Böckmann
- Theoretical Molecular Biophysics Group, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | |
Collapse
|
38
|
Venard R, Brèthes D, Giraud MF, Vaillier J, Velours J, Haraux F. Investigation of the role and mechanism of IF1 and STF1 proteins, twin inhibitory peptides which interact with the yeast mitochondrial ATP synthase. Biochemistry 2003; 42:7626-36. [PMID: 12809520 DOI: 10.1021/bi034394t] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inhibition of the yeast F(0)F(1)-ATP synthase by the regulatory peptides IF1 and STF1 was studied using intact mitochondria and submitochondrial particles from wild-type cells or from mutants lacking one or both peptides. In intact mitochondria, endogenous IF1 only inhibited uncoupled ATP hydrolysis and endogenous STF1 had no effect. Addition of alamethicin to mitochondria readily made the mitochondrial membranes permeable to nucleotides, and bypassed the kinetic control exerted on ATP hydrolysis by the substrate carriers. In addition, alamethicin made the regulatory peptides able to cross mitochondrial membranes. At pH 7.3, F(0)F(1)-ATPase, initially inactivated by either endogenous IF1 or endogenous STF1, was completely reactivated hours or minutes after alamethicin addition, respectively. Previous application of a membrane potential favored the release of endogenous IF1 and STF1. These observations showed that IF1 and STF1 can fully inhibit ATP hydrolysis at physiological concentrations and are sensitive to the same effectors. However, ATP synthase has a much lower affinity for STF1 than for IF1, as demonstrated by kinetic studies of ATPase inhibition in submitochondrial particles by externally added IF1 and STF1 at pHs ranging from 5.5 to 8.0. Our data do not support previously proposed effects of STF1, like the stabilization of the IF1-F(0)F(1) complex or the replacement of IF1 on its binding site in the presence of the proton-motive force or at high pH, and raise the question of the conditions under which STF1 could regulate ATPase activity in vivo.
Collapse
Affiliation(s)
- Renée Venard
- Service de Bioénergétique & CNRS-URA 2096, DBJC, CEA Saclay, F91191 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
39
|
Zhang D, Vik SB. Close proximity of a cytoplasmic loop of subunit a with c subunits of the ATP synthase from Escherichia coli. J Biol Chem 2003; 278:12319-24. [PMID: 12525480 DOI: 10.1074/jbc.m212413200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interactions between subunit a and the c subunits of the Escherichia coli ATP synthase are thought to control proton translocation through the F(o) sector. In this study cysteine substitution mutagenesis was used to define the cytoplasmic ends of the first three transmembrane spans of subunit a, as judged by accessibility to 3-N-maleimidyl-propionyl biocytin. The cytoplasmic end of the fourth transmembrane span could not be defined in this way because of the limited extent of labeling of all residues between 186 and 206. In contrast, most of the preceding residues in that region, closer to transmembrane span 3, were labeled readily. The proximity of this region to other subunits in F(o) was tested by reacting mono-cysteine mutants with a photoactivated cross-linker. Residues 165, 169, 173, 174, 177, 178, and 182-184 could all be cross-linked to subunit c, but no sites were cross-linked to b subunits. Attempts using double mutants of subunit a to generate simultaneous cross-links to two different c subunits were unsuccessful. These results indicate that the cytoplasmic loop between transmembrane spans 3 and 4 of subunit a is in close proximity to at least one c subunit. It is likely that the more highly conserved, carboxyl-terminal region of this loop has limited surface accessibility due to protein-protein interactions. A model is presented for the interaction of subunit a with subunit c, and its implications for the mechanism of proton translocation are discussed.
Collapse
Affiliation(s)
- Di Zhang
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376, USA
| | | |
Collapse
|
40
|
Schnick C, Körtgen N, Groth G. Complete inhibition of the tentoxin-resistant F1-ATPase from Escherichia coli by the phytopathogenic inhibitor tentoxin after substitution of critical residues in the alpha - and beta -subunit. J Biol Chem 2002; 277:51003-7. [PMID: 12399471 DOI: 10.1074/jbc.m206095200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Substitution of critical residues in the alpha- and beta-subunit can turn the typically resistant ATP synthase from the bacterium Escherichia coli into an enzyme showing high sensitivity to the phytopathogenic inhibitor tentoxin, which usually affects only certain sensitive plant species. In contrast to recent results obtained with the thermophilic F(1) (Groth, G., Hisabori, T., Lill, H., and Bald, D. (2002) J. Biol. Chem. 277, 20117-20119), substitution of a critical serine in the beta-subunit (betaSer(59)), which is supposed to provide an important intermolecular hydrogen bond in the binding site, was not sufficient on its own for conferring tentoxin sensitivity to the E. coli F(1) complex. Superimposition of the chloroplast F(1)-tentoxin inhibitor complex on a homology model of the E. coli F(1) complex provided detailed information on the critical residues in the alpha-subunit of the binding cleft and allowed us to model the binding site according to the steric requirements of the inhibitor. Substitution of the highly conserved residue alphaLeu(64) seems to be most important for allowing access of the inhibitor to the binding site. Combining this substitution with either additional replacements in the alpha-subunit (Q49A, L95A, E96Q, I273M) or the replacement of Ser(59) in the beta-subunit enhanced the sensitivity to the inhibitor and resulted in a complete inhibition of the E. coli F(1)-ATPase by the plant-specific inhibitor tentoxin.
Collapse
Affiliation(s)
- Claudia Schnick
- Heinrich-Heine-Universitaet, Biochemie der Pflanzen, Universitaetsstrasse 1, D-40225 Duesseldorf, Germany
| | | | | |
Collapse
|
41
|
Minoletti C, Santolini J, Haraux F, Pothier J, André F. Rebuilt 3D structure of the chloroplast f1 ATPase-tentoxin complex. Proteins 2002; 49:302-20. [PMID: 12360520 DOI: 10.1002/prot.10137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The F1 part of the chloroplast H+ adenosine triphosphate (ATP)-synthase (CF1) strongly interacts with tentoxin, a natural fungous cyclic tetrapeptide known to inhibit the chloroplast enzyme and not the mammalian mitochondrial enzyme. Whereas the synthesis or the hydrolysis of ATP requires the stepwise rotation of the protein rotor gamma within the (alphabeta)3 crown, only one molecule of tentoxin is needed to fully inhibit the complex. With the help of an original homology modeling technique, based on robust distance geometry protocols, we built a tridimensional model of the alpha3beta3gamma CF1) subcomplex (3200 esidues), in which we introduced three different nucleotide occupancies to check their possible influence on the tentoxin binding site. Simultaneous comparison of three available high-resolution X-ray structures of F1, performed with a local structural alignment search tool, led to characterizing common structural blocks and the distorsions experienced by the complex during the catalytic turnover. The common structural blocks were used as a starting point of the spinach CF1 structure rebuilding. Finally, tentoxin was docked into its putative binding site of the reconstructed structure. The docking method was initially validated in the mitochondrial enzyme by its ability to relocate nucleotides into their original position in the crystal. Tentoxin binding was found possible to the two alpha/beta interfaces associated with the empty and adenosine diphosphate (ADP)-loaded catalytic sites, but not to the one associated with the ATP-loaded site. These results suggest a mechanism of CF1 inhibition by one molecule of tentoxin, by the impossibility of the alpha/beta interface bearing tentoxin to pass through the ATP-loaded state.
Collapse
Affiliation(s)
- Claire Minoletti
- CNRS URA 2096, Protéines Membranaires Transductrices d'Energie, Section de Bioénergétique, Département de Biologie Cellulaire et Moléculaire, CEA-SACLAY, France
| | | | | | | | | |
Collapse
|
42
|
von Ballmoos C, Meier T, Dimroth P. Membrane embedded location of Na+ or H+ binding sites on the rotor ring of F1F0 ATP synthases. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5581-9. [PMID: 12423357 DOI: 10.1046/j.1432-1033.2002.03264.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent crosslinking studies indicated the localization of the coupling ion binding site in the Na+-translocating F1F0 ATP synthase of Ilyobacter tartaricus within the hydrophobic part of the bilayer. Similarly, a membrane embedded H+-binding site is accepted for the H+-translocating F1F0 ATP synthase of Escherichia coli. For a more definite analysis, we performed parallax analysis of fluorescence quenching with ATP synthases from both I. tartaricus and E. coli. Both ATP synthases were specifically labelled at their c subunit sites with N-cyclohexyl-N'-(1-pyrenyl)carbodiimide, a fluorescent analogue of dicyclohexylcarbodiimide and the enzymes were reconstituted into proteoliposomes. Using either soluble quenchers or spinlabelled phospholipids, we observed a deeply membrane embedded binding site, which was quantitatively determined for I. tartaricus and E. coli to be 1.3 +/- 2.4 A and 1.8 +/- 2.8 A from the bilayer center apart, respectively. These data show a conserved topology among enzymes of different species. We further demonstrated the direct accessibility for Na+ ions to the binding sites in the reconstituted I. tartaricus c11 oligomer in the absence of any other subunits, pointing to intrinsic rotor channels. The common membrane embedded location of the binding site of ATP synthases suggest a common mechanism for ion transfer across the membrane.
Collapse
Affiliation(s)
- Christoph von Ballmoos
- Institut für Mikrobiologie der Eidgenössischen Technischen Hochschule, ETH Zentrum, Zürich, Switzerland
| | | | | |
Collapse
|
43
|
Fillingame RH, Dmitriev OY. Structural model of the transmembrane Fo rotary sector of H+-transporting ATP synthase derived by solution NMR and intersubunit cross-linking in situ. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1565:232-45. [PMID: 12409198 DOI: 10.1016/s0005-2736(02)00572-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
H(+)-transporting, F(1)F(o)-type ATP synthases utilize a transmembrane H(+) potential to drive ATP formation by a rotary catalytic mechanism. ATP is formed in alternating beta subunits of the extramembranous F(1) sector of the enzyme, synthesis being driven by rotation of the gamma subunit in the center of the F(1) molecule between the alternating catalytic sites. The H(+) electrochemical potential is thought to drive gamma subunit rotation by first coupling H(+) transport to rotation of an oligomeric rotor of c subunits within the transmembrane F(o) sector. The gamma subunit is forced to turn with the c-oligomeric rotor due to connections between subunit c and the gamma and epsilon subunits of F(1). In this essay we will review recent studies on the Escherichia coli F(o) sector. The monomeric structure of subunit c, determined by NMR, shows that subunit c folds in a helical hairpin with the proton carrying Asp(61) centered in the second transmembrane helix (TMH). A model for the structural organization of the c(10) oligomer in F(o) was deduced from extensive cross-linking studies and by molecular modeling. The model indicates that the H(+)-carrying carboxyl of subunit c is occluded between neighboring subunits of the c(10) oligomer and that two c subunits pack in a "front-to-back" manner to form the H(+) (cation) binding site. In order for protons to gain access to Asp(61) during the protonation/deprotonation cycle, we propose that the outer, Asp(61)-bearing TMH-2s of the c-ring and TMHs from subunits composing the inlet and outlet channels must turn relative to each other, and that the swiveling motion associated with Asp(61) protonation/deprotonation drives the rotation of the c-ring. The NMR structures of wild-type subunit c differs according to the protonation state of Asp(61). The idea that the conformational state of subunit c changes during the catalytic cycle is supported by the cross-linking evidence in situ, and two recent NMR structures of functional mutant proteins in which critical residues have been switched between TMH-1 and TMH-2. The structural information is considered in the context of the possible mechanism of rotary movement of the c(10) oligomer during coupled synthesis of ATP.
Collapse
Affiliation(s)
- Robert H Fillingame
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, 1300 University Avenue, Madison, WI 53706-1532, USA.
| | | |
Collapse
|
44
|
Fillingame RH, Angevine CM, Dmitriev OY. Coupling proton movements to c-ring rotation in F(1)F(o) ATP synthase: aqueous access channels and helix rotations at the a-c interface. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1555:29-36. [PMID: 12206887 DOI: 10.1016/s0005-2728(02)00250-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
F(1)F(o) ATP synthases generate ATP by a rotary catalytic mechanism in which H(+) transport is coupled to rotation of a ring of c subunits within the transmembrane sector of the enzyme. Protons bind to and then are released from the aspartyl-61 residue of subunit c at the center of the membrane. Proton access channels to and from aspartyl-61 are thought to form in subunit a of the F(o) sector. Here, we summarize new information on the structural organization of subunit a and the mapping of aqueous accessible residues in the fourth and fifth transmembrane helices (TMHs). Cysteine substituted residues, lying on opposite faces of aTMH-4, preferentially react with either N-ethyl-maleimide (NEM) or Ag(+). We propose that aTMH-4 rotates to alternately expose each helical face to aspartyl-61 of subunit c during the proton transport cycle. The concerted helical rotation of aTMH-4 and cTMH-2 are proposed to be coupled to the stepwise mechanical movement of the c-rotor.
Collapse
Affiliation(s)
- Robert H Fillingame
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison 53706-1532, USA.
| | | | | |
Collapse
|
45
|
Gumbiowski K, Pänke O, Junge W, Engelbrecht S. Rotation of the c subunit oligomer in EF(0)EF(1) mutant cD61N. J Biol Chem 2002; 277:31287-90. [PMID: 12045188 DOI: 10.1074/jbc.m111678200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP synthases (F(0)F(1)-ATPases) mechanically couple ion flow through the membrane-intrinsic portion, F(0), to ATP synthesis within the peripheral portion, F(1). The coupling most probably occurs through the rotation of a central rotor (subunits c(10)epsilon gamma) relative to the stator (subunits ab(2)delta(alpha beta)(3)). The translocation of protons is conceived to involve the rotation of the ring of c subunits (the c oligomer) containing the essential acidic residue cD61 against subunits ab(2). In line with this notion, the mutants cD61N and cD61G have been previously reported to lack proton translocation. However, it has been surprising that the membrane-bound mutated holoenzyme hydrolyzed ATP but without translocating protons. Using detergent-solubilized and immobilized EF(0)F(1) and by application of the microvideographic assay for rotation, we found that the c oligomer, which carried a fluorescent actin filament, rotates in the presence of ATP in the mutant cD61N just as in the wild type enzyme. This observation excluded slippage among subunit gamma, the central rotary shaft, and the c oligomer and suggested free rotation without proton pumping between the oligomer and subunit a in the membrane-bound enzyme.
Collapse
Affiliation(s)
- Karin Gumbiowski
- Universität Osnabrück, FB Biologie, Abt. Biophysik, Barbarastrasse 11, 49076 Osnabrück, Germany
| | | | | | | |
Collapse
|
46
|
Müller DJ, Janovjak H, Lehto T, Kuerschner L, Anderson K. Observing structure, function and assembly of single proteins by AFM. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2002; 79:1-43. [PMID: 12225775 DOI: 10.1016/s0079-6107(02)00009-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Single molecule experiments provide insight into the individuality of biological macromolecules, their unique function, reaction pathways, trajectories and molecular interactions. The exceptional signal-to-noise ratio of the atomic force microscope allows individual proteins to be imaged under physiologically relevant conditions at a lateral resolution of 0.5-1nm and a vertical resolution of 0.1-0.2nm. Recently, it has become possible to observe single molecule events using this technique. This capability is reviewed on various water-soluble and membrane proteins. Examples of the observation of function, variability, and assembly of single proteins are discussed. Statistical analysis is important to extend conclusions derived from single molecule experiments to protein species. Such approaches allow the classification of protein conformations and movements. Recent developments of probe microscopy techniques allow simultaneous measurement of multiple signals on individual macromolecules, and greatly extend the range of experiments possible for probing biological systems at the molecular level. Biologists exploring molecular mechanisms will benefit from a burgeoning of scanning probe microscopes and of their future combination with molecular biological experiments.
Collapse
Affiliation(s)
- Daniel J Müller
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauer Str. 108, D-01307 Dresden, Germany.
| | | | | | | | | |
Collapse
|
47
|
Dmitriev OY, Abildgaard F, Markley JL, Fillingame RH. Structure of Ala24/Asp61 --> Asp24/Asn61 substituted subunit c of Escherichia coli ATP synthase: implications for the mechanism of proton transport and rotary movement in the F0 complex. Biochemistry 2002; 41:5537-47. [PMID: 11969414 DOI: 10.1021/bi012198l] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structure of the A24D/D61N substituted subunit c of Escherichia coli ATP synthase, in which the essential carboxylate has been switched from residue 61 of the second transmembrane helix (TMH) to residue 24 of the first TMH, has been determined by heteronuclear multidimensional NMR in a monophasic chloroform/methanol/water (4:4:1) solvent mixture. As in the case of the wild-type protein, A24D/D61N substituted subunit c forms a hairpin of two extended alpha-helices (residues 5-39 and 46-78), with residues 40-45 forming a connecting loop at the center of the protein. The structure was determined at pH 5, where Asp24 is fully protonated. The relative orientation of the two extended helices in the A24D/D61N structure is different from that in the protonated form of the wild-type protein, also determined at pH 5. The C-terminal helix is rotated by 150 degrees relative to the wild-type structure, and the N-terminal helix is rotated such that the essential Asp24 carboxyl group packs on the same side of the molecule as Asp61 in the wild-type protein. The changes in helix-helix orientation lead to a structure that is quite similar to that of the deprotonated form of wild-type subunit c, determined at pH 8. When a decameric ring of c subunits was modeled from the new structure, the Asp24 carboxyl group was found to pack in a cavity at the interface between two subunits that is similar to the cavity in which Asp61 of the wild-type protein is predicted to pack. The interacting faces of the packed subunits in this model are also similar to those in the wild-type model. The results provide further evidence that subunit c is likely to fold in at least two conformational states differing most notably in the orientation of the C-terminal helix. Based upon the structure, a mechanistic model is discussed that indicates how the wild-type and A24D/D61N subunits could utilize similar helical movements during H(+) transport-coupled rotation of the decameric c ring.
Collapse
Affiliation(s)
- Oleg Y Dmitriev
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
48
|
Soubannier V, Vaillier J, Paumard P, Coulary B, Schaeffer J, Velours J. In the absence of the first membrane-spanning segment of subunit 4(b), the yeast ATP synthase is functional but does not dimerize or oligomerize. J Biol Chem 2002; 277:10739-45. [PMID: 11799128 DOI: 10.1074/jbc.m111882200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-terminal portion of the mitochondrial b-subunit is anchored in the inner mitochondrial membrane by two hydrophobic segments. We investigated the role of the first membrane-spanning segment, which is absent in prokaryotic and chloroplastic enzymes. In the absence of the first membrane-spanning segment of the yeast subunit (subunit 4), a strong decrease in the amount of subunit g was found. The mutant ATP synthase did not dimerize or oligomerize, and mutant cells displayed anomalous mitochondrial morphologies with onion-like structures. This phenotype is similar to that of the null mutant in the ATP20 gene that encodes subunit g, a component involved in the dimerization/oligomerization of ATP synthase. Our data indicate that the first membrane-spanning segment of the mitochondrial b-subunit is not essential for the function of the enzyme since its removal did not directly alter the oxidative phosphorylation. It is proposed that the unique membrane-spanning segment of subunit g and the first membrane-spanning segment of subunit 4 interact, as shown by cross-linking experiments. We hypothesize that in eukaryotic cells the b-subunit has evolved to accommodate the interaction with the g-subunit, an associated ATP synthase component only present in the mitochondrial enzyme.
Collapse
Affiliation(s)
- Vincent Soubannier
- Institut de Biochimie et Génétique Cellulaires du CNRS, Université Victor Segalen, Bordeaux 2, 1, rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | | | | | | | | | | |
Collapse
|
49
|
Valiyaveetil F, Hermolin J, Fillingame RH. pH dependent inactivation of solubilized F1F0 ATP synthase by dicyclohexylcarbodiimide: pK(a) of detergent unmasked aspartyl-61 in Escherichia coli subunit c. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1553:296-301. [PMID: 11997138 DOI: 10.1016/s0005-2728(01)00251-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pH dependence of the reaction of dicyclohexylcarbodiimide with the essential aspartyl-61 residue in subunit c of Escherichia coli ATP synthase was compared in membranes and in a detergent dispersed preparation of the enzyme. The rate of reaction was estimated by measuring the inactivation of ATPase activity. The reaction with the detergent dispersed form of the enzyme proved to be pH sensitive with the essential aspartyl group titrating with a pK(a)=8. However, when measured with E. coli membranes, the reaction proved to be pH insensitive. The results suggest that the reacting aspartyl-61 residues are shielded from the bulk aqueous solvent when in the membrane, but then become aqueous-accessible following detergent solubilization.
Collapse
Affiliation(s)
- Francis Valiyaveetil
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, 1300 University Avenue, Madison, WI 53706, USA
| | | | | |
Collapse
|
50
|
Gumbiowski K, Cherepanov D, Muller M, Panke O, Promto P, Winkler S, Junge W, Engelbrecht S. F-ATPase: forced full rotation of the rotor despite covalent cross-link with the stator. J Biol Chem 2001; 276:42287-92. [PMID: 11533065 DOI: 10.1074/jbc.m106884200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In ATP synthase (F(O)F(1)-ATPase) ion flow through the membrane-intrinsic portion, F(O), drives the central "rotor", subunits c(10)epsilongamma, relative to the "stator" ab(2)delta(alphabeta)(3). This converts ADP and P(i) into ATP. Vice versa, ATP hydrolysis drives the rotation backwards. Covalent cross-links between rotor and stator subunits have been shown to inhibit these activities. Aiming at the rotary compliance of subunit gamma we introduced disulfide bridges between gamma (rotor) and alpha or beta (stator). We engineered cysteine residues into positions located roughly at the "top," "center," and "bottom" parts of the coiled-coil portion of gamma and suitable residues on alpha or beta. This part of gamma is located at the center of the (alphabeta)(3) domain with its C-terminal part at the top of F(1) and the bottom part close to the F(O) complex. Disulfide bridge formation under oxidizing conditions was quantitative as shown by SDS-polyacrylamide gel electrophoresis and immunoblotting. As expected both the ATPase activities and the yield of rotating subunits gamma dropped to zero when the cross-link was formed at the center (gammaL262C <--> alphaA334C) and bottom (gammaCys(87) <--> betaD380C) positions. But much to our surprise disulfide bridging impaired neither ATP hydrolysis activity nor the full rotation of gamma and the enzyme-generated torque of oxidized F(1), which had been engineered at the top position (gammaA285C <--> alphaP280C). Apparently the high torque of this rotary engine uncoiled the alpha-helix and forced amino acids at the C-terminal portion of gamma into full rotation around their dihedral (Ramachandran) angles. This conclusion was supported by molecular dynamics simulations: If gammaCys(285)-Val(286) are attached covalently to (alphabeta)(3) and gammaAla(1)-Ser(281) is forced to rotate, gammaGly(282)-Ala(284) can serve as cardan shaft.
Collapse
Affiliation(s)
- K Gumbiowski
- Universität Osnabrück, FB Biologie, Abt. Biophysik, Barbarastrasse 11, 49069 Osnabrück, Germany
| | | | | | | | | | | | | | | |
Collapse
|